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Assumptions on the turbulent diffusion of solute:

i. Turbulence is homogeneous and stationary (ergodic process)

ii. Flow is 1D and uniform, i.e. 𝒖 = 𝑢0, 0, 0

iii. The process is 2D (actually it is 3D!)

It means that Taylor’s 
hypothesis is valid

The solute evolution after the injection at the time 𝑡0 is shown in figure.

The reference system 
moves along 𝑥 with 
velocity 𝑢0.

𝑡1 ≪. Microvortexes
determine the cloud
deformation

Cloud transport is
due to macrovortexes
(t is small but not
negligible)

𝑡4 ≫. The cloud is
larger than
macrovortexes.
Diffusivity is constant!

Case j=1
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If we consider the process being repeated N times (N is large):

Case j=2

Case j=N

.

.

.

Mean Cloud (it is 
determined by 
the N centroids)

The origin of the reference system corresponds to the mean cloud centroid
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The problem must be investigated though probabilistic approach.

In each realization (j=1...N) the concentration of the solute is: 𝑐 = 𝑐 𝒙, 𝑡

Therefore the concentration mean cloud is:

𝐶 𝒙, 𝑡 =< 𝑐 𝒙, 𝑡 > = න
−∞

+∞

𝑐 𝑝 ȁ𝑐 𝒙, 𝑡 d𝑐
The average of the realization 
equal to the temporal mean of 
𝑐. It is due to ergodicity!

Statistical moments:

𝑀 = නනන
−∞

+∞

𝑐 𝒙, 𝑡 d𝒙

𝑥𝑔𝑖 =
1

𝑀
න
−∞

+∞

𝑥𝑖 𝑐 𝒙, 𝑡 d𝑥𝑖

𝜎𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖 − 𝑥𝑔𝑖
2
𝑐 𝒙, 𝑡 d𝑥𝑖

𝐶 𝒙, 𝑡 = න
−∞

+∞

𝑐 𝑝 ȁ𝑐 𝒙, 𝑡 d𝑐

𝑋𝑔𝑖 =
1

𝑀
න
−∞

+∞

𝑥𝑖 𝐶 𝒙, 𝑡 d𝑥𝑖

Σ𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖 − 𝑋𝑔𝑖
2
𝐶 𝒙, 𝑡 d𝑥𝑖

Cloud Mean cloud 



CLOUD STATISTICAL MOMENTS

Environmental Fluid Mechanics – Lesson 7: Solute cloud dynamics
.

Let’s compare the variance of generic cloud and the mean cloud.

For the generic cloud, the variance can be write as:

𝜎𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖
2 − 2𝑥𝑖𝑥𝑔𝑖 + 𝑥𝑔𝑖

2 𝑐 𝒙, 𝑡 d𝑥𝑖

𝜎𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖
2𝑐 𝒙, 𝑡 d𝑥𝑖 −

2𝑥𝑔𝑖

𝑀
න
−∞

+∞

𝑥𝑖𝑐 𝒙, 𝑡 d𝑥𝑖 +
𝑥𝑔𝑖

2

𝑀
න
−∞

+∞

𝑐 𝒙, 𝑡 d𝑥𝑖

𝜎𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖
2𝑐 𝒙, 𝑡 d𝑥𝑖 −

2𝑥𝑔𝑖

𝑀
𝑀𝑥𝑔𝑖 +

𝑥𝑔𝑖
2

𝑀
𝑀

< 𝜎𝑖
2> =

1

𝑀
න
−∞

+∞

𝑥𝑖
2𝐶 𝒙, 𝑡 d𝑥𝑖 −< 𝑥𝑔𝑖

2>

And then the average variance considering the N realization is

𝜎𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖
2𝑐 𝒙, 𝑡 d𝑥𝑖 − 𝑥𝑔𝑖

2
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The variance of the mean cloud is:

Σ𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖
2 − 2𝑥𝑖𝑋𝑔𝑖 + 𝑋𝑔𝑖

2 𝐶 𝒙, 𝑡 d𝑥𝑖

Σ𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖
2𝐶 𝒙, 𝑡 d𝑥𝑖 −

2𝑋𝑔𝑖

𝑀
න
−∞

+∞

𝑥𝑖𝐶 𝒙, 𝑡 d𝑥𝑖 +
𝑋𝑔𝑖

2

𝑀
න
−∞

+∞

𝐶 𝒙, 𝑡 d𝑥𝑖

Σ𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖
2𝐶 𝒙, 𝑡 d𝑥𝑖 −

2𝑋𝑔𝑖

𝑀
𝑀𝑋𝑔𝑖 +

𝑋𝑔𝑖
2

𝑀
𝑀

< 𝜎𝑖
2> = Σ𝑖

2 + 𝑋𝑔𝑖
2−< 𝑥𝑔𝑖

2>

By replacing the latter into the mean variance of the clouds, we find:

Σ𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖
2𝐶 𝒙, 𝑡 d𝑥𝑖 − 𝑋𝑔𝑖

2



CLOUD STATISTICAL MOMENTS

Environmental Fluid Mechanics – Lesson 7: Solute cloud dynamics

This relationship can be rearranged as following:

Σ𝑖
2 =< 𝜎𝑖

2>+< 𝑥𝑔𝑖 − 𝑋𝑔𝑖
2
> Σ𝑖

2 >< 𝜎𝑖
2>

The length scale of the cloud and of the the mean cloud are then defined as:

N.B. The mean square difference among the centroid of the cloud and the mean cloud is defined as following:

< 𝑥𝑔𝑖 − 𝑋𝑔𝑖
2
> =< 𝑥𝑔𝑖

2 − 2𝑥𝑔𝑖𝑋𝑔𝑖 + 𝑋𝑔𝑖
2 >

< 𝑥𝑔𝑖 − 𝑋𝑔𝑖
2
> = < 𝑥𝑔𝑖

2 > −2 < 𝑥𝑔𝑖 > 𝑋𝑔𝑖 + 𝑋𝑔𝑖
2 < 𝑥𝑔𝑖 − 𝑋𝑔𝑖

2
> =< 𝑥𝑔𝑖

2 > − 𝑋𝑔𝑖
2

𝑙 𝑡 =
𝜎𝑥

2 + 𝜎𝑦
2 + 𝜎𝑧

2

3
𝐿 𝑡 =

Σ𝑥
2 + Σ𝑦

2 + Σ𝑧
2

3

Cloud Mean cloud 

By replacing the definitions of variances, we find:

𝐿 𝑡 2 =
< 𝜎𝑥

2 +𝜎𝑦
2 + 𝜎𝑧

2 >

3
+
< 𝑥𝑔𝑥 − 𝑋𝑔𝑥

2
+ 𝑥𝑔𝑦 − 𝑋𝑔𝑦

2
+ 𝑥𝑔𝑧 − 𝑋𝑔𝑧

2
>

3

𝐿 𝑡 2 =< 𝑙 𝑡 2 > +
< 𝑥𝑔𝑥′

2 + 𝑥𝑔𝑦′
2 + 𝑥𝑔𝑧′

2 >

3

𝑥𝑔𝑖
′ = 𝑋𝑔𝑖 − 𝑥𝑔𝑖

𝐿 𝑡 > < 𝑙 𝑡 >
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It is useful to study the problem through Lagrangian approach. In this condition particles are 
describe by:
- Initial position: 𝑿
- Lagrangian velocity: 𝒗
- Particle trajectory: 𝒙 = 𝑿 + 𝒀 𝑿, 𝑡

Particle motion

By these definition the particle trajectory can be rewritten as:

𝒙 = 𝑿 +න
𝑡0

𝑡0+𝑇

𝒗 𝒙, 𝑡 d𝑡 𝒀 𝑇 = න
𝑡0

𝑡0+𝑇

𝒗 𝒙, 𝑡 d𝑡

By the Lagrangian point of view, the probability that particle in 𝑿 at 𝑡0 is located in 𝒙 + d𝒙 at 
𝑡 is defined as:

𝑝 ȁ𝒀 𝑿, 𝑡

Conditional probability 

𝒀 represents the displacement, i.e. 𝒙

Being the flow turbulent, we can also decompose the velocity and the motion of the particle:

𝒀′ = 𝒀− < 𝒀 >

𝒗′ = 𝒗− < 𝒗 >
Fluctuation of particle velocity and motion
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The single particle has mass 𝑚. Being the cloud of n particles, the total mass of the cloud is
𝑀 = 𝑚 ∙ 𝑛. Then the mean concentration of the cloud is:  

𝐶 𝒙, 𝑡 = 𝑛 ∙ 𝑚 𝑝 ȁ𝒀 𝑿, 𝑡 = 𝑀 𝑝 ȁ𝒀 𝑿, 𝑡
Mean concentration in according to the 
Lagrangian point of view.

The centroid of the mean cloud is given by:

𝑋𝑔𝑖 =
1

𝑀
න
−∞

+∞

𝑥𝑖 𝐶 𝒙, 𝑡 d𝑥𝑖

𝑋𝑔𝑖 =
1

𝑀
න
−∞

+∞

𝑥𝑖𝑀 𝑝 ȁ𝒀 𝑿, 𝑡 d𝑥𝑖 = න
−∞

+∞

𝑥𝑖 𝑝 ȁ𝒀 𝑿, 𝑡 d𝑥𝑖

𝑋𝑔𝑖 = න
−∞

+∞

𝑋𝑖 + 𝑌𝑖 𝑝 ȁ𝒀 𝑿, 𝑡 d𝑌𝑖 = 𝑋𝑖න
−∞

+∞

𝑝 ȁ𝒀 𝑿, 𝑡 d𝑌𝑖 +න
−∞

+∞

𝑌𝑖 𝑝 ȁ𝒀 𝑿, 𝑡 d𝑌𝑖

1

𝑋𝑔𝑖 = 𝑋𝑖+ < 𝑌𝑖 >
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𝑥𝑖 = 𝑋𝑖 + 𝑌𝑖

Similarly, the variance of the mean cloud is:

Σ𝑖
2 =

1

𝑀
න
−∞

+∞

𝑥𝑖 − 𝑋𝑔𝑖
2
𝐶 𝒙, 𝑡 d𝑥𝑖

Σ𝑖
2 =

1

𝑀
න
−∞

+∞

𝑌𝑖− < 𝑌𝑖 >
2𝑀 𝑝 ȁ𝒀 𝑿, 𝑡 d𝑌𝑖 =

1

𝑀
න
−∞

+∞

𝑌𝑖′
2𝑀 𝑝 ȁ𝒀 𝑿, 𝑡 d𝑌𝑖

It is trivial demonstrating that:

𝑋𝑔𝑖 = 𝑋𝑖+ < 𝑌𝑖 >

𝑥𝑖 − 𝑋𝑔𝑖 = 𝑋𝑖 + 𝑌𝑖 − 𝑋𝑖− < 𝑌𝑖 > 𝑌𝑖−< 𝑌𝑖 > = 𝑌𝑖′

𝜎2 =< 𝑌′𝑖
2
>

Σ𝑖
2 =< 𝑌′𝑖

2
>

𝐿 𝑡 2 =
Σ𝑥

2 + Σ𝑦
2 + Σ𝑧

2

3
=
< 𝑌′𝑥

2
+ 𝑌′𝑦

2
+ 𝑌′𝑧

2
>

3

The Length of the mean cloud is finally:

𝐿 𝑡 2 = 𝐿 0 2 +
< 𝑌′𝑥

2
+ 𝑌′𝑦

2
+ 𝑌′𝑧

2
>

3

Injection point

Injection of volume ∀0 and 
concentration < 𝑐 >0
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The Length of the mean cloud can be rewritten as:

𝐿 𝑡 2 = 𝐿 0 2 +
𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧

3

Where 𝐷𝑖𝑗 is the cross-correlation function of the fluctuation of particle displacement, 

which is defined as:

𝐷𝑖𝑗 =< 𝑌′𝑖 𝑡 𝑌′𝑗 𝑡 >

To describe the evolution of the mean cloud with time variying, it is then useful considering
the Lagrangian function of temporal cross-correlation, that is defined as:

𝑄𝑖𝑗
𝐿 𝑡1, 𝑡2 =< 𝑣′𝑖 𝑿, 𝑡0, 𝑡1 𝑣′𝑗 𝑿, 𝑡0, 𝑡2 >

It is worth noting that 𝐷𝑖𝑗 depends on time 𝑡, being:

Hence, 𝐷𝑖𝑗 is fuction of 𝑡 and it can be expressed in terms of 𝑣′!

𝒗′ =
d𝒀′

d𝑡

Since the process is ergodic, i.e. the hypotheses of homogeneity and stationarity are valid, 

we can rearrange 𝑄𝑖𝑗
𝐿 considering only the variable 𝜏 = 𝑡2 − 𝑡1: 
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𝑄𝑖𝑗
𝐿 𝜏 = lim

𝜏→∞

1

𝑇
න
0

𝑇

𝑣′𝑖 𝑿, 𝑡0, 𝑡1 + 𝜉 𝑣′𝑗 𝑿, 𝑡0, 𝑡2 + 𝜉 d𝜉

N.B. When the process is ergodic, we need
of one realization to obtain the time 
averaged information

Moreover, stationarity implies that: < 𝒗 𝑿, 𝑡0, 𝑡 > = < 𝒖 𝒙, 𝑡 >

Averaged velocity in 
Lagrangian system

Averaged velocity in 
Eulerian system

In this condition, we have 𝐷𝑖𝑗 ∝ 𝑄𝑖𝑗
𝐿 , but they depend on time intervals. We need of a Time 

scale that helps us to describe the cloud diffusion.
To define the time scale we normalize the Lagrangian cross-correlation function:

𝑅𝑖𝑗
𝐿 𝜏 =

𝑄𝑖𝑗
𝐿 𝜏

𝜎𝑢𝑖 𝑡1 𝜎𝑢𝑗 𝑡2

𝜎𝑢 is Eularian, being 𝒖 𝒙, 𝑡

Lagrangian cross-correlation coefficient
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𝑇𝐿 = max න
0

∞

𝑅𝑖𝑖
𝐿 𝒙, 𝜏 d𝜏

Finally, the time scale of the mean cloud diffusion is defined by:

Lagrangian Temporal Macroscale

we use this parameter to distinguish three type of diffusion (as described at the beginning
of the lecture):

i. 𝑡 ≪ 𝑇𝐿

ii. 𝑡 ≅ 𝑇𝐿

iii. 𝑡 ≫ 𝑇𝐿

The behavior of the cloud 
changes in each intervals!
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In the short time interval after the insertion, the solute stays aroud the insertion point
𝑿, 𝑡0 . In this condition we can assume:

i. Eulerian velocity is the same within the interval, i.e. 𝒖 𝑿, 𝑡 ≅ 𝒖 𝑿, 𝑡0

ii. Lagrangian and Eulerian velocities are similar, i.e. 𝒖 = 𝒗

Under these assumptions: 𝒗 =
d𝒀

d𝑡

න

𝒀 = 𝒗 𝑡 ≅ 𝒖 𝑡

Considerig 𝑡0 the initial time of the process and 𝑡 = 𝑡0 + 𝜏 a generic time of the process, 
we find:

𝒀 = න
𝑡0

𝑡

𝒗 𝒙, 𝜏 d𝜏 ≅ 𝒖 𝜏

It follows that: 𝒀′ = 𝒀− < 𝒀 >= 𝒖− < 𝒖 > 𝜏 = 𝒖′ 𝜏

By replacing the latter into the cross-correlation function, it reads:

𝐷𝑖𝑖 =< 𝑌′𝑖
2
𝜏 >=< 𝑢′𝑖

2
> 𝜏2
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When 𝑡 ≪ 𝑇𝐿 the mean cloud length scale is then:

𝐿 𝑡 2 = 𝐿 0 2 +
< 𝑢′𝑥

2
> +< 𝑢′𝑦

2
>+< 𝑢′𝑧

2
>

3
𝜏2

The cloud spreads quickly in the interval of 
time after the insertion!

We do not demonstrate it, but the turbulent diffusion is expressed as: 

𝑒𝑖𝑗 =
1

2

d𝐷𝑖𝑗

d𝑡

In this case: 

𝑒𝑖𝑗 =< 𝑢′𝑖𝑢′𝑗 > 𝜏 = 𝑄𝑖𝑗 𝜏

Eulerian cross-correlation function

N.B. Turbulent diffusion coefficient 𝑒𝑖𝑗 increases linearly with time increasing, and it is

proportional to the turbulent fluctuations of velocity.



DIFFUSION COEFFICIENT FOR t>>TL

Environmental Fluid Mechanics – Lesson 7: Solute cloud dynamics

It is the most useful case in the practice. I observe the cloud always downstream of the 
insertion point.
To find the diffusion coefficient, we start from the definition of the cross-correlation function:  

𝐷𝑖𝑗 =< 𝑌′𝑖 𝑡1 𝑌′𝑗 𝑡2 >

𝐷𝑖𝑗 = න
0

𝑇

න
0

𝑇

< 𝑣′𝑖 𝑡1 𝑣′𝑗 𝑡2 > d𝑡1 d𝑡2 = න
0

𝑇

න
0

𝑇

𝑄𝑖𝑗
𝐿 𝑡2 − 𝑡1 d𝑡1 d𝑡2

To solve the integral it is necessary to change the integration variables, as following: 

ቊ
𝑡1
𝑡2

→ ቐ𝜓 =
𝑡1 + 𝑡2

2
𝜑 = 𝑡2 − 𝑡1

It means: d𝑡1d𝑡2 = 𝐽d𝜑d𝜓

𝐽 =

𝜕𝜓

𝜕𝑡1

𝜕𝜑

𝜕𝑡1
𝜕𝜓

𝜕𝑡2

𝜕𝜑

𝜕𝑡2

=

1

2
−1

1

2
1

= 1
𝜑

𝜓 = 𝑇 + Τ𝜑 2𝜓 = 𝑇 − Τ𝜑 2

𝜓 = Τ𝜑 2 𝜓 = Τ−𝜑 2
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In the new system the limits of integration becomes:

ቊ
𝑡1: 0, 𝑇

𝑡2: 0, 𝑇
→ ቊ

𝜑: −𝑇, 𝑇

𝜓: 0, 𝑇

The integrals into two triangles composing the rhombus are then:

1

2

න
−𝑇

0

න
−𝜑/2

𝑇+𝜑/2

𝑄𝑖𝑗
𝐿 𝜑 d𝜑 d𝜓

න
0

𝑇

න
𝜑/2

𝑇−𝜑/2

𝑄𝑖𝑗
𝐿 𝜑 d𝜑 d𝜓

𝐷𝑖𝑗 = න
−𝑇

0

න
−𝜑/2

𝑇+𝜑/2

𝑄𝑖𝑗
𝐿 𝜑 d𝜑 d𝜓 + න

0

𝑇

න
𝜑/2

𝑇−𝜑/2

𝑄𝑖𝑗
𝐿 𝜑 d𝜑 d𝜓
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To evaluate 𝐿 𝑡 , we have to study the case 𝑖 = 𝑗 (and replace 𝑇 with 𝑡):
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It means that:
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The cloud area increases linearly with time 
increasing

The cloud size exceeds the size of macrovortex length scale, i.e. the solute particles lost
memory of their initial condition.

Finally, the turbulent diffusion coefficient is:
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It is constant! I can use the 
analogy with molecular
diffusivity!

the approximations into 𝐷𝑖𝑖 yield:

𝐷𝑖𝑖 = 2𝜎𝑢𝑖
2 𝑡𝑇𝐿𝑖 − 𝑅𝑖 ≅ 2𝜎𝑢𝑖

2𝑇𝐿𝑖𝑡

When 𝑡 is large enough!



SUMMARY
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In the turbulent diffusion we can distinguish three phases:

i. 𝑡 ≪ 𝑇𝐿. The cloud spreads quickly being its length scale as much as the microvortexes
scale. The Diffusion coefficient increases lineraly with time increasing.

ii. 𝑡 ≅ 𝑇𝐿.  Solute particles have lost memory of initial condition, but the cloud is still
smaller than the macrovortexes. In this case:

iii. 𝑡 ≫ 𝑇𝐿. Solute particles have lost memory of initial condition and the cloud is larger
than the macrovortexes. The coefficient of diffusion does not depend on 𝑡 anymore.
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