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S i m p s o n’ s  p a r a d o x  …  
a n d  h o w  t o  a v o i d  i t

in focus

When data from two or more groups are combined, patterns previously seen in the  
data can reverse or disappear altogether. H. James Norton and George Divine explain  

why this happens, and how to prevent it from leading researchers astray
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Paradoxes, by their very nature, are intriguing. 
Those of an inquisitive mind could surely spend 
hours trying to unpick counter-intuitive results, 
or seemingly contradictory statements that are, 
in fact, true.

But paradoxes, especially those of a 
statistical nature, can also be problematic. 
Consider a healthcare professional trying to 
decide whether to prescribe antibiotics in order 
to reduce the rates of urinary tract infection 
(UTI) in hospital patients. 

Table 1 summarises data from eight hospitals 
in the Netherlands for patients who do and do 
not receive prophylactic antibiotics (PAB). The 
PAB patients have a lower rate of UTI compared 
to patients without such treatment (3.3% 
versus 4.6%).1 It would appear that PAB should 
be used to prevent UTI. 

A cautious healthcare professional, however, 
might ask a biostatistician to examine the data 
further. They note that the rate of UTI varies 
greatly among the eight hospitals from which 
data has been collected. They also find that PAB 
use differs among the hospitals. 

The biostatistician stratifies the hospitals 
into two groups – low-incidence hospitals (LIH) 
and high-incidence hospitals (HIH) – depending 
on whether the UTI rate is less than or greater 
than 2.5%. They report the data separately, as 
in Table 2. This shows that PAB use is associated 
with an increased rate of UTI in both groups, and 
that its use is actually detrimental to patients. 

Our healthcare professional finds it 
disconcerting that her present conclusion, that 
PAB should not be used, is the reverse of what 
she first thought. “This”, the biostatistician 
explains, “is an example of Simpson’s paradox.” 

Early examples

Simpson’s paradox was described by Udny Yule 
in 1903 using the hypothetical example of a 
possibly ineffective new anti-toxin which could 
appear to be a “cure” due to a sex-related 
difference in mortality rates.2 Cohen and Nagel 
are credited with reporting the first example of 

Simpson’s paradox using actual data in 1934.3 
They compare death rates due to tuberculosis 
between New York City and Richmond, Virginia.

In 1951 Edward Simpson described 
a fictional example to demonstrate how 
combining contingency tables may lead to a 
paradox.4 In his example, when two tables that 
have a positive association between a treatment 
and survival are combined, the association 
disappears. Twenty years later, Colin Blythe was 
the first author to name the paradox in honour 
of Simpson.5 Moreover, in Blythe’s definition 
and example, the association reverses when the 
two tables are combined. 

A 1975 paper by Bickel et al. is given 
credit for bringing wide attention to Simpson’s 
paradox.6  When data from 85 graduate school 
departments at the University of California at 
Berkeley were aggregated, it was seen that 
44% of male applicants were admitted while 
only 35% of women applicants were accepted. 

However, when the authors stratified the data 
by department, this difference disappeared. In 
fact, the authors concluded that there was a 
slight bias in favour of the admission of women. 

The Berkeley example is not a pure example 
of Simpson’s paradox, however, as a substantial 
number of the departments went in either 
direction regarding gender admission rates. 

A more robust demonstration of the paradox 
comes from the field of law and concerns the 
influence of race on death sentences in the 
US. One paper showed the death sentence rate 
versus race of the offender, stratified by race 
of the victim, for a number of states.7 The 
tables for the state of Indiana reveal Simpson’s 
paradox (Table 3). In Indiana whites are nearly 
twice as likely to receive the death penalty 
as African-Americans. However, when the 
data are stratified by the race of the victim, 
it is African-Americans who have the higher 
death sentence rate. This occurs both when 

Table 2. Urinary tract infection rate by low-incidence hospitals versus high-incidence hospitals

UTI No UTI % with UTI

Low-incidence hospitals
Antibiotic prophylaxis 20 1093 1.8
No antibiotic prophylaxis 5 715 0.7

High-incidence hospitals
Antibiotic prophylaxis 22 144 13.3
No antibiotic prophylaxis 99 1421 6.5

Table 1. Rate of urinary tract infection by antibiotic prophylaxis

UTI No UTI % with UTI

Antibiotic prophylaxis  42 1237 3.3
No antibiotic prophylaxis 104 2136 4.6

Table 3. Indiana death sentence rates by race of murderer and race of victim 

Sentence

Jail time Death sentences Death sentences/1000

Combined
Black offender 2498 28 11.1
White offender 2323 49 20.7

Black victim
Black offender 2139 12 5.6
White offender 100 0 0.0

White victim
Black offender 359 16 42.7
White offender 2223 49 21.6

Simpson’s paradox was described by 
Udny Yule in 1903 using the hypothetical 
example of an anti-toxin which could 
appear to be a “cure” due to a sex-
related difference in mortality rates
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the victim is white and when the victim is 
African-American. 

Confounding factors

Simpson’s paradox is a manifestation of 
confounding, and among the dictionary 
definitions of “confound” are the words “mix up” 
and “confuse”. In the context here, when the 
relationship between groups and an outcome 
variable is distorted because of a background 
factor,8 that background factor is called a 
confounder. Two of the main conditions needed 
for a background factor to be a confounder are:

1. The groups differ on the background factor.
2. The background factor influences the 

outcome variable.

In the example of death sentences, the outcome 
is a death sentence, the groups are offenders, 

and the background factor is the race of the 
victim. For the African-American offenders 
85.2% (2151/2526) of the victims are African-
American, while for the white offenders 4.2% 
(100/2372) of the victims are African-American. 
The murder of an African-American victim results 
in 0.5% (12/2251) of the perpetrators receiving 
the death sentence, while in the case of white 
victims 2.5% (65/2647) of the perpetrators 
receive the death sentence. Thus, the two main 
conditions for confounding are met.

We have seen in both the UTI and death 
sentence examples that stratification of data, 
instead of combination, may allow a more 
useful perspective on the data to emerge. 
However, instead of reporting rates within 
two or more categories, it can be desirable 
to generate a single representation of the 
relationship of interest with the confounding 
effect removed. This is sometimes accomplished 
through use of something like the Cochran–
Mantel–Haenszel method, or through modelling. 

Standardisation

Another method that can be used is 
standardisation. Standardisation is used in 
demography to make “fair” comparisons of 
measures such as death rates or cancer rates 
between two states or countries that have 
different age distributions in their populations. 
A comparison of death rates between Utah 
and Florida without age adjustment would not 
be appropriate because Utah has the lowest 
median age of any of the states, while Florida 
has one of the highest. We will use the example 
of UTI from Tables 1 and 2 to show how 
standardisation can be used to elucidate the 
phenomenon of Simpson’s paradox.

From our first example, recall that the 
combined overall UTI rate for the eight Dutch 
hospitals is 3.3% for the PAB group versus 4.6% 
for the no-PAB group (Table 1). This is not a fair 
comparison, though, as 87.0% of the PAB group’s 
patients are from the low-incidence group, 
compared to only 32.1% of the no-PAB group.

Let us standardise the rates to make a 
fair comparison. The standard population will 
consist of all the patients from both hospitals. 
The combined population consists of 1833 
patients from the LIH group and 1686 patients 
from the HIH group (52.1% and 47.9%; Table 
2). Applying some basic mathematics (see box 
on page 43), we see that the standardised 
UTI rate for the PAB group is 7.3%, while the 
standardised UTI rate for the no-PAB group 
would be 3.5%. Thus the no-PAB group has a 
lower UTI rate than the PAB group, which is 
the opposite result to that seen in the original 
combined population.

Simpson’s second paradox

Simpson also described a second paradox 
in his paper. That paradox is the following: 
whether “the sensible interpretation” exists 
in the separate tables, or is instead found in 
the combined table, depends upon the context 

Do’s and don’ts

Simpson’s paradox reminds us of the philosophical question, “If a tree falls in the forest, and no 
one is around to hear it, has it made a sound?” 

A frequent request for a research statistician is that a customer/researcher emails you a 
2 × 2 table and asks you to supply a p-value (preferably one with p < 0.05). You perform the 
analysis and show an association between the two variables. However, if you had the complete 
data set and adjusted for a confounding variable and the association went away or reversed, 
has Simpson’s paradox occurred, even if no one knows it? What is the statistician to do to make 
sure this does not occur?

1. Insist on a statistician being involved in the design, data collection and analysis plan 
prior to the start of the study. As R. A. Fisher remarked to the Indian Statistical Congress 
(c. 1938): “To call in the statistician after the experiment is done may be no more than 
asking him to perform a postmortem examination: he may be able to say what the 
experiment died of.”

2. Always think critically about data, especially data from retrospective or observational 
studies.

3. Discuss with the customer what potential confounding variables are in this particular 
study. 

4. If the variable is on the causal pathway, it is not a confounding variable and you should 
not adjust for it.

5. Perform statistical analyses to check for confounding. 
(a) If the potential confounding variable is binary, generate stratified 2 × 2 tables, 

and compare their results with those in the combined table. If the separate tables 
have the opposite association compared to the combined table, or if there is an 
association in the separate tables that is not there when the data are combined (or 
vice versa), this is evidence of confounding. 

(b) Check for significant associations between the potential confounder and both the 
outcome and the factor of interest. If both associations exist, that is evidence of 
confounding.

(c) Assess the association of interest using logistic regression models: one with just the 
factor of interest as a predictor, and another with the potential confounder included 
as a covariate. A rule of thumb states that if the odds ratio estimate for the factor of 
interest differs between the two models by 10% or more, you should conclude that 
there is confounding.

6. Make “the sensible interpretation”.

Stratification of data, instead of 
combination, may allow a more 
useful perspective on the data to 
emerge. Another method that can 
be used is standardisation
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of the data being analysed. This means that 
the correct interpretation cannot be reliably 
determined merely by looking at the numbers in 
the tables. 

Suppose (hypothetical) data are analysed 
to determine whether a new treatment (A) 
is superior to the standard treatment (B) for 
septic shock. The combined data show that 
the proportion surviving to hospital discharge 
is 86% with treatment A, but only 70% with 
treatment B. However, if the patients are 
stratified into two subgroups, depending on 
whether their diastolic blood pressure (DBP) is 
less than 50 mmHg, within each stratum (Table 
4) the proportions of patients alive at hospital 
discharge are identical for each treatment. 

In all of the previous examples presented, 
a sensible interpretation has been found in 
the separate tables. But could it be that the 
separate tables are not showing the complete 
story for this situation? 

We intentionally omitted crucial details 
about this hypothetical experiment and the 
data. Upon arrival to an emergency department, 
a series of 2000 patients thought to have septic 
shock were randomised to two equally sized 
groups of 1000 each, and given treatment A 
or B, respectively. Contrary to what is implied 
by Table 4, the two groups of patients actually 
had identical distributions for their DBP 
upon arrival. 

In this example, all patients survive 
the first day, and at the end of 24 hours of 

treatment their DBPs were measured and the 
DBP categorisation in the table is based upon 
this second measurement. Does this added 
information change the sensible interpretation 
of the data? Only one tenth (100/1000) 
of patients on treatment A had their DBP 
crash to below 50, while for treatment B one 
half (500/1000) of the patients had such 
a crash. The biology of the situation would 
suggest that the sensible interpretation is 
in the combined table. In this case, unlike 
our other examples, the factor shown in 
Table 4, DBP, was not a variable that was 
fixed at the start of the experiment, but was 
instead an intermediate outcome affected by 
the treatment. 

This illustrates that additional conditions 
can be required for a factor to be a confounder 
leading to Simpson’s (first) paradox. The 
condition in this case is that the factor cannot 
be a consequence of membership in the groups 
of interest. When this condition is absent, 
Simpson’s second paradox can occur.

In conclusion

Simpson’s paradox in its simplest form 
refers to the reversal of the direction of an 
association when data from two or more groups 
are combined to form a single group. The 
paradox occurs because of the presence of a 
confounding variable. 

It is important to check for confounding 
variables, as a lack of adjustment for such 
variables can lead to the wrong conclusion 
for important issues in medicine, the law, 
and other fields of study. Stratification and 
standardisation are two of the statistical 
techniques that can adjust for confounding.
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Table 4. Success of treatment for septic shock by diastolic blood pressure

Alive Dead % alive

Combined
Treatment A 860 140 86
Treatment B 700 300 70

DBP <50
Treatment A 50 50 50
Treatment B 250 250 50

DBP 50
Treatment A 810 90 90
Treatment B 450 50 90

The standardisation calculations

The standardised UTI rate for the PAB group, assuming a patient population of 52.1% LIH 
and 47.9% HIH, would be (PAB UTI rate for LIH patients) × (% patients who are LIH in 
standard population) + (PAB UTI rate for HIH patients) × (% patients who are HIH in standard 
population). 

Therefore, the standardised UTI rate for the PAB group = 0.018 × 0.521 + 0.133 × 0.479 = 
0.073 = 7.3%. In a similar manner, the standardised UTI rate for the no-PAB group would be 
0.007 × 0.521 + 0.065 × 0.479 = 0.035 = 3.5%.


