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It is useful to study diffusion by dimensional analysis. From the definition of Diffusivity:

ଶ
 

Now, we express the problem by the following non-dimensional parameter:

 

Length scale of the problem 

It is worth noting that: =

And then:
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The concentration can be expressed as:

 

This term preserves the 
physical meaning of cNow, let’s analyze the differential equation:
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The solutions of (a) and (b) in the 1-D Diffusion equation yield: 
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Ordinary Differential Equation

The latter equation is easily solved, by integrating the following expression: 
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The symmetry of (and then of ) allows to determine the constant ଵ: 
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And then: 

Separating the variables and integrating, the latter equation reads:  
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The constant ଶ is determined by the mass conservation: 
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By changing the integration variable ( ), the mass conservation reads: 
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Finally, the solution of the diffusion equation is: 
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The solution can be analyzed by statistical moments: 
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Mass solute

is the centroid of solute distribution

ଶ is the variance of solute distribution

Let’s analyze the statistical moment of 1st order, in particular : 
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ିఎమ ିఎమ Odd function

Let’s analyze the statistical moment of 2nd order, in particular ଶ: 
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Remarkable integral: 
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Variance linearly increases with time: 
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Let’s consider the following problem:

Initial distribution of solute 
concentration

଴

The solution is due to the superposition principle. In particular, we analyze the small green 
area, that can be approximated as: 

଴ d

widthCentral value of ଴

We assume that ଴ is uniform in d
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When , the area becomes a slug release of mass . Indeed: 

The solution is the same of the one shown previously (fundamental solution), that is: 

଴ d dydz
1 1

଴

Lumped injection of mass
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Contribution due to 

Therefore the solution for ଴ is the convolution of the fundamental case along the whole 
domain. Formally, it reads: 
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Also in this case the mass is conserved. Indeed:
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That is:
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The mass is constant with time varying


