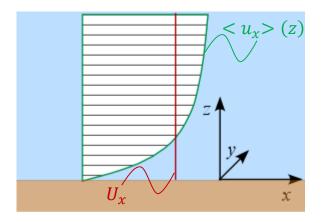


Università degli Studi di Padova

LESSON 10: 2D DISPERSION COEFFICIENTS



Assumptions:

- 1D flow, i.e. $\langle \mathbf{u} \rangle = (\langle u_x \rangle (z), 0, 0)$ $\langle \mathbf{u} \rangle \cdot \nabla \langle c \rangle = \langle u_x \rangle \partial \langle c \rangle / \partial x$
- Wide rectangular section, i.e. $B \gg z_0$

The turbulent diffusion equation of the problem and the boundary conditions are:

$$\begin{cases} \frac{\partial < c >}{\partial t} + < u_x > \frac{\partial < c >}{\partial x} = \frac{\partial}{\partial x} \left(e_x \frac{\partial < c >}{\partial x} \right) + \frac{\partial}{\partial z} \left(e_z \frac{\partial < c >}{\partial z} \right) \\ e_z \frac{\partial < c >}{\partial z} \Big|_{z=0,z_0} = 0 \\ Flux \text{ is zero through the bottom} \\ and free surface \end{cases}$$

By the Reynolds analogy:

$$e_z(z) = u_* z_0 k \frac{z}{z_0} \left(1 - \frac{z}{z_0} \right) \longrightarrow \bar{e_z} = \frac{1}{z_0} \int_0^{z_0} e_z(z) \, dz = 0.067 u_* z_0$$

Elder demonstrated that:

 $k_x = 5.86 \, u_* z_0$ Elder coefficient

It is worth noting that:

$$\varepsilon = \frac{\overline{e_x}}{k_x} = \frac{0.067u_*z_0}{5.86 u_*z_0} \ll 1$$
Longitudinal dispersion is order of magnitude greater than longitudinal diffusion (and vertical diffusion, as well)

Environmental Fluid Mechanics – Lesson 10: 2D Dispersion Coefficients

degli Studi

 $\overline{e_x} = \overline{e_z}$

Let's analyze the time scale of each terms considering the "point of view" of the mean cloud centroid. In this case the equation of diffusion becomes:

$$\frac{\partial < c >}{\partial t} + (< u_x > - U_x) \frac{\partial < c >}{\partial \xi} = \frac{\partial}{\partial \xi} \left(e_x \frac{\partial < c >}{\partial \xi} \right) + \frac{\partial}{\partial z} \left(e_z \frac{\partial < c >}{\partial z} \right)$$

$$(1) \qquad (2) \qquad (3)$$

Where U_{χ} is the vertical averaged velocity and (ξ, t) is the reference system centered in the mean cloud centroid.

Noting that:

Classic diffusive processes

Dispersive process due to non-uniform advection and vertical mixing

$\frac{\partial c}{\partial t}$		$\frac{\partial \mathbf{c}}{\partial t} - U_x \frac{\partial \mathbf{c}}{\partial \xi}$
$\frac{\partial c}{\partial x}$	\longrightarrow	$\frac{\partial c}{\partial \xi}$

Università degli Studi di Padova

The times scale of the problem are:

- i. Vertical Mixing: $T_0 = \frac{{z_0}^2}{e_z}$
- ii. Non-Uniform Advection: $T_1 = \frac{L}{U}$
- iii. Longitudinal Dispersion: $T_2 = \frac{L_0}{k_x}$

By comparing the terms:

$$\frac{\partial < c > /\partial t}{\frac{\partial}{\partial z} \left(e_z \frac{\partial < c >}{\partial z} \right)} \propto \frac{k_x}{L_0^2} \frac{z_0^2}{e_z} = \frac{T_0}{T_2} \ll 1$$

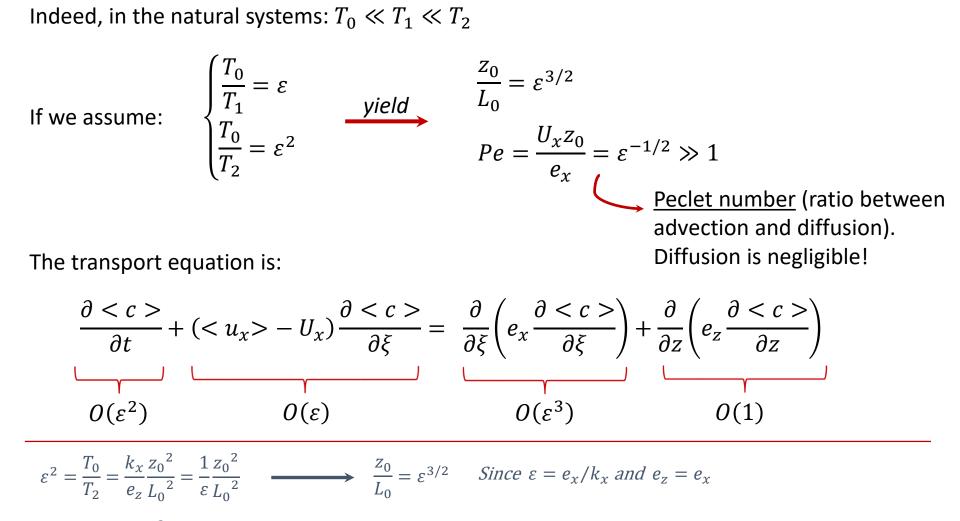
$$\frac{(-U_x) \partial < c > /\partial \xi}{\frac{\partial}{\partial z} \left(e_z \frac{\partial < c >}{\partial z} \right)} \propto \frac{U_x}{L_0^2} \frac{z_0^2}{e_z} = \frac{T_0}{T_1} \ll 1$$

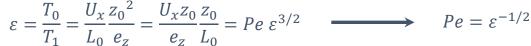
$$\frac{\frac{\partial}{\partial \xi} \left(e_x \frac{\partial < c >}{\partial \xi} \right)}{\frac{\partial}{\partial z} \left(e_z \frac{\partial < c >}{\partial z} \right)} \propto \frac{e_x}{L_0^2} \frac{z_0^2}{e_z} = \left(\frac{z_0}{L_0} \right)^2 \ll 1$$

Vertical diffusivity is the fastest mechanisms

Università degli Studi DI PADOVA

Indeed, in the natural systems: $T_0 \ll T_1 \ll T_2$



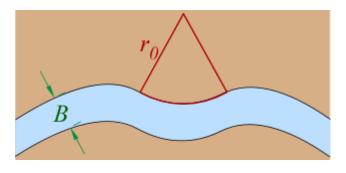


Similarly to transverse diffusivity, the transverse mixing coefficient k_y is estimated by means of experimental analysis.

 k_y is strictly related to the <u>curvature</u> of the river path. In particular:

i. Straight channel
$$\left(\frac{BU_0}{u_*r_0}=0\right)$$
: $0.15 < \frac{k_y}{u_*z_0} < 0.30$

ii. <u>Weak curvature</u> $\left(\frac{BU_0}{u_*r_0} < 2\right)$: $0.30 < \frac{k_y}{u_*z_0} < 0.90$



iii. meandering river
$$\left(\frac{BU_0}{u_*r_0} > 2\right)$$
: $1.00 < \frac{k_y}{u_*z_0} < 3.00$
Sometimes it is greater than 3!

It is worth noting that for wide prismatic channel, we have:

$$\frac{k_y(y)}{u_*(y)z_0(y)} \cong \frac{k_y}{z_0\sqrt{giz_0}} = \text{const} \longrightarrow k_y \propto z_0(y)^{3/2} \qquad u_* = \sqrt{R_H gi}$$
$$R_H \cong z_0$$

