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ICEA/ DYNAMICS OF SOLUTE CLOUD

Assumptions on the turbulent diffusion of solute:

i. Turbulence is homogeneous and stationary (ergodic process)

It means that Taylor’s
ii. Flowis 1D and uniform,i.e.u = (uy, 0, 0) hypothesis is valid

iii. The process is 2D (actually it is 3D!)

The solute evolution after the injection at the time t, is shown in figure.
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Case j=2

Case j=N

mean cloud centroid
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Mean Cloud (it is
determined by
the N centroids)

-  The origin of the reference system corresponds to the mean cloud centroid




I CLOUD STATISTICAL MOMENTS | oS

The problem must be investigated though probabilistic approach.

In each realization (j=1...N) the concentration of the solute is: ¢ = c(x, t)

Therefore the concentration mean cloud is:

+00 The average of the realization
Clx,t) =<c(x,t) >= J c p(clx,t) dc equal to the temporal mean of
- c. It is due to ergodicity!

Statistical moments:

Cloud Mean cloud
+00 + o0
m=[ [ cxoax co0= | cplelrnde
1 [+ 1 [+
Xgi = Mj X; C(x, t) dxl- Xgi = M_[ X C(x, t) Xm'
N O 2 , 1 (%% 2
o;" = MJ_ (Xl' — xgi) C(x, t) dXi Zi = Mj_ (Xi — Xgi) C(x, t) dxl-
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Let’s compare the variance of generic cloud and the mean cloud.
For the generic cloud, the variance can be write as:
1

400
O'iz = M (.X'iz - ZXngl' + Xgiz ) c(x, t) dxl-
— 00

1 [* 2%,; [T X2 (T
2 2 gl gl
a; _Mj x;“c(x, t)dx; — o f x;c(x, t)dx; +7j c(x, t)dx;

— 00

2
xgl-

M
M

1 (+*® 2X i
0% = MJ x;2c(x, t)dx; — Mgl Mxg; +

1 ™
0;% = Mf x;2c(x, t)dx; — xg,;z
— 00
And then the average variance considering the N realization is

1+
< 0'i2> = —J xizC(x, t)dx; —< xgi2>
MJ_w
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The variance of the mean cloud is:

1 [+
Ziz = M_[ (Xiz - ZXngi + Xgiz ) C(x, t) dxl-

ZXgi +00 Xgiz +00
M f xiC(x,t)dxi +7j C(x,t)dxl-

1t
¥.2 = —f x;2C(x, t)dx; —
l M o l ) l

1 (** 2X,; X2
52 = Mj_ x;2C (x, t)dx; —ﬁngi +%M

1 [+
%t = Mf—oo x2C(x, 0)dx; — Xg;°

By replacing the latter into the mean variance of the clouds, we find:

< O'i2> = Ziz + Xgi2_< xgi2>
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This relationship can be rearranged as following:
— 3 =<o2>+< (- X) > 2
i i Xgi — Agi = % >< 0>

The length scale of the cloud and of the the mean cloud are then defined as:

Cloud Mean cloud

0,° + ayz + 0,2
3

S+ 2,0+,
3

I(t) = L(t) =

By replacing the definitions of variances, we find:

<o 40,2+ 02> < (xgx = Xgu) + (Xgy = Xgy) + (g — Xgz)" >

L(t)? =
(t) 3 + 3 ’
2 2 2 Xgi = Xgi ~ Xgi
< Xgy' “F Xy ©+ xg, 4 >
— L(t)? =<I(t)? > +—LF—F &
© © 3 \ L(t) ><I(t) >

N.B. The mean square difterence among the centroid of the cloud and the mean cloud is defined as following:
2
< (xgi — Xgi) > =< Xgiz — 2xgngi + Xgiz >

2o _ 2 2 2 _ 2 2
<(xgi_Xgi) >—<Xgi >_2<xgi>Xgi+Xgi —— <(xgi_Xgi) >_<xgi >_Xgi
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|CEA/ EVOLUTION OF MEAN CLOUD LENGTH s e

It is useful to study the problem through Lagrangian approach. In this condition particles are

describe by: ¥(T)
- Initial position: X Particle motion VXt
- Lagrangian velocity: v
- Particle trajectory: x = X + Y (X, t) X t=t,+T
By these definition the particle trajectory can be rewritten as:
to+T to+T
x=X+ j v(x,t)dt =— Y(T) = j v(x, t)dt
to to

By the Lagrangian point of view, the probability that particle in X at ¢t is located in x + dx at
t is defined as: Conditional probability

pYLIX: t)
Y represents the displacement, i.e. x

Being the flow turbulent, we can also decompose the velocity and the motion of the particle:

Y =Y-<Y>

Fluctuation of particle velocity and motion
vV=v-<v>
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The single particle has mass m. Being the cloud of n particles, the total mass of the cloud is
M = m - n. Then the mean concentration of the cloud is:

Mean concentration in according to the

Clx,t) =n-mp(¥|X,t) = Mp¥|X,t) Lagrangian point of view.

The centroid of the mean cloud is given by:

1 [+
Xgi = MJ X C(x, t) dxl-
1 + 00 +o00
Xgi = Mj x;Mp(Y|X, t)dx; = J x; p(Y|X, t)dx;

400 400 1 +oo
Xgi= | G WpIxOd =X | pDdr+ [ ¥p@Ix o

—_— X=X+ <Y >
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ICEA/  EVOLUTION OF MEAN CLOUD LENGTH

Similarly, the variance of the mean cloud is:

1t 2
Ziz = — (Xl' — Xgi) C(x, t) dxl-

1 [t 1 [t
3% = Mj (Y;— <Y; >)2M p(Y|X,t)dY; = Mj Y2 M p(Y|X, t)dY; o2 =<V’ >
2 12
—_— L =<Y ">

The Length of the mean cloud is finally:

IS JE D T SR S G

L(t)? = — Injection point
3 3
<YV 24y %24y 2%> Injection of volume Y, and
X Z .
L(t)? = L(0)? + 3y concentration < ¢ >
It is trivial demonstrating that:
X =X+l — s =Xy =X+ YVi—X—<Y,> = Yi=<V>=Y

Xgi:Xi+<Yi>
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|CEA/ EVOLUTION OF MEAN CLOUD LENGTH

The Length of the mean cloud can be rewritten as:

Dyyx + Dyy + Dy,
3

Where D;; is the cross-correlation function of the fluctuation of particle displacement,
which is defined as:

L(t)? = L(0)? +

Dij =< Y,i(t)Y’j(t) >

dY’
It is worth noting that D;; depends on time t, being: v’ =

dt

Hence, D;; is fuction of t and it can be expressed in terms of V'l

To describe the evolution of the mean cloud with time variying, it is then useful considering
the Lagrangian function of temporal cross-correlation, that is defined as:

Qfi(t1,t2) =< Vi (X, to, t V' (X, to, t5) >

Since the process is ergodic, i.e. the hypotheses of homogeneity and stationarity are valid,
we can rearrange QiLj considering only the variable T = t, — t;:
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|CEA/ EVOLUTION OF MEAN CLOUD LENGTH

1 T
QlL (T) — hm T v,i(X, tOl tl + f)vlj(xi tOl t2 + f) df
J 700 T 0
f | L/ E_:' t}'l‘: . .
O\W N.B. When the process is ergodic, we need
X(t,) t+e v of one realization to obtain the time
= averaged information
X
Moreover, stationarity implies that: <v(X ty,t) >=<ulxt) >
Averaged velocity in () k, Averaged velocity in

Lagrangian system Eulerian system

In this condition, we have D;; « QiLj, but they depend on time intervals. We need of a Time

scale that helps us to describe the cloud diffusion.
To define the time scale we normalize the Lagrangian cross-correlation function:

Qi (@)

Lagrangian cross-correlation coefficient
oyi (1) 0y, (E2)

RiLj () =

o, is Eularian, being u(x, t)
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ICEA/  LAGRANGIAN TEMPORAL MACROSCALE

Finally, the time scale of the mean cloud diffusion is defined by:

co

——> T, = max (J RiLi(x: 7) dr> Lagrangian Temporal Macroscale
0

we use this parameter to distinguish three type of diffusion (as described at the beginning
of the lecture):

L tKT;

. - The behavior of the cloud

i t=T; - : .
changes in each intervals!

. t> T,
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ICEA/ DIFFUSION COEFFICIENT FOR t<<T,

In the short time interval after the insertion, the solute stays aroud the insertion point
(X, ty). In this condition we can assume:

i.  Eulerian velocity is the same within the interval, i.e. u(X, t) = u(X, t,)
ii. Lagrangian and Eulerian velocities are similar,i.e. u = v
o

Under these assumptions: V= a — Y=vt=ut

Considerig t, the initial time of the process and t = t; + T a generic time of the process,
we find:

t
Y = j v(x,)dt=urt
t

0

It followsthat: Y =Y-<¥Y>= (u—<u>)r=u't

By replacing the latter into the cross-correlation function, it reads:

D; =< Y'*(7) >=<u';* > 12
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ICEA/ DIFFUSION COEFFICIENT FOR t<<T,

When t < T; the mean cloud length scale is then:

! 2 / 2 / 2
<u > 4+<u, >+H<u >
L(t)? = L(0)2 + —= Y Z " 12

3
k} The cloud spreads quickly in the interval of
time after the insertion!

We do not demonstrate it, but the turbulent diffusion is expressed as:
1dDy;
2 dt

In this case:
— ! ! —

k» Eulerian cross-correlation function

N.B. Turbulent diffusion coefficient e;; increases linearly with time increasing, and it is
proportional to the turbulent fluctuations of velocity.
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ICEA/ DIFFUSION COEFFICIENT FOR t>>T, Sy

It is the most useful case in the practice. | observe the cloud always downstream of the
insertion point.
To find the diffusion coefficient, we start from the definition of the cross-correlation function:

D;j =<Y';(t)Y';(tp) >

T T T T
D;j = f J <v(t)v'j(ty) > dty dt, = f j QiLj(tz — t;)dt; dt,
0 Jo 0 Jo
To solve the integral it is necessary to change the integration variables, as following:

tq +t
{t1 ) = 1Tl

— 2 R
o=t -t ‘24 V=T—q@/2Y] v=T+¢/2

It means: dt;dt, = Jdedy

W 99l 1
_ |9t atl_f_l_
J= oy ae|~ |1 1‘1—‘“
ot, ot,l 12




|CEA/ DIFFUSION COEFFICIENT FOR t>>T, g

In the new system the limits of integration becomes:

{tl: 0,71 _ {go: [—T,T]

ty: [0, T] Y:[0,T]

The integrals into two triangles composing the rhombus are then:

0 T+e/2
@ j j Qf;(p)de dy
-T/—q@/2

@ jo ' J T_(p/ZQiLj(cp)dcp dy

/2

T ~T—@/2
j Qi (p)de dy

0 T+p/2
—> D= j j Qi (p)de dy +J
-T Q/2

-@/2 0
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ICEA/ DIFFUSION COEFFICIENT FOR t>>T,

Since QiLj (p) = QiLj(—go), the D;; can be simplified as:

T T—@/2 T
Dy =2 fo j 0k (@)dp dyp = 2 jo (T - )0k (9)do

/2

To evaluate L(t), we have to study the case i = j (and replace T with t):

T t t
Dy =2 j (T — 0)QL(@)dg = 2¢ j Q0L (@)dg — 2 j 0 0L(p)dg
0 0 0

It is worth noting that:

t
t>>TL:>QiLi—>O:>jRiLi(<p)d<pETL Rk =
0
and:

t t
J ¢ Qh(p)dep = Guizf @ RE(p)do = 0,%R;
0 0

It is a finite value
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ICEA/ DIFFUSION COEFFICIENT FOR t>>T,

the approximations into D;; yield:

———> D;; = 20,;*(tTy; — R;) = 20,,;° Tyt

k» When t is large enough!

It means that: . . ol
The cloud area increases linearly with time

3 2 increasing
L®? = L0 + | ) £ (0 Tt
i=1

The cloud size exceeds the size of macrovortex length scale, i.e. the solute particles lost
memory of their initial condition.

Finally, the turbulent diffusion coefficient is:

2 dt

—_ ~ 2 ~ 12
—_— e = =0y Ty =—> e¢e;=<u;>Ty

k» It is constant! | can use the
analogy with molecular
diffusivity!
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In the turbulent diffusion we can distinguish three phases:

I. t K T,.The cloud spreads quickly being its length scale as much as the microvortexes
scale. The Diffusion coefficient increases lineraly with time increasing.

— g =<u//*>t

iI. t=T;. Solute particles have lost memory of initial condition, but the cloud is still
smaller than the macrovortexes. In this case: Lagrangian Macroscale

Length of the cloud

—C = f(< u’i2> TLi) X LLi4/3 5
L= <u'i">Ty

i1l t > T;. Solute particles have lost memory of initial condition and the cloud is larger
than the macrovortexes. The coefficient of diffusion does not depend on t anymore.

— € =< u’i2> TLi = |I<Uu i > LLi
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