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Let’s see the fundamental solution in case of 2D diffusion. In this case the concentration is
defined as following:

_ AM
c = lim

Ax—0 AxAy
Ay—0

[kg/m?]

and the problem of diffusion becomes:

(dc 5 d%c N d%c\ 0
J ot dx2  ody?)
c(x,y,0) = M6(x)6(y) x,y =0 —> |nitial condition
L c(x,y,t) =0 X,y - +o0o ——  Boundary conditions

N.B. The hypotheses are the same of the 1D case:
e Still fluid, i.e.u =20

* Incompressible fluid,i.e. V-u =10

* Mass conservation, i.e. dM /dt = 0
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The problem can be solved thanks to the linearity of the process, which allows to express ¢
as following:

C(X;Y; t) — Cl(xl t) Cz()’: t)
Then:

dc 0 dac, dcq
ot ot gz(c1c) =cipe ot T2

2 2
ac_clgci dcy  0c, 0%c %

ax - 1ax T 29x T 2 ox 52z = 252
0
dc dc C dc 2 2
s z_l_c2 1=C1 2 aczcacz
dx dy 0 dy dy2 1 oy2

By replacing the derivatives, the diffusion equation reads:
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acl azcl 06‘2 aZCZ
— 2|5 Pz |t aar Pz 70 Yo
l J \ J
\ !
0 0
It means that the following equations have to be solved:
( 2 (dc d%c
%_Daq:o —Z2_Dp—2=0
] ot dx? < ot dy?
c(x,0) =M6(x) x=0 c,(y,0) =M,6(y) y=0
| alt) =0 x — too L t)=0 y = oo

k» Fundamental solution of 1D diffusion )
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k y?2 2 Gaussian distribution along x and y axes
Cz = 2 8_4—Dt
L VarDt
ince ¢ = ¢, ¢,, we find: c = e . e = e
e VarDt VanrDt 4Dt

k) kik, =?

The value of k;k, is determined by the mass conservation:

+00 400 1 X% 1 2
= G = e 4Dt (¢ = e 4Dt
M _j f c(x,y,t) dydx ' VanDt >~ VanDt
— 00 — 00

400 1 + 00 1
M=kl | kD[ GerDay

— M =k1k2
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Finally:
M x2+y? . T
— c(x,y,t) = e~ 4Dt 2D concentration distribution
4Dt
—< x® Ve ) 2D concentration distribution in
> c(x,y,t) = \/— e \*Pxt A anysotropic condition (D, # D,,)
4nte /D, D x y
y
Similarly for 3D diffusion:
x%+y%+2z2 _ o
—_— c(X,y,2,t) = 4Dt 3D concentration distribution

e
(4nDt)3/2
2

X z2
—— _ M _<Dt’431;t’4pt>
2
C(x;}’;Z,t)— e X y Z

(4nt)3/2,/D,D,D,

2

3D concentration distribution in
anysotropic condition (D, # Dy, # D,)
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Assumptions:

(@ ftu-Ve= DV * 1D flow, i.e., u = (u,,0,0)
) ot * Uniform flow, i.e., ug = const
c(x,0) = x>0 * Incompressible fluid, i.e.,V-u =20
L c(x,0) = ¢ x=<0 * Mass conservation, i.e., dM/dt = 0
k} PP e Diffusion only along x, i.e. 0% ¢ _ =0
Step distribution 7 9y2’ 9z2

By expanding the A-D equation:

<¥“§£+%\{ ¥ az> <6x2 \;\;g \512%)

And then:
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The differential equation needs of being simplified by traslating the reference system with
velocity uy. The new reference systemis (&, t), being ¢ defined as: £(x,t) = x — ugyt.

In the new reference system:

_|_ Uy —_— @ — D a_zc 1D Diffusion equation
062 Jdt &2
Triavially: ct
Co f — — Co
c(é,t) = —erfc T
£.0) 2 <\/4Dt) Lo,
D) €0 <x —u0t> !
— c(x,t) = —erfc
2 V4Dt . =
c(x,t) c(¢(x,1),t)
dc(x, t) dc(§,t) dc dcaé  dc ac
ot — dc ot ogat ot 03¢
dc(x, t) dc(é,t) B @ﬁ B @
dx dx  0fdx 0§
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y . Assumptions:
S « Steady flow, i.e.
wall _,f’fd C(X, Y, t) — C(X, y)
\J\ \ e Uniform flow, i.e., u =
.: - (uOl 01 0)
X e Incompressible fluid, i.e.,
V-u=0
N . * Mass conservation, i.e.,
dM/dt = 0
ty €
The differential equation which rules the problem is:
C dc d%c d%c dc 0%c azc
— = D— — —_— Uyg— = D— + D —
ant = Pt Ps2 0 9x 9x?

o I

Longitudinal Longitudinal Transversal
Advection Diffusion Diffusion
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We have two length scales along x-axis:

e Lp=+Dt —> Longitudinal Diffusion
e Ly =ugt —> Longitudinal Advection

In our application Ly >> Lp, i.e., ugt > vV DLt.

Indeed, given a period of time t, the distance travel by the solute due to the advection is:
L, =uyt —=—> t =L,/ u,

By equaling the advection with the diffusive length after the period of time t, we find:
Ut = VDt =—> [ .=.DL,/u,

D D~2-107° m?/s
=1
UoL, Uy~ 0.1-1.0m/s

—

D

k» Itis true until — = L, =—————> L, =107 m!lll

If L, > 10 ~2 m longitudinal
diffusion is negligible!
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| can express the ratio into the square root as following:

b —2 v —_— D — 11 v~ 10 7% m?/s
uOLx - v uOLx uOLx - Sc Re Kinematic viscosity of water
Where: -Sc =v/D is the Schmidt Number

-Re = uyL, /v is the Reynolds Number

The differential equation can then be simplified and it reads:

ac d%c r=x/uy OC _ d%c

R _ 1D Diffusion equation
“ox T 7 ay2 gt~ ay?

clx,y) =0 y>0,x=0-1t=0

If we consider the following initial condition: {c(x, Y)=c, y<0,x=0-571=0

c
Then: c(t,y) = %’erfc(

2 V4D x/u,

:D‘t’) —_— Cc(x,y) = © erfc( 4 >
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Jr"'l Assumptions:
_ - dMm .
 Constant Mass Ratein O, i.e., I = M (0,0,0)
z * Uniform flow, i.e., u = (u,, 0, 0)
* Incompressible fluid, i.e., V-u =0
O >  Stationary process, i.e., c(x,y,z,t) = c(x,y, z)

The differential equation of the problem is:

0c+ E)C_DE)ZC_I_DE)ZC_I_Dazc
gt Max~ Toaxz T U ayz T 792

Being advection predominant on diffusion along x, the equation can be simplified in:

6c+ dc D62C+D62C
Yoox T dy? 0z?

ot
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* to=0->1t; =ty +At: afirstamount of mass AM is injected in O, and it starts to
diffuse along y and z as 2D diffusion problem.

e t1 o t, =t; + At a second amount of mass AM is injected in O, and it starts to
diffuse along y and z as 2D diffusion problem. The first AM
moves along x of uyt and the solute spreads along y and z.

: . dx
It is worth noting that: dM = Mdt = M —
Ug

This definition of dM into 2D diffusion yelds:

y AM
dM _y*+z2 Mdx 1 _y*+z? ¢ = lim
é(y, Z, t) = e 4Dhdt = e 4Ddt Ay—0 AyAz
4 Ddt uo 4nDdt Az—0

Being ¢ = ¢ /dx, we find:

My 1 y+22 M 1y
e 4Dhdt = e 4Ddt
ugdn4mDdt U 4nDdt

c(x,y,zt) =
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N dx f X
The flow is uniform, then: Uy —>?

T dt
That into 2D diffusion equation yelds:

Mdt  _y*+z?
C(xl y) Z, t) — m e 4Ddt

By replacing dt and dx with t and x, finally we have:

_y2+ZZ
c(x,y,zt) = e 4Dt
Vo2 AmDx
M _y+z?
—_— c(x,y,2) = e~ 4Dx Yo
Y 4tDx
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