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1D solution is due to the integration of 2D equation along 𝑦. In this case the quantities are 
averaged over the whole section.
It means that the diffusive process has to be fully developed along both the vertical and 
transverse dirction (section 3-3’ of the skectch shown two lessons ago), i.e. 𝑥 > 100 ÷
300 𝐵 from insertion point.

The starting equation is:
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The kinematic conditions are:
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𝜕𝑥
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The dynamic conditions are given by: 𝒒𝑘 ∙ 𝒏𝐵 𝑦=±𝐵/2 = 0

Where 𝒒𝑘 is the flux due to dispersion, that is defined as: 𝒒𝑘 = 𝑧0 𝑘𝑥
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Similarly to the 2D case, we integrate between −𝐵/2 and 𝐵/2: 
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Keeping in mind the Leibniz rule of integration:
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By grouping:
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The integration of the 2D dispersion equation along 𝑦 yields:

𝜕

𝜕𝑡
න
−𝐵/2

𝐵/2

𝑧0𝐶 d𝑦 +
𝜕
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The simplification of the integrals is possible averaging the variables on the section, i.e.:

𝐶0 =
𝐵/2−׬
𝐵/2

𝑧0𝐶 d𝑦

𝐵/2−׬
𝐵/2

𝑧0d𝑦
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−𝐵/2

𝐵/2

𝑧0𝐶 d𝑦 𝑈0 =
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𝐵/2−׬
𝐵/2

𝑧0d𝑦
=
𝑄

𝐴

And applying the decomposition:

𝑈0 ෡𝑈 𝐶0 ෡𝐶

𝐶 = 𝐶0 + ෡𝐶𝑈𝑥 = 𝑈0 + ෡𝑈
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Noting that:

න
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𝑧0𝑈𝑥𝐶 d𝑦 = න
−𝐵/2

𝐵/2

𝑧0 𝑈0 + ෡𝑈 𝐶0 + ෡𝐶 d𝑦
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By developing the original equation:

𝜕
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𝐴𝐶0 +
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𝜕𝑥
𝑄𝐶0 =

𝜕

𝜕𝑥
න
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𝜕𝐶
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𝜕𝑥

1D Dispersion Equation
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where:

𝐾𝑥
𝜕𝐶0
𝜕𝑥

= −
1

𝐴
න
−𝐵/2

𝐵/2

𝑧0 ෡𝑈 ෡𝐶 − 𝑘𝑥
𝜕𝐶

𝜕𝑥
d𝑦 Longitudinal mixing coefficient

Further simplification can be done by imposing the continuity equation, which is determined
by integrating along 𝑦 the 2D continuity equation: 

𝜕𝑧0
𝜕𝑡

+
𝜕

𝜕𝑥
𝑧0𝑈𝑥0 +

𝜕

𝜕𝑦
𝑧0𝑈𝑦0 = 0

න

න

−𝐵/2

𝐵/2
𝜕𝑧0
𝜕𝑡

d𝑦 + න

−𝐵/2

𝐵/2
𝜕 𝑧0𝑈𝑥0

𝜕𝑥
d𝑦 + 𝑧0𝑈𝑦0 ±

𝐵
2
= 0

by Leibniz: 

𝜕

𝜕𝑡
න
−𝐵/2

𝐵/2

𝑧0d𝑦 − ቤ
1

2
𝑧0
𝜕𝐵

𝜕𝑡
𝑦=

𝐵
2

+ ቤ
1

2
𝑧0
𝜕𝐵

𝜕𝑡
𝑦=−

𝐵
2

+
𝜕

𝜕𝑥
න
−𝐵/2

𝐵/2

𝑧0𝑈𝑥0d𝑦 − ቤ
1

2
𝑧0𝑈𝑥0

𝜕𝐵

𝜕𝑥
𝑦=

𝐵
2

+ ቤ
1

2
𝑧0𝑈𝑥0

𝜕𝐵

𝜕𝑥
𝑦=−

𝐵
2

+ ቚ𝑧0𝑈𝑦0
𝑦=

𝐵
2

− ቚ𝑧0𝑈𝑦0
𝑦=−

𝐵
2

= 0
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By grouping:

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
+ 𝑧0

1

2

𝜕𝐵

𝜕𝑡
+
1

2

𝜕𝐵

𝜕𝑥

d𝑥

d𝑡
−
d𝑦

d𝑡
𝑦=−𝐵/2

− 𝑧0
1

2

𝜕𝐵

𝜕𝑡
+
1

2

𝜕𝐵

𝜕𝑥

d𝑥

d𝑡
−
d𝑦

d𝑡
𝑦=𝐵/2

= 0

0 0

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0 1D Continuity equation

3D continuity equation: 𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑦
𝜕𝑦

+
𝜕𝑢𝑧
𝜕𝑧

= 0

2D continuity equation: 
𝜕𝑧0
𝜕𝑡

+
𝜕𝑞𝑥
𝜕𝑥

+
𝜕𝑞𝑦
𝜕𝑦

= 0

1D continuity equation: 
𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0

Expading the dispersion equation, we find:

𝐶0
𝜕𝐴

𝜕𝑡
+ 𝐴

𝜕𝐶0
𝜕𝑡

+ 𝐶0
𝜕𝑄

𝜕𝑥
+ 𝑄

𝜕𝐶0
𝜕𝑥

=
𝜕

𝜕𝑥
𝐾𝑥𝐴

𝜕𝐶0
𝜕𝑥

𝐴
𝜕𝐶0
𝜕𝑡

+ 𝑄
𝜕𝐶0
𝜕𝑥

+ 𝐶0
𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
=

𝜕

𝜕𝑥
𝐾𝑥𝐴

𝜕𝐶0
𝜕𝑥

0
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By dividing for the section area 𝐴 and considering implicitly section averaged variables:

𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑥
=
1

𝐴

𝜕

𝜕𝑥
𝐾𝑥𝐴

𝜕𝐶

𝜕𝑥

This outcome is very useful. Why?

Let’s assume uniform flow:

𝜕𝐴

𝜕𝑥
= 0

𝜕𝐾𝑥
𝜕𝑥

= 0

Constant 𝑈 means 𝜕𝑄/𝜕𝑥 = 𝑈𝜕𝐴/𝜕𝑥 = 0

The hydrodynamic conditions are the 
same along 𝑥.

Then:
𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑥
= 𝐾𝑥

𝜕2𝐶

𝜕𝑥2

We can study the longitudinal dispersion
according to a Fickian Model!

If we have a lumped mass insertion 𝑀 in the section 𝑥 = 0 at 𝑡 = 0, the concentration is:

𝐶 𝑥, 𝑡 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡
𝑒
−
𝑥−𝑈𝑡 2

4𝐾𝑥𝑡 Taylor solution
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This solution implies that:

i. The concentration distribution 𝐶 𝑥0, 𝑡 in a given section 𝑥 = 𝑥0 has skewness (𝑠 ≠ 0):

ii. For 𝑡 = 𝑡0, concentration 𝐶 𝑥, 𝑡0 is Gaussian:
- variance linearly increases with time, i.e. Τ𝜕𝜎 𝜕𝑡 = 2𝑘𝑥
- odd statistical moments are zero.

𝜕𝐶

𝜕𝑡
> 0 >

𝜕𝐶

𝜕𝑡
< 0

Note that the Taylor solution is an ideal solution. In the real case the process reaches
asymptotically this solution.
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Experimental analyses recognize three zones.

𝑠

𝜎2

𝑥𝐿𝑥 𝑎𝐿𝑥

advective
zone

equilibrium
zone

gaussian
zone

i. 𝑥 < 𝐿𝑥 Advective zone.
Variance increses less than linearly. Solute spreads out 
along firstly 𝑧 and then 𝑦.
Skewness is large. Initially it monotonically increases
until the peak due to non-uniform advection.

ii. 𝑥 > 𝐿𝑥 Equilibrium zone.
Dispersion processes reach the equilibrium. Non-
uniform tranverse advection is balance with 
transverse mixing, i.e. 𝜎2 ∝ 𝑡 and Τ𝜕𝑠 𝜕𝑡 < 0.

iii. 𝑥 > 𝑎𝐿𝑥 Gaussian zone.
Concentration follows Fickian model, i.e. 𝜎2 ∝ 𝑡 and 
𝑠 ≅ 0.

𝐿𝑥 = 𝜅𝑈
𝐵2

𝑘𝑦
𝜅 = 0.5 ÷ 0.6

𝐵2

𝑘𝑦

It is the Eulerian time scale, i.e. the required average
time by particle to visit the whole river section
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How much is the value of 𝑎?

The range is wide, because 𝑎 is estimated by experimental studies and it strongly depends on 
the river path, section geometry and hydraulic regime of the investigated rivers.
In particular literature shows:

𝑎 = 2.5 (Fischer et al., 1979)
𝑎 = 4 ÷ 5 (Denton, 1990)
𝑎 = 10 (Sayre, 1968)
𝑎 = 50 (Liu & Cheng, 1980)

Difference of 1 
order of magnitude

The greater values of 𝑎 are due to the presence of wake zones along the river path. In this
areas the velocity goes almost to zero, hence part of the solute can stay for long time in 
these zones increasing the skweness of the mean concentration distribution.
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There are several methods to correctly estimate the dispersion coefficient 𝐾𝑥 in the Gaussian
zone:

i. Empirical Formulas

ii. Chatwin Method

iii. Moments Method

iv. Calibration Method

v. Velocity Field Method

vi. Graphic Method

These Methods have been
described in the exercise lesson
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The literature provides several formulas based on the multiple regression analysis of 
experimental data. 

- McQuivey & Keefer (1974):

- Liu (1977):

- Seo & Cheong (1998)

- Kashelipour & Falconer (2002):

𝐾𝑥 = 0.058
𝑄

𝑖𝑏𝐵

𝐾𝑥 = 𝛼
𝑈2

𝑧0𝑢∗
𝛼 = 0.18

𝑢∗
𝑈

3/2

𝐾𝑥 = 5.195 𝑧0𝑢∗
𝐵

𝑧0

0.62
𝑢∗
𝑈

1.428

𝐾𝑥 = 10.612 𝑧0𝑢∗
𝑢∗
𝑈
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Chatwin rearranges the fundamental solution proposed by Taylor for 1D Fickian type
process as following:

And then:

𝐶 𝑥, 𝑡 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡
𝑒
−
𝑥−𝑈𝑡 2

4𝐾𝑥𝑡

𝑒
𝑥−𝑈𝑡 2

4𝐾𝑥𝑡 =
𝑀

𝐴 4𝜋𝐾𝑥

1

𝐶 𝑡

𝑥 − 𝑈𝑡 2

4𝐾𝑥𝑡
= ln

𝑅

𝐶 𝑡

𝑅 =
𝑀

𝐴 4𝜋𝐾𝑥

𝑥 − 𝑈𝑡 2

4𝐾𝑥
= 𝑡 ln

𝑅

𝐶 𝑡

𝑥

2 𝐾𝑥
−

𝑈

2 𝐾𝑥
𝑡 = 𝑡 ln

𝑅

𝐶 𝑡
= 𝐶∗

ln

Fictitious concentration
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Often the amount of mass M is unknown. In this case it is useful rewritting the term R:

𝐶𝑚𝑎𝑥 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡𝑚𝑎𝑥

𝑒
−
𝒙−𝑈𝑡𝑚𝑎𝑥

2

4𝐾𝑥𝑡𝑚𝑎𝑥 𝐶𝑚𝑎𝑥𝑡𝑚𝑎𝑥 =
𝑀

𝐴 4𝜋𝐾𝑥
= 𝑅

And finally:

𝐶∗ = −
𝑈

2 𝐾𝑥
𝑡 +

𝑥

2 𝐾𝑥

𝐶∗ = 𝑡 ∙ 𝑙𝑛
𝐶𝑚𝑎𝑥 𝑡𝑚𝑎𝑥

𝐶 𝑡

𝐶∗ = − 𝑡 ∙ 𝑙𝑛
𝐶𝑚𝑎𝑥 𝑡𝑚𝑎𝑥

𝐶 𝑡

𝑡 ≤ 𝑡𝑚𝑎𝑥

𝑡 > 𝑡𝑚𝑎𝑥

with:

𝐾𝑥 and 𝑈 are calculated by the slope and 
the intercept of the dashed line 

1
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When the process of dispersion occurs in the Gaussian zone, the variance of the cloud
increases linearly, i.e.:

d𝜎𝑥
2

d𝑡
= 2𝐾𝑥

By applying the discretization method, it means:

𝐾𝑥 =
1

2

𝜎𝑥
2 𝑡2 − 𝜎𝑥

2 𝑡1
𝑡2 − 𝑡1

Being:

𝜎𝑥
2 𝑡𝑖 =

∞−׬
+∞

𝑥 − 𝜇𝑥 𝑡𝑖
2𝐶 𝑥, 𝑡𝑖 d𝑡

∞−׬
+∞

𝐶 𝑥, 𝑡𝑖 d𝑡

𝜇𝑥 𝑡𝑖 =
∞−׬
+∞

𝑥𝐶 𝑥, 𝑡𝑖 d𝑡

∞−׬
+∞

𝐶 𝑥, 𝑡𝑖 d𝑡

Statistical moment of order II

Statistical moment of order I
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In the practice, it is easier measuring 𝐶 𝑥𝑖 , 𝑡 rather than 𝐶 𝑥, 𝑡𝑖 . Hence we need to use 
the temporal variance of the concentration in 𝑥𝑖, 𝜎𝑡

2 𝑥𝑖 .

Fisher in 1966 demonstrated that:

where

𝐾𝑥 =
1

2
𝑈0

𝜎𝑡
2 𝑥2 − 𝜎𝑡

2 𝑥1
ഥ𝑡2 − ഥ𝑡1

𝜎𝑡
2 𝑥𝑖 =

𝐴

𝑀
න
0

+∞

𝑡 − ഥ𝑡𝑖
2𝐶 𝑥𝑖 , 𝑡 d𝑡

ഥ𝑡𝑖 =
𝐴

𝑀
න
0

+∞

𝑡𝐶 𝑥𝑖 , 𝑡 d𝑡

Statistical moment of order II

Statistical moment of order I.
It is the time of the centroid in 𝑥𝑖

𝑈0 =
𝑥2 − 𝑥1
ഥ𝑡2 − ഥ𝑡1

Mean velocity of the cloud
centroid between 𝑥1 and 𝑥2


