LESSON 3: FUNDAMENTAL
SOLUTION OF DIFFUSION
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It is useful to study diffusion by dimensional analysis. From the definition of Diffusivity:
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Now, we express the problem by the following non-dimensional parameter:
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Length scale of the problem

It is worth noting that: n=n(x,t)
And then:
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The concentration can be expressed as:

c=Mf(x,t,D) =——> c=—0r
k} This term preserves the
Now, let’s analyze the differential equation: physical meaning of c
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The solutions of (a) and (b) in the 1-D Diffusion equation yield:
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The latter equation is easily solved, by integrating the following expression:
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The symmetry of ¢ (and then of g(n)) allows to determine the constant k;:

dac d 1elds
0x on|
0 n=0
And then:
dg
2 =0
dn ——t4ing =

Separating the variables and integrating, the latter equation reads:
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The constant k, is determined by the mass conservation:

+ o0 + 00 M
M=f cdx=J kze‘nzdx
— —0 V4Dt

By changing the integration variable (x — n), the mass conservation reads:
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Finally, the solution of the diffusion equation is ct
Gaussian
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The solution can be analyzed by statistical moments:

+ 00
M, = Jr cdx =M —  [Mlass solute
o | | .
M, = J cxdx = uM, —> 1 is the centroid of solute distribution
o0 2 . . . . .
M, = | (x — w2 cdx = 62 M, — 0 “ is the variance of solute distribution

Let’s analyze the statistical moment of 1st order, in particular u:
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+00
In general: M, = j (x — W cdx = g% M,
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A
y ne ™ =|n|e " Odd function
L J L J
| |
n=0 n<o
y=exp(-n?)
n
y=n

Let’s analyze the statistical moment of 2nd order in particular o?:

, 1 , _x2 , X - dx
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Variance linearly increases with time: = 2D
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& Initial distribution of solute
dé concentration

c(x,0) = co(x)

c X

The solution is due to the superposition principle. In particular, we analyze the small green
area, that can be approximated as:

co(§)d¢

Central value of ¢, ) k» width

>  \We assume that ¢, (&) is uniform in dé

I Environmental Fluid Mechanics — Lesson 3: Fundamental solution ,



UNIVERSITA

GENERAL PROBLEM DG STUDY

DI PADOVA

When d¢ — 0, the area becomes a slug release of mass dM. Indeed:

dM = co(dédydy  ———> G0 = dME(x — )
H K» Lumped injection of mass

The solution is the same of the one shown previously (fundamental solution), that is:

) dM = _@=¢?
C(x, t, &) = e 4Dt

k» Contribution due to d¢

Therefore the solution for ¢y (x) is the convolution of the fundamental case along the whole
domain. Formally, it reads:

+

*© 1 too _(x=§)*
_ c(x,t)=f_ 6(x,t,€)d€=\/mﬁ co(§)e 4Dt d¢
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Also in this case the mass is conserved. Indeed:

f+00 ( ) d + oo [ 1 + 0o ( ) (x_ét)zd d
M = c(x,t)dx = J c e 4Dt X
— 0 —_oo |VATDt J_o o(§ ]

too Co(é) too (x 5)2 _X—f . 4 = dx

M = j_ - C"@ [JE J e dn] d¢ f_:oe-nz dn = VT

M = f Cf;)ﬁd€= f co(€)de
That is:

M = j_:oc(x, t) dx = j_:oco(f)df

The mass is constant with time varying
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