
LESSON 6: TURBULENCE AND 
TURBULENT DIFFUSION



ETHIOLOGY
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Turbulence is a random process due to the vorticity of velocity field. It rises in presence of 
velocity gradient, that causes the rising of large vortexes. 
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Vortex is defined by the rotor of the velocity: 

The vortexes within the boundary layer have higher intensity and stronger anisotropy than 
the vortexes in the external region.



TURBULENCE CHARACTERISTICS
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Macrovortex
- Anisotropic-etherogeneous
- Energy from mean flow

Microvortex
- Isotropic-homogeneous
- Dissipation due to viscosity 

Direct Energy cascade

Turbulence characteristics:

i. Turbulence is highly irregular

ii. Velocity fluctuations are random in 𝑡 and 𝒙

iii. Variables of interest can be defined as 𝒂 =< 𝒂 > +𝒂′

iv. The process is dissipative

v. The flow is rotational

vi. The process is 3D

vii. It is anisotropic for the large length-scale 



VELOCITY DECOMPOSITION

In presence of turbulent velocity field, the velocity 𝒖 can be expressed as proposed by 
Reynolds:  

With: 𝑼 = < 𝒖 > mean velocity (< ∙ > time averaged)

𝒖’ velocity fluctuation (< 𝒖′ >= 0)

𝒖 = 𝑼 + 𝒖′

Steady flow

𝑼 =
1

𝑇
න

0

𝑇

𝒖 d𝑡
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VELOCITY DECOMPOSITION

Unsteady flow

i=1

i=N

.

.
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1

𝑁
෍

𝑖=1

𝑁

𝒖𝒊

Hardly feasible in environmental
systems

Probabilistic approach

< 𝒖 𝒙, 𝑡 >= න

−∞

+∞

𝒖 𝒙, 𝑡 p 𝒖ȁ𝒙, 𝑡 d𝒖

Probabilistic
density function

Environmental Fluid Mechanics – Lesson 6: Turbulent Diffusion



TURBULENT DIFFUSION EQUATION

Similarly to 𝒖:

𝑐 =< 𝑐 > +𝑐′ = 𝐶 + 𝑐′

Let’s start from the A-D equation replacing 𝒖 and 𝑐 with their mean and fluctuation:  

𝜕 𝐶 + 𝑐′

𝜕𝑡
+ 𝑼 + 𝒖′ ∙ 𝛻 𝐶 + 𝑐′ = 𝐷 𝛻2 𝐶 + 𝑐′

This equation can be simplified averaging in time:

<
𝜕 𝐶 + 𝑐′

𝜕𝑡
+ 𝑼 + 𝒖′ ∙ 𝛻 𝐶 + 𝑐′ = 𝐷 𝛻2 𝐶 + 𝑐′ >

Being average a linear operator:

<
𝜕 𝐶 + 𝑐′

𝜕𝑡
>+< 𝑼 + 𝒖′ ∙ 𝛻 𝐶 + 𝑐′ >= < 𝐷 𝛻2 𝐶 + 𝑐′ >

𝑐

𝑡

< 𝑎 + 𝑏 >=< 𝑎 >+< 𝑏 >

1

𝑇
න

0

𝑇

𝑎 + 𝑏 d𝑡 =

=
1

𝑇
න

0

𝑇

𝑎 d𝑡 +
1

𝑇
න

0

𝑇

𝑏 d𝑡

a b c
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TURBULENT DIFFUSION EQUATION

Let’s analyze each term:  

c

a <
𝜕 𝐶 + 𝑐′

𝜕𝑡
> =

𝜕 < 𝐶 + 𝑐′ >

𝜕𝑡
Derivative is linear!

𝜕 < 𝐶 + 𝑐′ >

𝜕𝑡
=
𝜕 < 𝐶 >

𝜕𝑡
+
𝜕 < 𝑐′ >

𝜕𝑡
0

< 𝐷 𝛻2 𝐶 + 𝑐′ > = 𝐷 𝛻2 < 𝐶 + 𝑐′ > Laplacian is linear!

𝐷 𝛻2 < 𝐶 + 𝑐′ >= 𝐷 𝛻2 < 𝐶 > +𝐷 𝛻2 < 𝑐′ >

<
𝜕 𝐶 + 𝑐′

𝜕𝑡
> =

𝜕𝐶

𝜕𝑡

0

< 𝐷 𝛻2 𝐶 + 𝑐′ >= 𝐷 𝛻2𝐶
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TURBULENT DIFFUSION EQUATION

b < 𝑼 + 𝒖′ ∙ 𝛻 𝐶 + 𝑐′ > It is not linear! Turbulent diffusion rises from this not linearity.

< 𝑼 ∙ 𝛻𝐶 > + < 𝑼 ∙ 𝛻𝑐′ > +< 𝒖′ ∙ 𝛻𝐶′ > + < 𝒖′ ∙ 𝛻𝑐′ >

1 2 3 4

1 < 𝑼 ∙ 𝛻𝐶 > = < 𝑼 >∙< 𝛻𝐶 > =< 𝑼 >∙ 𝛻 < 𝐶 > = 𝑼 ∙ 𝛻𝐶 Gradient is linear!.

2 < 𝑼 ∙ 𝛻𝑐′ > = < 𝑼 >∙< 𝛻𝑐′ > =< 𝑼 >∙ 𝛻 < 𝑐′ > = 0
0

3

4 < 𝒖′ ∙ 𝛻𝑐′ >= ?

< 𝒖′ ∙ 𝛻𝐶 > = < 𝒖′ >∙< 𝛻𝐶 > =< 𝒖′ >∙ 𝛻 < 𝐶 > = 0
0

𝑢′ 𝑥 𝑢′ 𝑥

𝜕𝑐′

𝜕𝑥

𝜕𝑐′

𝜕𝑥

< 𝒖′ ∙ 𝛻𝑐′ >= 0 < 𝒖′ ∙ 𝛻𝑐′ >≠ 0
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TURBULENT DIFFUSION EQUATION

The time averaged A-D equation that takes into account turbulence reads: 

Even though the problem has been simplified by averaging the equation, there are two
more variables in the previous equation (𝒖′ and 𝑐′, i.e. 4 unknown parameters).

We have to reduce the problem!
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𝜕𝐶

𝜕𝑡
+ 𝑼 ∙ 𝛻𝐶 = 𝐷 𝛻2𝐶 −< 𝒖′ ∙ 𝛻𝑐′ >

Additional term of diffusivity due to 
turbulent fluctuation

N.B. Additional term appears similarly to the one in the Reynolds momentum equation
which represents the apparent viscosity.

𝛻 𝑃 + 𝛾ℎ = −𝜌
d𝑼

d𝑡
+ 𝜇 𝛻2𝑼− 𝜌 < 𝒖′ ∙ 𝛻𝒖′ >Reynolds equation:

𝑝 = 𝑃 + 𝑝′

𝛾ℎ

where: is the fluid pressure (P is the averaged pressure)

is the gravity force



CONTINUITY EQUATION

The continuity equation can be developed in terms of mean velocity and turbulent
fluctuations, as following :   
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𝛻 ∙ 𝒖 = 𝛻 ∙ 𝑼 + 𝒖′ = 𝛻 ∙ 𝑼 + 𝛻 ∙ 𝒖′ = 0

Also in this case we can average the equation, that reads: 

< 𝛻 ∙ 𝑼 + 𝒖′ >=< 𝛻 ∙ 𝑼 > +< 𝛻 ∙ 𝒖′ >= 0

< 𝛻 ∙ 𝑼 > +< 𝛻 ∙ 𝒖′ >= 𝛻 ∙< 𝑼 > + 𝛻 ∙< 𝒖′ >= 0
0

It means: 𝛻 ∙ 𝑼 = 0

And then, for the original continuity equation: 𝛻 ∙ 𝒖′ = 0

ቐ
𝛻 ∙ 𝑼 = 0

𝛻 ∙ 𝒖′ = 0

Continuity Equation for turbulent
uncompressible fluid



TURBULENT DIFFUSION COEFFICIENT

The definition of the continuity allows us to rearrange the additional term of diffusivity, as
follows: 
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< 𝒖′ ∙ 𝛻𝑐′ >=< 𝒖′ ∙ 𝛻𝑐′ + 𝑐′𝛻 ∙ 𝒖′ >

< 𝒖′ ∙ 𝛻𝑐′ + 𝑐′𝛻 ∙ 𝒖′ >= < 𝛻 ∙ 𝑐′ 𝒖′ >= 𝛻 ∙< 𝑐′ 𝒖′ >

To solve the problem we should find a function f, such that:  𝑓 𝐶, 𝑼 = 𝛻 ∙< 𝑐′ 𝒖′ >

Let’s define the mass turbulent flux as:

𝒒𝒕 =< 𝑐′ 𝒖′ >=< 𝑐 − 𝐶 𝒖 − 𝑼 >

By Taylor’s hypothesis, there is analogy between 𝒒𝒕 and Fick’s law: 

𝒖′ = 𝒖 − 𝑼 is similar to 𝒗𝒔 = 𝒖𝒔 −𝑼 (see Lesson 2)

ቐ
𝒒𝒕 = −𝑬 𝛻𝐶

𝒒𝒓 = −𝐷 𝛻𝐶

Turbulent Diffusion

Molecular Diffusion



TURBULENT DIFFUSION COEFFICIENT

𝑬 is the Tensor of Turbulent Diffusion. It is defined as following: 
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𝑬 =

𝑒𝑥𝑥 𝑒𝑦𝑥 𝑒𝑧𝑥
𝑒𝑥𝑦 𝑒𝑦𝑦 𝑒𝑧𝑦
𝑒𝑥𝑧 𝑒𝑦𝑧 𝑒𝑧𝑧

principal axes
𝑬 =

𝑒𝑥 0 0
0 𝑒𝑦 0

0 0 𝑒𝑧

The A-D equation now reads: 

𝜕𝐶

𝜕𝑡
+ 𝑼 ∙ 𝛻𝐶 = 𝐷 𝛻2𝐶 + 𝛻 ∙ 𝑬 𝛻𝐶

In natural systems it is more effective assuming the principal axes as reference system of the 
problem and rearraging the A-D equation as following: 

Turbulent A-D equation

𝜕𝐶

𝜕𝑡
+ 𝑼 ∙ 𝛻𝐶 = 𝐷 𝛻2𝐶 +

𝜕

𝜕𝑥
𝑒𝑥

𝜕𝐶

𝜕𝑥
+

𝜕

𝜕𝑦
𝑒𝑦

𝜕𝐶

𝜕𝑦
+

𝜕

𝜕𝑧
𝑒𝑧
𝜕𝐶

𝜕𝑧

N.B. In our cases of study: 𝐷 ≪ min 𝑒𝑥, 𝑒𝑦 , 𝑒𝑧



TURBULENCE PARAMETERS
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To quantify the flow turbulence, we define:

𝑒𝑐 = 𝜌
< 𝑢′2 + 𝑣′2 + 𝑤′2 >

2
= 𝜌

< 𝑢′𝑖
2
>

2
Turbulent Kinetic Energy

< 𝑢′𝑖
2
>=

𝑢′2 + 𝑣′2 + 𝑤′2

3
= 𝜎𝑢 Turbulent Intensity

Here 𝜎𝑢 is the standard deviation of the velocity fluctuations (𝜎𝑢
2 is the fluctuation 

variance). 

𝜎𝑢
< 𝑢𝑖 >

=
< 𝑢′𝑖

2
>

𝑼

Relative Turbulent Intensity𝒖 =< 𝒖 > +𝒖′

< 𝒖 > = 𝑼

N.B. these parameters allow us to quantify turbulence, but they do not explain the vortexes
distribution



STATISTICAL ANALYSIS OF TURBULENCE
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To know the vortexes influence, it is useful introducing the correlation coefficients (they are 
functions of 𝑡 and 𝒙).

x

y

The vortex affects the magnitude of 
the velocity fluctuation

the correlation coefficients is then:

𝑓 𝜉 =
< 𝑢′ 𝑥 𝑢′ 𝑥 + 𝜉 >

< 𝑢′2 𝑥 > < 𝑢′2 𝑥 + 𝜉 >

Correlation Function

It normalizes the correlation 
function



STATISTICAL ANALYSIS OF TURBULENCE
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In the 3D case:

𝑓 𝒙, 𝒓, 𝑡 =
< 𝒖′𝒔 𝒙, 𝑡 𝒖′𝒔 𝒙 + 𝒓, 𝑡 >

< 𝒖′𝒔
2
𝒙, 𝑡 > < 𝒖′𝒔

2
𝒙 + 𝒓, 𝑡 >

𝑔 𝒙, 𝒓, 𝑡 =
< 𝒖′𝒏𝒎 𝒙, 𝑡 𝒖′𝒏𝒎 𝒙 + 𝒓, 𝑡 >

< 𝒖′𝒏𝒎
2
𝒙, 𝑡 > < 𝒖′𝒏𝒎

2
𝒙 + 𝒓, 𝑡 >

Longitudinal correlation coefficient

Transverse correlation coefficient

These two coefficients help us to understand the spatial structure of vortexes. To 
understand the time evolution of the vortexes we define the following coefficient: 

𝑅𝐸 𝒙, 𝑡, 𝜏 =
< 𝒖′ 𝒙, 𝑡 𝒖′ 𝒙, 𝑡 + 𝜏 >

< 𝒖′2 𝒙, 𝑡 > < 𝒖′2 𝒙, 𝑡 + 𝜏 >

Eulerian temporal correlation 
coefficient



ERGODIC PROCESS
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Process is ergodic if it is stationary and homogenous.

Stationary turbolence means that averaged quantities do not depend on time 𝑡.
To mantain stationarity, it is necessary a constant production of turbulence

Homogeneous turbulence means that averaged quanties do not depend on space 𝒙.
To observe homogeneity, the domain should be extended indefinetely

Characteristics of ergodicity:

i. All types of average converge to the same value.

ii. The probability density function (pdf) of averaged variables is Gaussian (for the Central 
Limit Theorem).

iii. The ergodic variables become statistically independent and no-correlate

Under ergodicity, correlation coefficients do not depend on 𝒙 or 𝑡, but on their difference

𝑓 𝒙, 𝒓, 𝑡

𝑔 𝒙, 𝒓, 𝑡

𝑅𝐸 𝒙, 𝑡, 𝜏

𝑓 𝑟, 𝑡 = 𝑓 𝑟

𝑔 𝑟, 𝑡 = 𝑔 𝑟

𝑅𝐸 𝒙, 𝜏 = 𝑅𝐸 𝜏

Usually we fixed 𝑡. 

Usually we fixed 𝒙. 



DEFINITION OF TURBULENCE LENGTH SCALES
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Let’s analyze 𝑓 𝑟 (same consideration 
can be done for the other coefficients).
The correlation function has the following 
properties: 

൞

𝑓 0 = 1

𝑓 𝑟 = 𝑓 −𝑟

𝑓 𝑟 ≤ 1

𝜆𝑓 is the length that defines the longitudinal size of microvortexes. It is determined by Taylor 

series expansion of 𝑓 𝑟

𝑓 𝑟 ≅ 𝑓 0 + 𝑟 ቤ
d𝑓

d𝑟
𝑟=0

+
𝑟2

2
อ

d2𝑓

d𝑟2
𝑟=0

+ 𝑂 𝑟4
1

0

𝑓 𝑟 ≅ 1 −
𝑟2

2

2

𝜆𝑓
2 𝑓 𝑟 ≅ 1 −

𝑟2

𝜆𝑓
2

Equation of Osculating Parabola



DEFINITION OF TURBULENCE LENGTH SCALES
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Finally we can determined:

1

𝜆𝑓
2 = −

1

2
อ

d2𝑓

d𝑟2
𝑟=0

Λ𝑓 = න
0

∞

𝑓 𝑟 d𝑟

1

𝜆𝑔
2 = −

1

2
อ

d2𝑔

d𝑟2
𝑟=0

Λ𝑔 = න
0

∞

𝑔 𝑟 d𝑟

1

𝜏𝐸
2 = −

1

2
อ

d2𝑅𝐸
d𝜏2

𝜏=0

Τ𝐸 = න
0

∞

𝑅𝐸 𝜏 d𝜏

Longitudinal length scale of microvortexes

Longitudinal length scale of macrovortexes

Transversal length scale of microvortexes

Transversal length scale of macrovortexes

Time scale of microvortexes

Time scale of macrovortexes



APPROXIMATION OF FROZEN TURBULENCE 
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It is based on the Taylor’s hypothesys, i.e.:

i. 1D flow, i.e.  𝒖 = 𝑼 + 𝒖′ 𝑼 = 𝑈, 0, 0 𝒖′ = 𝑢′, 𝑣′, 𝑤′

ii. Turbulence is stationary and homogenous, i.e the process is ergodic

Under these assuptions the Navier-Stokes equation along 𝑥 becomes :

𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖 = −

1

𝜌
𝛻𝑝 + 𝜈 𝛻2𝒖

𝜕𝑈

𝜕𝑡
+
𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑈

𝜕𝑢′

𝜕𝑥
+ 𝑢′

𝜕𝑈

𝜕𝑥
+ 𝑢′

𝜕𝑢′

𝜕𝑥
+ 𝑣′

𝜕𝑢′

𝜕𝑦
+ 𝑤′

𝜕𝑢′

𝜕𝑧

= −
1

𝜌

𝜕𝑃

𝜕𝑥
+
𝜕𝑝′

𝜕𝑥
+ 𝜈

𝜕2𝑈

𝜕𝑥2
+ 𝜈

𝜕2𝑢′

𝜕𝑥2
+
𝜕2𝑣′

𝜕𝑦2
+
𝜕2𝑤′

𝜕𝑧2

0 0 0

0 0



APPROXIMATION OF FROZEN TURBULENCE 
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We can understand the role of each term through the dimensional analysis of the equation

𝑈 ∝ 𝑈0

𝑢′, 𝑣′, 𝑤′ ∝ 𝑢0

𝑥, 𝑦, 𝑧 ∝ 𝐿0

Velocity scale of mean flow

Velocity scale of fluctuations

Length scale of the problem

𝜕𝑢′

𝜕𝑡
∝

𝑢0𝑈0
𝐿0

𝐿0
𝑢0

2 =
𝑈0
𝑢0

𝑈
𝜕𝑢′

𝜕𝑥
∝

𝑢0𝑈0
𝐿0

𝐿0
𝑢0

2 =
𝑈0
𝑢0

𝑢′
𝜕𝑢′

𝜕𝑥
∝

𝑢0
2

𝐿0

𝐿0
𝑢0

2 = 1

1

𝜌

𝜕𝑝′

𝜕𝑥
∝

1

𝜌

𝜌𝑢0
2

𝐿0

𝐿0
𝑢0

2 = 1

𝜈
𝜕2𝑢′

𝜕𝑥2
∝ 𝜈

𝑢0

𝐿0
2

𝐿0
𝑢0

2 =
1

𝑅𝑒



APPROXIMATION OF FROZEN TURBULENCE 
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𝑈0
𝑢0

𝜕ො𝑢′

𝜕 Ƹ𝑡
+
𝑈0
𝑢0

𝜕ො𝑢′

𝜕 ො𝑥
= − ො𝑢′

𝜕ො𝑢′

𝜕 ො𝑥
+ ො𝑣′

𝜕ො𝑢′

𝜕 ො𝑦
+ ෝ𝑤′

𝜕ො𝑢′

𝜕 Ƹ𝑧
−
𝜕 Ƹ𝑝′

𝜕 ො𝑥
+

1

𝑅𝑒
𝛻2ෝ𝒖′

Dimensionless N-S equation is then: 

Given:
- 𝑈 ≫ 𝒖′
- 𝑅𝑒 ≫ 1

𝑈0
𝑢0

𝜕ො𝑢′

𝜕 Ƹ𝑡
+
𝑈0
𝑢0

𝜕ො𝑢′

𝜕 ො𝑥
= 0

Finally:

𝜕

𝜕𝑡
≈ −𝑈

𝜕

𝜕𝑥

𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑥
= 0

Frozen turbulence Length scale and temporal scale 
are linked by the mean velocity 𝑈

From this equivalence:  𝜏 =
𝑟

𝑈

𝑓 𝑟 = 𝑅𝐸 𝜏
𝜆𝑓 = 𝑈𝜏𝐸
Λ𝑓 = 𝑈Τ𝐸



REPRESENTATION OF FROZEN TURBULENCE 
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