
Computer Lab Practical n. 3

Today’s task

Examples of use of multiple linear regression.

How to start

• Access the course web page on Moodle (/Biology). Download and save the three
data files cherry.dat, temperature.dat and oliveoil.dat. (To download these, you may need
to click on the right button of your mouse.)

How to predict the volume of wood

• Load the data of the cherry.dat file.
cherry <- read.table("~/cherry.dat", header = TRUE)

• Graphically inspect the data. You will see three variables measured on 31 black cher-
ry trees: the girth (circumference) of the trunk (Girth, in inches), the height (Height,
in feet) and the volume of wood obtained from the cut trees (Volume, in cubic feet).
We want to use this data set to formulate an equation to predict the volume of wood,
which is only known after cutting and machining, from the other two variables, which
can be easily measured before cutting. Equations of this kind have various applica-
tions, from deciding how many and which trees to cut, to fixing the price of a forest.

• Let us start by exploring the relationships among the three variables.
plot(cherry)

Obtain the matrix of correlation coefficients with pairwise p-values:
library(RcmdrMisc)
rcorr.adjust(cherry, type="pearson")

Your comments?

• Let us try with a multiple linear regression model of the type

Volume = β0 + β1Girth+ β2Height+ error
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Fit a linear model:
fit1 <- lm(Volume ~ Girth + Height, data=cherry)
summary(fit1)

Your comments? Are the regression coefficients of the two explanatory variables
statistically significant? What do they tell us?

• Check in your output for Multiple R-squared: 0.948.
What does this value tell us?

• The model has a good ability to predict. Can we improve it?
Your middle school math teacher probably taught you that solid volumes are propor-
tional to (base area) � (height). The base area in turn is linked to the square of the
circumference. Let us hence try with the following model:

Volume = β0 + β1Girth+ β2Height+ β3(Girth2
�Height) + error

Let us create a new variable.
cherry$GGH <- cherry$Girth^2 * cherry$Height

Inspect the data to verify that the new variable was correctly defined. Now, re-fit the
model. The model “formula” now must be Volume ∼ Girth+Height+GGH.
fit2 <- lm(Volume ~ Girth + Height + GGH, data=cherry)
summary(fit2)

Was it useful to include the product into the model? Can we simplify the model?

• Question: would log transforming the data help us to reproduce one of the math
formulae seen in middle school for volumes?

Temperature, age, heart rate and sex

The temperature.dat data has four variables: temperatura = temperature, anni = age,
battito = heart rate, sesso = sex. The purpose of the analysis is to assess whether
temperature varies with heart rate, sex and age.
• Load the data of temperature.dat file you downloaded.
temp_data <- read.table("temperature.dat", header = TRUE,

stringsAsFactors=TRUE)

• Produce a numerical summary of the data.
summary(temp_data)

What do you notice?
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• Obtain the histogram of temperature.
hist(temp_data $temperatura, xlab="temperature",

main="Histogram of temperature", breaks=10,xlim = c(35,40))

• To assess whether/how each single variable impacts on temperature try the following:
− for sex, compare the boxplots of temperatura using sesso as grouping variable.
boxplot(temperatura ~ sesso, data=temp_data,col= c("lightpink","lightblue"))

The statistical significance can be assessed with Student’s t test or with Wilcoxon’s
two-sample test.
t.test(temperatura~sesso, alternative="two.sided", conf.level=.95,

var.equal=FALSE, data=temp_data)
wilcox.test(temperatura ~ sesso, alternative="two.sided", data=temp_data)

− for the two “numerical” variables, that is, battito and anni, check the pairs plots
pairs(temp_data[,-1],col="blue")

Calculate the corresponding correlation coefficients and assess their statistical signifi-
cance following the same steps than specified in the previous example.
Your comments?

• Let us now try and see what happens if we account for all three variables simulta-
neously by using a multiple linear regression model of the type

temperatura = β0 + β1battito+ β2anni+ β3sesso+ errore

where sesso = 1 for male and sesso = 0 for female subjects.
fit_mul <- lm(temperatura ~ ., data=temp_data)
summary(fit_mul)

Your comments?

A taste of residual analysis

• It is common practice (besides being good practice) to have a look at the “residuals”
of the model to identify possible errors in the specification of the model itself. The
“residuals” are nothing but the “estimates” of the error components of the model. For
the latter case study,

residuals = temperature−
�
β̂0 + β̂1battito+ β̂2anni+ β̂3sesso

�

where β̂’s (“the β hat’s”) are the estimates of the regression coefficients we calculated
at the previous step.
• Save the residuals in our dataset by creating a new variable called residuals.mul
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temp_data$residuals.mul <- residuals(fit_mul)
head(temp_data)

• Standard checks consist in verifying whether there are outlying observations (a box-
plot of the residuals can be useful) and in drawing the residuals against the explanatory
variables to identify any possible relationship not yet explained by the model. In the
latter case, there seems to be nothing worthwhile reporting. For example, try and plot
the residuals against heart rate (battito).
boxplot(temp_data$residuals_mul)
plot(residuals.mul ~ battito, data = temp_data)

The figure doesn’t suggest any relationship between the residuals and the heart rate.
We can conclude that the relationship between temperature and heart rate is linear
given that “the whole relationship” is explained by the linear model we fitted.
• To see a different case where the residuals suggest a change, do the following:
− estimate the linear model

temperatura = β0 + β1battito+ errore

that is, the model with the only covariate battito.
fit_simple <- lm(temperatura ~ battito, data = temp_data)

− let R compute the residuals of this model and check whether they are uncorrelated
with age (anni) by using both graphical and numerical inspection.
temp_data$residuals_simple <- residuals(fit_simple)
plot(residuals_simple ~ anni, data = temp_data)
cor.test(temp_data$anni, temp_data$residuals_simple, alternative="two.sided",

method="pearson")

Pay attention not to use the old residuals which are uncorrelated with anni.
What do you notice?

Olive oil

• Load the data of the oliveoil.dat file.
oliveoil <- read.table(" /oliveoil.dat", header = TRUE)
• Inspect the data. There are 16 samples of olive oil whose acidity was measured
together with further 4 physico-chemical variables (peroxide, K232, K270, DK). We
want to assess whether these four variables influence acidity.
• Start off by graphically representing the data using pairs plots (“scatterplot ma-
trix”), estimate the correlations present among the variables and verify their statistical
significance.
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• Then formulate and fit a multiple linear regression model with “acidity” as response
variable and the remaining variables as covariates.
• Comment upon the results.

v


