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Background information
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About us

Who are we?
Erlis Ruli, Francesco Lollato
Department of Statistical Sciences
via Cesare Battisti, 241
e-mail: erlis.ruli@unipd.it

Class schedule
• Monday 08:30 – 09:30 (1D @ Botta)
• Tuesday 08:30 – 09:30 (1D @ Botta)
• Friday 11:30 – 13:30 (1D @ Botta)
• mid-Oct. – Jan.: computer labs (3hrs, Thur. 14:30 - 17:30)

Office hours
to be agreed over e-mail
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Software used

an open source software environment for sta-
tistical computing and graphics

Homepage http://www.r-project.org
Download https://cloud.r-project.org/

an integrated development environment (IDE)
for R

https://www.rstudio.com/products/rstudio/

Installation instructions on Moodle.
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Why R?

open-source, available as Free Software under the terms
of the Free Software Foundation’s GNU General Public
License in source code form
Runs on a wide variety of UNIX platforms, Windows and
MacOS
Highly extensible (currently more than 18,600 packages
available; many of these are of interest to biology/
bioinformatics)
Freely available, and . . .
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Why R?
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Why R?

To some people, R is just the 18th letter of the alphabet. To others, . . .
R is also the name of a popular programming language used by a growing
number of data analysts inside corporations and academia.

Companies as diverse as Google, Pfizer, Merck, Bank of America, the
InterContinental Hotels Group and Shell use it. But R has also quickly
found a following because statisticians, engineers and scientists without
computer programming skills find it easy to use.

“The great beauty of R is that you can modify it to do all sorts of
things,” said Hal Varian, chief economist at Google. “And you have a lot
of prepackaged stuff that’s already available, so you are standing on the
shoulders of giants”.
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Why R?
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Why R?

There are many reasons to prefer R to other languages for scientific
computation. The existence of a substantial collection of good statistical
algorithms, access to high-quality numerical routines, and integrated data
visualisation tools are perhaps the most obvious ones.

Reproducibility is an essential part of any scientific investigation. The
ability to integrate text and software into a single document greatly
facilitates the writing of scientific papers. It helps to ensure that all
figures, tables, and facts are based on the same data and are reproducible
by the reader.
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The exam

Written and closed-book.
A few “theoretical” questions to verify that you have mastered
a minimum of terminology.
Exercises focus on interpreting and communicating the results
of statistical analyses.
Some templates will be handed out during the course.

There will be a mock exam session.
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Contents

1. Statistical Inference: background and extensions
hypothesis testing, confidence intervals, non-parametric tests,
power function, width of a confidence interval, sample size
calculations, . . .

2. Multivariate techniques
correlation, multiple regression, basics of logistic regression,
principal components, and cluster analysis.

Style guide:
The style with be informal, using intuition, examples, and only a
minimum of maths. Study the textbook.
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In particular, we will see . . .

1 Why Mendel shouldn’t have been perplexed by his first results
on round and wrinkled peas. And, hence, how
he may have avoided falsifying his final results given that the
preliminary results were in agreement with his theories!

2 Why MAO (monoamine oxidase) activity levels differ among
different groups of schizophrenia patients.

3 which are the morphological differences among female and male
crabs, or blue and orange ones.

4 and much more . . .
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What is statistics?

Statistics is the art of making numerical conjectures about puzzling
questions. (Freedman et al., 1978).

The objective of statistics is to make inferences (predictions,
decisions) about a population based on information contained in a
sample. (Mendenhall, 1987).
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What is statistics?

Far better an approximate answer to the right question, which is
often vague, than an exact answer to the wrong question, which
can always be made precise. (John W. Tukey, 1962)

All models are wrong, but some are useful. (George E. P. Box,
1987)

To call in the statistician after the experiment is done may be no
more than asking him to perform a post-mortem examination: he
may be able to say what the experiment died of. (R. A. Fisher,
1938)
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Why statistics?

There is a long history of joint development of biology and
statistics.
For instance, Mendel’s laws of heredity were entirely based on
statistical inference.
Biostatistics has become an integral part of modern biomedical
research.
Perhaps the most critical example is the rigorous practice of clinical
trials, in which statistics plays a crucial role in deciding:

how many subjects to enrol
when to stop the trial
if the new treatment is indeed an advancement over the
standard of care

Biostatistics remains at the forefront of biomedical research today.
Think of genomics and precision medicine.
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To wind up

Doing statistics means answering questions about our world;
this is what we will be doing.

Given the nature of this course, we will tackle basic questions
and obtain answers using standard and widely applicable
techniques.

I’ll try and guide you in this journey; but *you* must help
me/each other; so, for instance, try and seek a couple of “true”
questions of practical use for every “answer” I’ll give you.
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What I expect from you

1 Spirit of enquiry and willingness to use common sense.
2 Averages, variance/standard deviation (to quantify location

and dispersion).
3 Quantiles?
4 Random variable? Binomial and normal distributions?
5 But, most of all, spirit of enquiry and willingness to use

common sense.
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What do you expect from me (this course)?

Please post your answer after this lecture and as soon as possible
on the course’s social platform (login via SSO):
https://unipd.padlet.org/erlisruli/applied-statistics-2024-
8pr229e9snsv7zbx
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Textbooks and lecture notes

1 Study material on Moodle
2 The textbook

M. C. Whitlock & D. Schluter (2015+)
The Analysis of Biological Data (2nd ed. is fine),
Macmillan learning.

3 Another modern book (available online for free!) is
S. Holmes & W. Huber (2019)
Modern Statistics for Modern Biology,
Cambridge.
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Unit 2

Statistical inference: an overview
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Statistical inference: an overview
Basic problem

world

experiment
or observation

collected data

statistical
analysis

statements on our world (knowledge)
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Statistical inference
An overview: population, sample, data
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Statistical inference
An overview: population, sample, data

We associate the part of the world “we want to know more about”
with a set/ensemble called target (study) population.

The elements of the target population are called statistical units.

These can be of any type: humans, humans with particular kinds of
allergies, giant octopuses of the South China Sea, galaxies, birches,
cells, neutrinos, . . .

They all differ because of variability (or statistical variability).

Data are obtained by measuring the variable of interest on the
statistical units.
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Statistical inference
An overview: population, sample, data

The population can be real and finite.

For instance, we may be interested in studying how a certain virus
spreads among the capuchin monkeys who live on the Sugar Loaf in
Rio de Janeiro in October 2018. The target population is the set of
all capuchin monkeys who, in October 2018, live on the Sugar Loaf
in Rio de Janeiro.
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Statistical inference
Types of problems: population, sample, data

The population can also be virtual and infinite.

So, if we talk about schizophrenia, this means considering all human
beings who have been suffering from schizophrenia since Ask and
Embla were given Midgard and will be suffering until Ragnarok
announces the final battle between the Aesir and Giants (at least
according to Norse mythology).
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Statistical inference
An overview: population, sample, data
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Statistical inference
An overview: population, sample, data

Often, we do not measure what we are interested in on all
population elements, but only on a sample.

We are, however, ambicious: we want to say something about the
entire world (the population), not only for the sample.

1st side effect: if statistical units differ (because of variability –
statistical? biological?), there is only one thing we can be certain
about, that is, that we will make mistakes (errors).

2nd side effect: in some way, we have to know the relationship
between the sample and the population.
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Further terminology

Anything measured on a statistical unit is called variable.

In some fields, variables are called parameters, but to statisticians,
these terms have different meanings.

Variables can be classified in several ways; most importantly, we
have
(i) continuous variables (height, weight, blood pressure, etc.)
(ii) count variables (number of bacteria per leaf, etc)
(iii) categorical variables (sex, colour, species, etc.)
A rule of thumb: continuous v. take on real numbers, count
variables take on integers (0,1,2,...), categorical variables take on
labels.

Sometimes, labels of a categorical variable can be ordered (e.g.,
tumour grade); in this case, they are called ordinal variables.
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Part 2

Analysing proportions
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Table of Contents

3 A gardener monk meets a binomial distribution which tells him
“you are right”.

4 What would Mendel write in a (scientific) paper was he alive
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Unit 3

A gardener monk meets a binomial
distribution which tells him “you are right”.
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Mendel’s “pilot” experiment (I)

Materials Two types of pea plants; the first type
produces green pods, the second yellow
pods. Both groups of plants belong to a
“pure line” (= maintains its traits constant
across generations).

1st generation Obtained by cross-pollinating “yellow”
plants with pollen obtained from “green”
plants. This leads to hybrid offspring.
All plants of this generation have green
pods.
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Mendel’s “pilot” experiment (II)

2nd generation Obtained by self-pollinating 1st generation
plants.

The data 56 2nd generation plants of which:
39 are “green”
17 “yellow”

Question: Do you see the variable? What type is it?
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Why did Mendel run this experiment?

Mendel was interested in

ϑ = Prob
(

a 2nd generation plant
produces a green pod

)

Indeed, according to his theory

ϑ =
3
4
.

All initial plants are either “yy” (yellow group) or “GG” (green
group); hence, we obtain “Gy” in the first generation. “G” is the
dominant trait, and all first-generation plants “look” green. The
second-generation plants are “GG”, “Gy”, “yG” or “yy”. All four
combinations have the same probability of occurring. Hence, . . .
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What does ϑ represent?

Target population

the set of 2nd generation plants we would obtain if we repeated
Mendel’s experiment an infinite number of times.
The population is, hence, virtual and infinite.

Possible interpretation of ϑ
the fraction of plants in the population which produce a green pod

Note that . . .
ϑ is a feature of our world!
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Let’s guess the value of ϑ

Notation
y = 39 number of plants with a green pod and
n = 56 plants in total

were observed in the 2nd generation.

“Intuitive” estimate (= guess) of ϑ

ϑ̂ =
y

n
=

number of “green” plants
“total” number of plants

.

With Mendel’s data

ϑ̂ =
39
56

≈ 0.696.
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So, was Mendel right?
Beware that . . .

If there is a guess (= estimate), there is an error!

Unless we are incredibly lucky, we expect

ϑ̂ to differ from ϑ

or, stated differently,

(estimate of ϑ) ̸= (true value ϑ)

This is because
ϑ is a “constant” feature of our world (the infinite number of
2nd generation pea plants we may obtain);
ϑ̂ is a feature of the sample (the 56 pea plants grown by
Mendel).
If we repeat the experiment, we will likely obtain a different
result.
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So, was Mendel right?
Making and using hypotheses

Question:
Does this experiment support Mendel’s theory?
In other words, if the “proportion of green plants in the world” is
75%, in a sample, can we observe less than 70% of “green” pea
plants?

Formally,
does the observed outcome “support” the hypothesis

H0 : ϑ = 0.75

or does it suggest that

H1 : ϑ ̸= 0.75
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So, was Mendel right?
The way out

A possible solution
1 Pretend H0 is true and identify all the possible experimental

outcomes.
2 Check if the observed data point (actual experiment’s

outcome) belongs to the possible experimental outcomes.
If so, we accept H0.
If not, we reject H0.

Where’s the issue?
How do we identify the outcomes we “expect” to observe under the
hypothesis that Mendel was right?
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How Mendel was eventually saved by
the binomial

Working assumption
Mendel did not “intentionally select” the plants!

If the hypothesis is true
the 56 pea plants that Mendel grew can be seen as 56 “randomly
selected” plants from our target population with infinite plants.

Hence
y = 39 is the observed value of a binomial random variable with
n = 56 trials and, success probability ϑ; i.e. the probability that a
pea plant will be “green”.
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What do we mean by random variable?
Crash course (with Kolmogorov’s permission)

What is a dice?
a random generator of numbers
We roll the dice a first time and obtain “3”; we roll it a second time
and obtain “6”; a third time . . .

How can we describe how a dice works?
1 by the numbers it generates, that is, {1, 2, 3, 4, 5, 6}.
2 by the probability with which the different numbers “occur”.

So, for instance, if the die is fair, the probability of obtaining
any of the six faces is 1/6.
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What do we mean by random variable?
Crash course (with Kolmogorov’s permission)

Probability distribution of a fair die
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What do we mean by random variable?
Crash course (with Kolmogorov’s permission)

Probability distribution of a “loaded” die
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What do we mean by random variable?
Crash course (with Kolmogorov’s permission)

Probability distribution of another loaded die
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What do we mean by random variable?
Crash course (with Kolmogorov’s permission)

A random variable
is a machinery capable of generating random numbers.
I run an experiment and obtain a result; you run the same
experiment and obtain a different result; and so on . . .

So, what should a random variable do?
It tells us which values we may obtain and with what frequency.
For instance, from the previous figures, we deduce that “possible values”
are 1, . . . , 6. They also reveal the frequency with which we would observe
these values if we rolled the die repeatedly (= repeated the experiment).
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The binomial distribution

Underlying experiment
We conduct n sub-experiments (or trials).
The result of a single trial can be a “success” with probability
ϑ or a “failure” with probability 1 − ϑ.
The trials are independent of each other (the outcome of a
trial doesn’t affect the result of a second one).

Definition
The number of “successes” follows a binomial random variable with
number of trials equal to n and success probability ϑ.
The possible outcomes are {0, 1, . . . , n}. Given n and ϑ, we can
calculate the probability of observing these values.

48



So, how did the binomial save Mendel?

The outcome
y = 39 is the observed value of a binomial random variable with
n = 56 trials and success probability ϑ, the true probability that a
pea plant is “green”.

Why is this statement so important?
It describes the relationship between what we know (our data, “39
green” peas out of a “total of 56”) and what we want to know (ϑ).

Binomial tells to Mendel
“Dear Gregor, these would be the possible outcomes if you are
right!”
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Mendel’s love story
(and perhaps also our)

Probability distribution of a binomial with 56 trials and
success probability 0,75
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This distribution tells us how many “green plants” we can expect to observe if (i) the world satisfies

Mendel’s hypothesis (ϑ = 0,75) and (ii) we repeat Mendel’s experiment over and over again.
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Mendel’s love story
(and perhaps also our)

Probability distribution of a binomial with 56 trials and
success probability 0,75
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The “red star” pinpoints the experimental results (39).
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Mendel’s love story
(and perhaps also our)

Probability distribution of a binomial with 56 trials and
success probability 0,75
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The “red bar” highlights the probability of observing 39 if Mendel’s hypothesis is true.
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Final remarks

We observe a result which is likely to occur under the
hypothesis that

H0 : ϑ = 0,75.

Indeed, under this hypothesis, observing 39 (that is, around
70% of) “green” plants out of a total of 56 second-generation
plants doesn’t surprise us; on the contrary, it is an event that
occurs with an acceptable probability.
Hence, the data advise us to “accept H0”; that is, we produced
the following statement about our world:

“Given the result of our experiment, there is not enough
evidence to question Medel’s theory”.
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Unit 4

What would Mendel write in a (scientific)
paper was he alive today?
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p-value
or, how to quantify uncertainty

Synonyms

p-value, p, (observed significance level)

What is it?
a measure of how much evidence the data provide in support of H0
Assumes values in 0 and 1.
The larger it is, the more do the data “reproduce” what we expect
to see under H0.

We use it to communicate the findings of a test.
Excerpt of the “paper” Mendel may have written a couple of months ago

2◦ generation plants “green” ones p
56 39 (≈ 70%) 0.36
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p-value
as implemented in statistical software (an example from R)

> binom.test(x=39,n=56,p=0.75)

Exact binomial test

data: 39 and 56
number of successes = 39, number of trials = 56,
p-value = 0.3559
alternative hypothesis: true probability of success
is not equal to 0.75
95 percent confidence interval:
0.5590326 0.8122013
sample estimates:
probability of success
0.6964286
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p-value
or, how to quantify uncertainty

Definition

Prob

 of obtaining an experimental result
which is as far or farther

from H0 than the observed outcome


calculated assuming the hypothesis H0 is true.

Translation
Suppose the world satisfies H0;
think of an infinite number of replications of the experiment;
hence derive the frequency with which we would observe
experimental results “as much (or more) inconsistent” with the
null hypothesis H0 then the observed outcome.
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p-value
or, how to quantify uncertainty

p = 0: interpretation
If H0 is true
and we repeat the experiment an infinite number of times,
we will NEVER observe a result as inconsistent or more
“inconsistent with H0” than the observed one.
The observed outcome is hence “very, very far” from H0; it’s so
much of an “astonishing” result that we wouldn’t expect it in a
world in which H0 is true.
Conclusion: the experiment conveys evidence against H0.
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p-value
or, how to quantify uncertainty

p = 1: interpretation
If H0 is true
and we repeat the experiment an infinite number of times,
we will ALWAYS observe a result as inconsistent or more
“inconsistent with H0” than the observed one.
The observed outcome is hence “very, very close” to H0;
indeed, it couldn’t be closer given that all other possible
experimental outcomes are either as “extreme” or more
extreme.
Conclusions: the experimental outcome doesn’t allow us to
question H0.
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p-value
applied to Mendel’s data

The experimental outcome which is “closest” to H0 is

56 × 0,75 = 42 green plants

If y = 42, then 75% of the sampled plants is green; under this
scenario, it would be hard to question Mendel’s theory.
Hence, “far from H0” means “far from 42”.

The experimental outcomes which are as far from H0 or farther off
are
to the left: 39, 38, 37, . . . , 0 green plants;

to the right: 45, 46, . . . , 56 green plants.
Note that: 39 e 45 are “as far” from the observed value; the remaining values are “farther off’ the

observed value.
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p-value
applied to Mendel’s data

If y = 39, the p-value (= sum of red bars) is ≈ 0,36
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p-value
applied to Mendel’s data

Interpretation

(i) If Mendel is right (ϑ = 0,75)
(ii) and if we repeat the experiment again and again,
around 36% of them will produce results which are as extreme
or more extreme than that observed by Mendel.
Hence, the experiment’s outcome is consistent with what we
would expect to observe if Mendel was right.
Conclusion. The data do not provide enough evidence to
doubt the theory developed by Mendel.
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p-value
a mock experiment against Mendel’s theory

If y = 30, the p-value (= sum of red bars ) is smaller than 0,001.
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Interpretation: If Mendel’s hypothesis were true, we would expect a result as “unusual” or more unusual

than the observed one in less than once every 1000 repetitions of the experiment. This frequency is so

small that we have to doubt the theory developed by Mendel!
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p-value
a mock experiment of stronger support to Mendel’s theory

If y = 43, the p-value (= sum of red bars) is 0,88.
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p-value
some decision thresholds and general terminology

threshold meaning “decision”

p ≤ 1
100

the results are highly sig-
nificant (highly inconsis-
tent with H0)

reject H0

1
100

< p ≤ 1
20

the results are significant
(inconsistent with H0)

reject H0 (though with
less emphasis!)

1
20

< p ≤ 1
10

the results are “border-
line” (on the edge of sig-
nificance)

why not repeating the ex-
periment and collecting
more data?

1
10

< p the results are not signif-
icant

accept H0 (the larger p is,
the less should we ques-
tion our decision)
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p-value
Caution! Do not over-interpret!

There are no automatic rules. Every statistical conclusion
needs to be accompanied by a biological one. Hence,
significant does not necessarily mean relevant.
The p-value IS NOT the probability that the null hypothesis is
true. It measures how consistent the results are with what is
expected under the null hypothesis.
The more hypotheses you test, the more likely you will obtain
a small p-value (more on this later!)
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Unit 5

While we are on the topic, let Mendel (and
us!) meet the normal distribution.
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Introduction

What is the purpose?
To repeat the previous analysis of Mendel’s data using the
normal approximation for the binomial distribution.
Why do we do it?
To show, using a simple case, that we can carry out a
statistical test even in situations where we know the sampling
distribution only approximately.
Don’t worry! (⌢̈) We must review the normal distribution and
introduce a theorem.
Indeed (⌣̈): we will see how to derive confidence intervals for
the binomial distribution (and not only).
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Normal distribution
Remember!

Also known as Gaussian, Gauss or Laplace-Gauss distribution.
Depends on two parameters:

1 the mean µ, determines the center of the distribution;
2 the variance σ2, governs the amount of variability.

The standard notation for this distribution is N(µ, σ2).
If µ = 0 and σ2 = 1, we call it the standard normal
distribution.
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Normal distribution
Three different values for µ

5 10 15 20 25

0.0
0.1

0.2
0.3

0.4

The solid line represents a normal distribution with mean 10, the
dashed line with mean 15, the dotted line with mean 20; the
variance is always 1.
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Normal distribution
Three different values for σ2

−15 −10 −5 0 5 10 15

0.0
0.1

0.2
0.3

0.4

The solid line represents a normal distribution with variance 1, the
dashed with variance 4, the dotted with variance 25; the mean is
always 0.
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Normal distribution
area=probability

The area under the curve of a normal distribution gives us the
probability of an interval.
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The curve describes the probability distribution of the standard normal.
The grey area is the probability of observing a value between 1 and 2.
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Normal distribution
Remember!

The normal distribution is symmetric around µ.
Given two values a ≤ b we can calculate

Prob(a ≤ N(µ, σ2) ≤ b).

An experiment with a normal distribution yields any numerical
value.
So, the normal distribution isn’t, for instance, bound to integer values between 0 and n as for the

binomial distribution with several trials equal to n.

Some values are almost impossible.
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Normal distribution

µ − 4σ µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ µ + 4σ

almost the entire probability lies in the interval

[µ− 3σ, µ+ 3σ].
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Normal distribution

µ − 0.675σ µ + 0.675σ

area under curve (= the probability) is 0.5.
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Normal distribution

µ − 1.645σ µ + 1.645σ

area under curve (= the probability) is 0.9.
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Normal distribution

µ − 1.96σ µ + 1.96σ

area under curve (= the probability) is 0.95.
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Normal distribution

µ − 2.58σ µ + 2.58σ

area under curve (= the probability) is 0.99.
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Normal distribution

µ − 3σ µ + 3σ

area under curve (= the probability) is 0.997.
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Normal distribution

µ − 4σ µ + 4σ

area under curve (= the probability) is 0.99994.
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Normal approximation for the binomial
The De Moivre-Laplace theorem

Let Y be a binomial random variable with n independent trials and
success probability ϑ. Write

w =
ϑ̂− ϑ√
ϑ(1 − ϑ)

n

and z =
ϑ̂− ϑ√
ϑ̂(1 − ϑ̂)

n

where ϑ̂ = Y /n.
Then, if n is sufficiently large, the distribution of w and z can be
approximated by the standard normal distribution (µ = 0, σ2 = 1).
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Normal approximation for the binomial
Does it work?

The theorem states that, if n is sufficiently large,

Prob(a ≤ w ≤ b) ≈ Prob(a ≤ N(0, 1) ≤ b)

where a ≤ b are two arbitrary numbers and N(0, 1) represents the
standard normal distribution (with zero mean and unit variance).
The same holds for z .

The quality of the approximation improves with increasing n and
becomes “acceptable” when

both, n · ϑ and n · (1 − ϑ), are larger than 5.

So, for instance, in Mendel’s case, the condition is satisfied given
that

n · ϑ = 56 · 0.75 = 42 and n · (1 − ϑ) = 56 · 0.25 = 14.
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Is this of any use to Mendel?

Compute

w =
ϑ̂− 0.75√

0.75(1 − 0.75)
56

=

39
56

− 0.75√
0.75(1 − 0.75)

56

= −0.926

If our world works according to Mendel’s theory, we expect that ϑ̂ is
close to 0.75.
That is, H0 true ⇒ w close to zero.

On the other hand, if Mendel’s hypothesis is false, we expect that ϑ̂
is far from 0.75.
That is, H0 false ⇒ w away from zero.
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Is this of any use to Mendel?

It seems sensible to

accept Mendel’s hypothesis if |w | is sufficiently small;
reject it if |w | is too large.

But, how large must |w | be to have us doubting Mendel’s
hypothesis?
Or, which are the values of w we expect to observe if Mendel was
right?

If Mendel is right, w follows the standard normal distribution.
Hence . . . we know the answer!
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Is this of any use to Mendel?

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

*

The red star pinpoints the value of w obtained from the data (−0.926).
The solid curve represents the standard normal N(0, 1). The observed
outcome may have been generated from this distribution. There is not
enough evidence to question Mendel’s hypothesis.
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Is this of any use to Mendel?

−4 −0.926 0 0.926 4

If we think in terms of w

“far from H0” ⇔ “far from 0”.

The shaded grey area hence approximates the p-value.
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Is this of any use to Mendel?
(approximate) computation of the p-value using R

> prop.test(x=39,n=56,p=0.75,correct=FALSE)

1-sample proportions test without continuity correction

data: 39 out of 56, null probability 0.75
X-squared = 0.8571, df = 1, p-value = 0.3545
alternative hypothesis: true p is not equal to 0.75
95 percent confidence interval:
0.5666413 0.8009967
sample estimates:
p
0.6964286

Note that. X-squared represents the squared value of w . To question
H0 for large |w | amounts to question H0 for large w2.
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How to carry out a statistical test

1 We want to know whether the world satisfies a conjecture of us.
Example: Does 0.75 represent the probability that a second
generation plant is “green”?

2 We hence collect data on the part of the world we are interested in.
Example: 39 out of 56 second generation plants are “green”.

3 Using the data we calculate a test statistic, say T , which tends to
assume different values depending on whether our hypothesis is true
or is false.
Example: T = w = (ϑ̂− 0.75)/

√
0.75(1 − 0.75)/56

4 We match the observed value of T with the probability distribution
of the outcomes we expect to observe if our hypothesis is coherent
with the world. In particular, we use the p-value to measure how
“close” the observed value of T is to the values we expect to
observe if the hypothesis is true.

88



But, . . . what about z?

Good question! To understand the answer, we need some
(little!) algebra.
As z follows approximately the standard normal, we can
write

Prob(−1.96 ≤ z ≤ 1.96) ≈ 0.95.
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But, . . . what about z?

Now, let’s replace z by its expression, to give

Prob

−1.96 ≤ ϑ̂− ϑ√
ϑ̂(1 − ϑ̂)

n

≤ 1.96

 ≈ 0.95.

Then rewrite the inequality by isolating ϑ, so that

Prob
(
ϑ̂− 1.96

s√
n
≤ ϑ ≤ ϑ̂+ 1.96

s√
n

)
≈ 0.95.

where
s =

√
ϑ̂(1 − ϑ̂).
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Wow! Nice result!

We want to learn about ϑ, the “true” probability of growing a
2◦ generation plant with “green” pods;
According to the observed data, ϑ could be 0.75; On the other
hand, we cannot exclude 0.70 as another “plausible” value
since the data support it.
The previous “sentence” tells us, indeed, that the interval

[ϑ̂− 1.96
s√
n
; ϑ̂+ 1.96

s√
n
]

which we obtain from our data, includes the true value of ϑ
with a level of confidence approx. 95%.
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Applied to Mendel’s data

We “produced” the following statement about our world
“we don’t know the probability of growing a “green” plant;
but, with high confidence, i.e. approximately 95%, this
probability is between 0.58 and 0.82.”

Indeed

ϑ̂ =
39
56

= 0.70, s =
√
ϑ̂(1 − ϑ̂) =

√
0.7 × 0.3 ≈ 0.46

Hence, our interval is

ϑ̂± 1.96
s√
56

≈ 0.7 ± 1.96
0.46√

56
≈ [0.58; 0.82].
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Confidence intervals

We’ve just constructed a confidence interval with 95%
confidence level.
We may replace 1.96 with “other numbers” to obtain
confidence intervals with varying probabilities of including the
true value of the parameter.
Generally speaking, the starting point is z1−α/2, which satisfies

Prob(−z1−α/2 ≤ N(0, 1) ≤ z1−α/2) = 1 − α.

α 1 − α z1−α/2
0.10 0.90 1.645
0.05 0.95 1.960
0.01 0.99 2.576
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Normal distribution

µ − 1.645σ µ + 1.645σ

area under curve (= probability) is 0.9.
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Normal distribution

µ − 1.96σ µ + 1.96σ

area under curve (= probability) is 0.95.
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Normal distribution

µ − 2.58σ µ + 2.58σ

area under curve (= probability) is 0.99.
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Beware!

If we repeat the experiment, the interval changes (as it depends on the
data), not ϑ (which represents a feature of our world).
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The curse of
√
n

The width of a confidence interval decreases with increasing
sample size n, that is, with increasing number of trials.
However, the speed at which this occurs is only 1/

√
n.

Hence, if we want
to halve the width, we must quadruple the sample size;
to reduce the width by a factor of 10, we must multiply n by a
factor of 100;
. . .
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Part 3

Analysing one or several means
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Unit 6

Checking the calibration of a laboratory
instrument
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Description of the problem

The International Normalised Ratio INR

is a standardised measure (i.e., it doesn’t depend on the instrument and
method of measurement used) for blood clotting speed.

Instrument
receives a “drop of plasma” and provides an INR measurement.

Measurement error
The measurement is “dirtied” by

random error: unavoidable and always present;
a possible systematic error: due to imperfect calibration of the
instrument
This latter error can be eliminated but then “reappears” because of
“breakages” or “wrong settings” of the instrument.
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Description of the problem

Distribution of measurements

well-calibrated instrument N(INR, σ2
0)

wrongly calibrated instrument N(INR + δ, σ2
0)

where
σ2

0: random measurement error
We assume it to be constant and equal to 0.072.

δ: systematic error
In addition, we assume that the different measurements are
independent, even when obtained from the same blood sample.
Note. The above settings (normality, independence, value of σ0) were
obtained by analysing thousands of measurements.
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Description of the problem

Distribution of measurements (INR = 1)

0.8 1.0 1.2 1.4

0
1

2
3

4
5

INR

The solid line shows the distribution of the measurements when the
instrument is well calibrated. The dashed line shows the same
distribution but assumes that there is a systematic error (δ = 0.2).
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Description of the problem

Data
To verify whether the instrument is well-calibrated,

8 measurements are taken at the beginning of each daily shift
using a (possibly artificial) blood sample with a known INR
value equal to µ0.

D&R. How is it possible to obtain blood samples with “known” INR?
Well, this is a question you will be able to answer one day . . .

Excerpt

day µ0 y1 y2 y3 y4 y5 y6 y7 y8

A 1.41 1.346 1.401 1.422 1.41 1.291 1.433 1.376 1.518
B 0.94 0.904 1.044 0.979 1.070 1.019 1.070 1.048 1.052
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Description of the problem

Why do we collect these data?
We want to “determine” whether

H0 : the instrument is well calibrated

or
H1 : the instrument isn’t well calibrated.

If we decide “in favour of H1”, the instrument will be recalibrated.
This is a rather long-lasting and costly operation that we want to
avoid unless it is needed (that is, as long as the instrument looks
well-calibrated).
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Testing hypotheses on the mean of a
normal distribution (with known variance)

The problem
data: n independent observations

y1, . . . , yn

from a normal distribution with unknown mean µ and
known variance σ2

0

hypothesis: We want to verify whether

H0 : µ = µ0 or H1 : µ ̸= µ0

where µ0 is a preassigned value.
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A cornerstone result

Working assumption
y1, . . . , yn are independent draws from a normal distribution with mean µ
and variance σ2.

Result
The sample mean of the n measurements

y =
y1 + · · ·+ yn

n

distributes like a normal distribution with mean µ and variance σ2/n.
Hence,

z =
y − µ
σ√
n

distributes like the standard normal.
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Testing hypotheses on the mean of a
normal distribution (with known variance)

Methodology (without using the p-value)
1 Fix α and determine z1−α/2, that is, the 1 − α/2 quantile of

the standard normal.
2 Compute the sample mean (using the data)

y =
y1 + · · ·+ yn

n
.

3 Compute

z =
y − µ0
σ0√
n

.

4 Check whether z lies between −z1−α/2 and z1−α/2.
If the answer is yes, accept H0.
If the answer is no, reject H0.
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Testing hypotheses on the mean of a
normal distribution (with known variance)

Graphical interpretation of z1−α/2

−4 − z1−α 2 0 z1−α 2 4

The “grey” area is 1 − α. Both “white” areas, on the left and the right,
are α/2.
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Testing hypotheses on the mean of a
normal distribution (with known variance)

What does α represent?
α is the probability of rejecting H0 when it is in effect true.
For example, in our case, it is the probability of

saying that the instrument lost the calibration
when it is, in fact, well-calibrated.
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Application to calibration control

How to chose α

In our case, by fixing α = 1/c for a fixed integer value c , we let the
procedure wrongly cry

“Beware a wolf!” (Or rather, “The instrument lost its cali-
bration!”)

one time every c day when, and vice versa, the instrument is
well-tuned.
Since tolerating a false alarm (that is, a “useless recalibration”)
every 20th one was considered to be the “maximum bearable”
amount, α was set to

α =
1
20

= 0,05.

The corresponding z1−α/2 value is hence 1,96.
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Application to calibration control
Numerical results for two days

day y δ̂ = y − µ0 z decision
A 1,40 -0,01 -0,42 The instrument seems well

calibrated. We can start
immediately with the anal-
ysis of today’s blood sam-
ples.

B 1,02 0,08 3,36 The instrument isn’t well
calibrated. Before start-
ing the analysis of today’s
blood samples, we must re-
calibrate it.
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Application to calibration control
Trace plot of δ̂ = y − µ0
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The figure considers 37 succeeding “working” days. The two previously
analysed days are the last two (days 36 and 37). The “dashed bands” are
at ±1,96 · 0,07/

√
8. Every time we leave these bands, the instrument is

recalibrated!
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Testing hypotheses on the mean of a
normal distribution (with known variance)

Using the p-value
We may also carry out the test using the p-value.
In our case,

“far from H0” ⇐⇒ “z far from 0”.

Hence,
p = Prob(N(0, 1) < −|z |) + Prob(N(0, 1) > |z |).

Of course, the conclusions will be the same.
day y z p-value
A 1,40 -0,42 0,6745
B 1,02 3,36 0,0008
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Unit 7

Why 8 measurements?
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Motivation

I want to mention how it is possible to determine the sample
size when the main interest focuses on hypothesis testing.
Obviously, the larger the sample is, the more the data will be
able to identify the correct hypothesis.
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The procedure in short
Data and hypotheses

8 INR measurements
These are independent draws from a N(µ0, σ

2
0) if the

instrument is well calibrated.
These are independent draws from a N(µ0 + δ, σ2

0) if the
instrument is not well calibrated.
We want to use the data to discriminate between the following
two hypotheses:

H0 : δ = 0 or H1 : δ ̸= 0.

If we “reject” H0, the instrument will be recalibrated.
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The procedure in short
So, . . .

Two days measurements

day µ0 y1 y2 y3 y4 y5 y6 y7 y8

A 1.41 1.346 1.401 1.422 1.41 1.291 1.433 1.376 1.518
B 0.94 0.904 1.044 0.979 1.070 1.019 1.070 1.048 1.052

Result

day decision
A The instrument looks well calibrated. Let’s start im-

mediately with the analysis of today’s blood samples.
B The instrument is not well calibrated. Before starting

with the analysis, we must recalibrate it.
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The procedure in short
without using the p-value

Compute

z =
y − µ0
σ0√
n

.

If
−z1−α/2 ≤ z ≤ z1−α/2,

accept H0 otherwise H1.
The “threshold” z1−α/2 is such that

P(−z1−α/2 ≤ z ≤ z1−α/2) = 1 − α

when δ = 0, that is, when H0 is true.
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The procedure in short
without using the p-value

The distribution, a N(0, 1), “tells us” which values of z we expect
to observe if the instrument is well calibrated.

−4 − z1−α 2 0 z1−α 2 4

The “grey” area is 1 − α. Both “white” areas, on the left and on the
right, are α/2.
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The procedure in short
with the p-value – same results!

Compute

z =
y − µ0
σ0√
n

and the p-value as

p = Prob(N(0, 1) < −|z |) + Prob(N(0, 1) > |z |).

If p > α accept H0 otherwise H1.
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Two possible errors

For our instrument

we decide
not to recalibrate to recalibrate

the instrument is
calibrated (⌣̈) (⌢̈)

not calibrated (⌢̈) (⌣̈)

In general

the test goes for
H0 H1

the real situation is
H0 OK type I error
H1 type II error OK
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Type I and Type II errors
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We already talked about type I errors

− z1−α 2 0 z1−α 2

The solid curve is the standard normal distribution. The grey area
represents the probability of the type I error. This error is controlled by α.
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Type II error (n = 8, α = 0.05 δ = 0,1)

− z1−α 2 0 z1−α 2

The dotted curve represents the distribution of z when H0 is true. The
solid curve represents the distribution of z when δ = 0,1. The shaded
area is the probability of committing a type II error.
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Type II error (n = 8, α = 0.05 δ = 0,2)

− z1−α 2 0 z1−α 2

The dotted curve represents the distribution of z when H0 is true. The
solid curve represents the distribution of z when δ = 0,2. The probability
of committing a type II error is very very small.
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Type II error (n = 8, α = 0.05 δ = 0,01)

− z1−α 2 0 z1−α 2

The dotted curve represents the distribution of z when H0 is true. The
solid curve represents the distribution of z when δ = 0,01.
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How to choose n

Our aim
We want to fix n such that the probability of committing a type II
error is acceptable.
Note that the probability of committing a type I error is controlled by α.

Probability of the type II error

n δ = 0.1 δ = 0.2
1 0.702 0.185
3 0.304 0.001
5 0.109 4 × 10−6

6 0.062 2 × 10−7

7 0.034 1 × 10−8

8 0.019 4 × 10−10

10 0.005 7 × 10−13
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The power of a statistical test

How to choose n

What we have seen together can also be described in terms of
“the sample size was chosen in such a way that the power
of the test is accetable (above 98% if δ = 0.1 and, actually,
equal to 100% if δ ≥ 0.2)”

Definition
The power of a test is the probability that the test rejects H0, that
is, decides in favour of H1. If H1 is true

power = 1 − (prob. of type II error).
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Unit 8

More on measuring the INR
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An additional problem

Suppose our instrument is well calibrated.
In this case, a single measurement produced by the instrument
follows a normal distribution with mean equal to the true INR
value and variance 0,072.
The error of a single measurement may be too large for some
specific purposes.
How can we reduce it?
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A possible solution
Motivation

We may think of . . . error of the
average

taken for n
measurements

 <

(
error of a

single measurement

)

Indeed, . . .

If y1, . . . , yn are independent draws from a N(µ, σ2), then

y =
y1 + · · ·+ yn

n

will follow a normal distribution with mean µ and variance
σ2

n
.
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The distribution of the sample mean of n
independent measurements is a normal with

mean INR and variance σ2
0/n

0.7 0.8 0.9 1.0 1.1 1.2 1.3

0
5

10
15

20

The solid curve represents the distribution of a single measurement –
N(INR, 0.072). The dashed curve represents a mean of 4 measurements
– N(INR, 0.072/4); the dotted curve a sample mean of 16 measurements
– N(INR, 0.072/16). All three cases refer to INR = 1.
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A possible solution

Plan of action
1 Take a blood sample from the patient.
2 Split it up into n sub-samples.
3 Measure the INR separately for each sub-sample.
4 Report, that is, “comunicate” to the patient and to his medical

doctor, the average of the n measurements.

But, how do we choose n?
First of all, by remembering that we aren’t Dracula. Of course, we
may obtain thousands of different measurements (or even more) by
bleeding the patient . . . though you can imagine its side effect.
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Confidence interval for the mean of a normal
distribution with known variance

dati n independent observations

y1, . . . , yn

from a normal distribution with unknown mean
µ and known variance σ2

0
interval The true mean µ belongs with probability 1−α

to the interval

y ± z1−α/2
σ0√
n

where
y =

y1 + · · ·+ yn
n

.
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A possible choice for n

The idea
Let’s fix n such that the width of the confidence interval for the true INR
value is smaller than a preassigned value d .

Solution

n ≥
(

2z1−α/2σ0

d

)2

.

Usually, and also because of cost considerations, we take the smallest
integer value that satisfies the inequality.

Property

Prob(|y − INR| < d/2) ≥ 1 − α.
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Numerical example

1 Set α = 0,1, and hence z1−α/2 = 1,645.

2 Set d = 0,1.

3 Compute (
2z1−α/2σ0

d

)2

=

(
2 · 1,645 · 0,07

0,1

)2

= 5,3.

4 Choose n = 6.

This choice guarantees that, in more than nine times out of ten, the
distance between the estimate, y , reported to the patient and the true
INR value is less than 0,05.
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A second numerical example (Dracula
would have liked)

1 Set α = 0,01, and hence z1−α/2 = 2,576.

2 Set d = 0,002.

3 Compute (
2z1−α/2σ0

d

)2

=

(
2 · 2,576 · 0,07

0,002

)2

= 3215,3.

4 Choose n = 3216.

This choice guarantees that, in more than 99 times out of 100, the
distance between the estimate, y , reported to the patientand the true
INR value is less than 0,001.
. . . and Dracula for sure would have been happy to help out!
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And Mendel? How might he have fixed n?

In case of a binomial distribution, the confidence interval becomes

ϑ̂± z1−α/2

√
ϑ̂(1 − ϑ̂)
√
n

.

In this case, the width depends on quantities which we don’t know
before carrying out the experiment.

Possibility:

1 Fix the sample size assuming ϑ̂ = ϑ0, where ϑ0 is an a priori
chosen value. Mendel may have chosen 0,75.

2 Compute n while considering the least favourable situation
given that it is possible to prove that√

ϑ̂(1 − ϑ̂) ≤ 1
2

whatever the value of ϑ̂.
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Unit 9

Further tests based on the normal
distribution
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Introduction

The cornerstone result estimate
computed
from the

data

−

( true value of
parameter of

interest

)

s.e.

distributes, exactly or approximateley, like the standard normal
distribution.

Standard error
s.e., acronym for standard error, represents the square root of the
variance of the estimation error.
We use it, in the previous expression, to “standardise” (= obtain a
unit variance for) the estimation error at the numerator.
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Introduction
Examples

reference
distribution

parameter of
interest estimate standard error

binomial ϑ =
population
proportion

ϑ̂ =
sample pro-
portion

√
ϑ · (1 − ϑ)

n√
ϑ̂ · (1 − ϑ̂)

n
normal µ = population

mean
y = sample mean

σ√
n
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Introduction
What did we learn?

Our hypotheses

H0 :

(
true value of
parameter of

interest

)≤
=
≥

(
preassigned

value

)

H1 :

(
true value of
parameter of

interest

)
>
̸=
<

(
preassigned

value

)

The procedure in short

Compare (
estimate computed

from the data

)
−
(

preassigned
value

)
s.e.

with the values “we expect to observe from the standard normal”.
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Introduction
What did we learn?

Confidence intervals: bilateral case( estimate computed
from the data

)
± z1−α/2 × s.e.

Comment. We need a “computable” version of the standard error.
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Introduction

Generalisation
We may use procedures similar to the above ones also in other
situations.
This possibility descends directly from the central limit theorem
(which generalises the theorem seen for the binomial distribution ).

Considered cases
Inference on the mean of a population for “large” samples.
Inference on the difference between two proportions.
Inference on the difference between the means of two
populations (as, for instance, healthy/diseased or treated/not
treated subjects, . . . ),
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The central limit theorem
What does it tell us?

If y1, . . . , yn are independent draws from a random variable with
arbitrary mean µ and finite variance σ2, then, for a sufficiently large
n, having written

y =
y1 + · · ·+ yn

n

and

s2 =
(y1 − y)2 + · · ·+ (yn − y)2

n − 1
,

the distribution of
z =

y − µ
s√
n

can be approximated by the N(0, 1).
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The central limit theorem
Example – A first possible distribution of the data
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The central limit theorem
Example – Distribution of z when n = 5

−5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

149



The central limit theorem
Example – Distribution of z n = 10
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The central limit theorem
Example – Distribution of z when n = 20
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The central limit theorem
Example – Distribution of z when n = 40
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The central limit theorem
Example – Distribution of z when n = 80
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The central limit theorem
Example – Distribution of z when n = 160
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The central limit theorem
Example – Distribution of z when n = 320
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The central limit theorem
Example – Distribution of z when n = 640
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The central limit theorem
Example – A second possible distribution of the data
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The central limit theorem
Example – Distribution of z when n = 5
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The central limit theorem
Example – Distribution of z when n = 10
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The central limit theorem
Example – Distribution of z when n = 20
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The central limit theorem
Example – Distribution of z when n = 40
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The central limit theorem
Example – Distribution of z when n = 80
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The central limit theorem
Example – Distribution of z when n = 160
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The central limit theorem
Example – Distribution of z when n = 320
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The central limit theorem
Example – Distribution of z when n = 640
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The central limit theorem
Comments

When can we use it?
The approximation is considered to be acceptable if n ≥ 50.
If the distribution is symmetric, it may already work for n ≥ 30.

Generalisation
A similar result also holds for analysing the difference between two
means.
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Bone mineral density (BMD)
A first example

Description of the study
Low BMD values may lead to an increased risk of fractures,
particularly of the hip.
A study was set up to evaluate the effectiveness of hormone
replacement therapy. In all, 94 women between 45 and 64 years of
age took EEC (an estrogen) for 36 months. At the end of the
study, BMD was measured in all 94 women.
We want to calculate a confidence interval for the mean value of
BMD of the population consisting of all women aged between 45
and 64 who may “apply” for the same therapy.
Given that the sample size is large, we can use the previous result
without having to bother about the true distribution of the data.
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Bone mineral density (BMD)
A first example

Some results

n = 94 y = 0,878 g/cm2 s = 0,126 g/cm2

Confidence interval (α = 0.1)

y ± z1−α/2
s√
n
= 0,878 ± 1,645

0,126√
94

= [0,857; 0,899].

That is, . . .
we can state, with a 90% confidence level, that the true mean of
BMD in the target population lies between 0,857 g/cm2 and
0,899 g/cm2.

168



Genes and alcohol
Description of the experiment

Some researchers conjectured that alcoholism may be
associated with a particular gene.
To assess this hypothesis, they collected the preferences for a
“holy” and a “alcoholic” version of a certain beverage.
The preferences were gathered for 27 “normal” mice and 25
“knockout” ones.
Below the results
> mices

alcohol not alcohol
not knockout 18 9
knockout 12 13
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Genes and alcohol
Question

Pure chance or effect?

In the “sample”
2
3

of the normal mice prefer the “spirited” version of

the beverage. This proportion falls to less than 50% in case of
“knockout” pigs.
The difference corresponds to a true effect for the considered gene
or is it simply due to chance?
That is, the observed difference in behaviour is the consequence of
a “feature of the world” or is it simply a “non replicable property” of
the 52 mice used for the experiment?
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Genes and alcohol
A little bit of math

Comparing two proportions
y is a draw from a binomial distribution with ny trials and
“success” probability ϑy .
In our case, y = 18 “alcoholic” mice out of ny = 27 normal
ones. ϑy is the probability that a normal mice prefers the
alcoholic version of the beverage.
x is a draw from a binomial distribution with nx trials and
“success” probability ϑx .
In our case, x = 12 “alcoholic” mice out of nx = 25 “knockout”
ones. ϑx is the probability that a “knockout” mice prefers the
alcoholic version of the beverage.
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Genes and alcohol
A little bit of math

Comparing two proportions

We want to “make inference” (test, confidence interval,. . . ) on
δ = ϑy − ϑx .
In our case, we want to test the following set of hypotheses

H0 : ϑy = ϑx vs. H1 : ϑy > ϑx

which we may also rewrite as

H0 : δ = 0 vs. H1 : δ > 0.

172



Genes and alcohol
A little bit of math

Comparing two proportions
We may again find the solution using the fact that

z =
δ̂ − δ

s.e.

distributes approximately like the N(0, 1) with a suitably
chosen “s.e.”.
In the previous formulation

δ̂ = ϑ̂y − ϑ̂x =
y

ny
− x

nx
=

18
27

− 12
25

= 0,19.
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Genes and alcohol
R code

Let’s skip further formulae and have a look to the corresponding R code.

> prop.test(mices, alternative="greater")

2-sample test for equality of proportions
with continuity correction

data: mices
X-squared = 1.1672, df = 1, p-value = 0.14
alternative hypothesis: greater
95 percent confidence interval:
-0.07384283 1.00000000

sample estimates:
prop 1 prop 2

0.6666667 0.4800000
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Genes and alcohol
R code

The difference is not significant. The bilateral confidence intervals “tells”
us that, indeed, we know rather little about δ.

> prop.test(mices)

2-sample test for equality of proportions
with continuity correction

data: mices
X-squared = 1.1672, df = 1, p-value = 0.28
alternative hypothesis: two.sided
95 percent confidence interval:
-0.1163704 0.4897037

sample estimates:
prop 1 prop 2

0.6666667 0.4800000
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Genes and alcohol
R code

The power of the test based upon ny = nx = 26 mice is about 30% for
true proportions which are close to the observed ones..

> power.prop.test(n=26, p1=0.66, p2=0.50,
alternative="one.sided")

Two-sample comparison of proportions power calculation

n = 26
p1 = 0.66
p2 = 0.5

sig.level = 0.05
power = 0.3147615

alternative = one.sided

NOTE: n is number in *each* group
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Genes and alcohol
R code

To reach a power of about 95% (probability of committing a type II error
of approximately 5%) we would need 2 × 204 mice.

> power.prop.test(p1=0.66, p2=0.50, power=0.95,
alternative="one.sided")

Two-sample comparison of proportions power calculation

n = 203.2449
p1 = 0.66
p2 = 0.5

sig.level = 0.05
power = 0.95

alternative = one.sided

NOTE: n is number in *each* group
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Genes and alcohol
A little bit of math

Comparing two proportions: applicability

The two samples must be chosen randomly from the target
population.
For instance (trivial case), we must avoid to select the most
alcoholic subjects among the “normal” ones.

The preferences accorded by mice must be independent.
For instance, a “normal” subject which drinks the alcoholic version of
the beverage must not prevent a “knockout” subject to do the same.

All of y , ny − y , x , nx − x must be larger than 5.
Otherwise, the normal approximation will not hold.
This holds in our case given that y = 18, ny − y = 27 − 18 = 9,
x = 12 e nx − x = 25 − 12 = 13.
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Does calcium uptake reduce
blood pressure?

The conjecture

Calcium uptake reduces blood pressure, especially in the afro-american
ethnic group.

The experiment

200 healthy individuals are randomly split into two groups of 100
individuals each.

During a 12 weeks period, one group takes a placebo, the other
calcium supplement.

We want to analyse the difference between the final and the initial
blood pressure.

This value is available for all 100 individuals of the “treatment”
group and for 94 individuals of the placebo group.
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Does calcium uptake reduce
blood pressure?

The data (graphical representation)
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Does calcium uptake reduce
blood pressure?

Questions
Can we conclude that the reduction observed for the sample
will also apply to the target population?
If so, how large is the effect?
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Comparing means of two populations:
fundamental result

Proposition

y1, . . . , yn are draws from a random variable with mean µy and
variance σ2

y .

x1, . . . , xn are draws from a random variable with mean µx and
variance σ2

x .

All observations are independent of each other.

Then, if n and m are sufficiently large (say, both ≥ 30),

(y − x)− (µy − µx)√
s2
y

n
+

s2
x

m

distributes, at least approximately, as the N(0, 1).
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Comparing means of two populations:
fundamental result

Comments

Notation

y , x , s2
y e s2

x represent the sample means and variances of the “y” and “x”.

Why is this useful?

It allows us to make inference on

δ = µy − µx =

( mean difference for the
phenomenon of interest in

the two populations

)
.

Other versions

If both variances are equal, that is, if we can assume that σ2
y = σ2

x , there
exists an equivalent version of the same result.
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Does calcium uptake reduce
blood pressure?

Some answers
> t.test(placebo, calcio, alternative="greater")

Welch Two Sample t-test

data: placebo and calcio
t = 2.5424, df = 191.393, p-value = 0.0059
alternative hypothesis:
true difference in means is greater than 0
95 percent confidence interval:
1.839415 Inf

sample estimates:
mean of x mean of y

-0.1671057 -5.4242036
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Unit 10

A brewer statistician meets butterflies,
cuckoos, wrens and redbreasts
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Winged monarchs

The pictures shows a male monarch butterfly.
This species originates from North America to the extent that
it became the national insect of various US states as, for
instance, of Texas.
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More about their wings

In the framework of a study aimed at investigating the body
structure of different species of insects, a group of researchers
captures 14 male monarch butterflies in one of California’s
national parks (Ocean Dunes State Park).
They retrieve the following wing measurements (in cm2).
> monarche
[1] 33.9 33.0 30.6 36.6 36.5 34.0 36.1

32.0 28.0 32.0 32.2 32.2 32.3 30.0

Supponse we want to calculate a confidence interval for the
mean width of the wings of “all” male monarch butterflies of
the Ocean Dunes State Park.
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Butterflies and dark beers

We just saw how to solve the problem for large n.

The solution uses the fact that

t =
y − µ
s√
n

follows approximately the standard normal distribution whatever the
underlying distribution for the phenomenon in the target population
is.

But here, n = 14 isn’t large enough to justify this result.

A possible solution was suggested by W.S. Gossett under the
assumption of normality.

188



Butterflies and dark beers

W.S. Gossett was a statistician who worked at Guinness as “Head
Experimental Brewer” (which sounds like a cool job title!).
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Student’s t: the origins

Hypothesis
Let y1, . . . , yn be n independent observations from a random
variable N(µ, σ2).

Result

Write y and s2 for the sample mean and sample variance (= the
estimates for µ and σ2 obtained from the data). Then

t =
y − µ
s√
n

distributes like a Student t random variable with n − 1 degrees of
freedom.
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Student’s t: graphical representation
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The standard normal and three Student t distributions with differing
degrees of freedom. Note how the t distribution approaches the normal
distribution with increasing degrees of freedom.
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Student’s t: comments

Name
Gosset published his results using the pseudonym of Student. And
Gosset used the letter t to indicate his distribution. Therefore, we
name it Student’s t.

Why is this result important?
It allows us to construct tests and confidence intervals for the mean
of a normal distribution for an arbitrary value of n when we don’t
known the variance.
Indeed, we can proceed as done so far by replacing the normal
distribution with a t distribution.
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Let’s get back to the butterflies
. . . assuming their wings are “normal”

−3.012 0 3.012

The curve shows a t distribution with 13 degrees of freedom. The grey
areas, on the left and on the right, amount to 0,005. Hence, the
probability of the interval [−3,.012; 3,012] is 0,99.
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Let’s get back to the butterflies
. . . assuming their wings are “normal”

Therefore, if n = 14,

P

−3,012 ≤ y − µ
s√
n

≤ 3,012

 = 0,99.

By isolating µ we find that

P

(
y − 3,012

s√
n
≤ µ ≤ y + 3,012

s√
n

)
= 0,99.

That is, the interval

[y − 3,012
s√
n
; y + 3,012

s√
n
]

includes the true mean with a confidence level of 99%.
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Let’s get back to the butterflies
. . . assuming their wings are “normal”

From the data,

> monarche
[1] 33.9 33.0 30.6 36.6 36.5 34.0 36.1

32.0 28.0 32.0 32.2 32.2 32.3 30.0

we find that
y =

33.9 + · · ·+ 30.0
14

= 32.8

and

s2 =
(33.9 − 32.8)2 + · · ·+ (30.0 − 32.8)2

14 − 1
= 6.1.

The interval is

32.8 ± 3.012 ·
√

6.1
14

= [30.8; 34.8].
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Let’s get back to the butterflies
. . . assuming their wings are “normal”

Yet, better let it do by R.

> t.test(monarche, conf.level=0.99)

One Sample t-test

data: monarche
t = 49.5943, df = 13, p-value = 3.332e-16
alternative hypothesis: true mean is not equal to 0

99 percent confidence interval:
30.82120 34.80737

sample estimates:
mean of x
32.81429
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

197



Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

It is well known that cuckoos lay their eggs in the nests of
other birds, who are then left with the task of hatching.
It is possible to observe an association between territory and
bird chosen as “hosts”. That is, in some territories the cuckoos
seem to prefer one species of bird as “host”, in others another.
According to the theory of natural selection, we therefore
expect some form of adaptation of the cuckoo egg to that of
the “host” bird.
In fact, the probability of an egg being hatched (which, given
the habits of the cuckoo, influences the survival of its genetic
heritage to a great extent) should be all the higher the more
the “abusive” eggs are similar to those of the “host” bird.
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

To verify this idea, a study considered the length (in mm) of some
cuckoo eggs found in nests of redbreasts and wrens of two
territories, one in which the cuckoos “prefer” the redbreasts, the
other where they “prefer” the wrens.

> redbreast
21.05 21.85 22.05 22.05 22.05 22.25 22.45 22.45
22.65 23.05 23.05 23.05 23.05 23.05 23.25 23.85

> wren
19.85 20.05 20.25 20.85 20.85 20.85 21.05 21.05
21.05 21.25 21.45 22.05 22.05 22.05 22.25
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

host n y s

redbreast 16 22,57 0,68
wren 15 21,13 0,74

1 2

20
21

22
23

24
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

The question . . . is always the same.
Wrens are among the smallest birds. Their eggs are therefore
smaller than redbreast eggs!
The observed data (the mean, the position of the boxplots)
suggest that the cuckoos adapted to their “hosts”.
Can the difference between the two mean lengths observed in
our data be due to chance? That is, can it be due to the fact
that we considered a small sample of laid eggs? Do we expect
it to happen in general?
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

A bit of math
The target population is split into two groups.
The first (second) group includes all eggs which the cuckoos in
the considered territories lay in redbreast (wren) nests.
All eggs means also those we don’t know, not only those of
our sample.
Let µredbreast and µwren be the average length of eggs in the
two groups.
Using the available data we are interested in verifying the two
hypotheses

H0 : µredbreast = µwren
H1 : µredbreast > µwren
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

The cuckoos, wrens, redbreasts and Darwin eventually meet
Student.

The problem here is that the sample sizes (= the number of
observations in the two groups) do not allow us to use the
results based on the central limit theorem, and variants of it.
If we assume, however, that the distribution within both groups
is normal, a solution exists based on Student’s t distribution.
Two versions are available:
(i) both groups share the same variance;
(ii) the two groups have different variances.
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

Let’s forget about the details, but rather have a look at the results. This
is the version with equal variances.

> t.test(redbreasts, wrens, alternative="greater",
var.equal=TRUE)

Two Sample t-test

data: redbreasts and wrens
t = 5.633, df = 29, p-value = 2.189e-06
alternative hypothesis:
true difference in means is greater than 0
95 percent confidence interval:
1.009136 Inf

sample estimates:
mean of x mean of y

22.575 21.130
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

This is the version which doesn’t necessarily assume equal variances.

> t.test(redbreasts, wrens, alternative="greater")

Welch Two Sample t-test

data: redbreasts and wrens
t = 5.6175, df = 28.369, p-value = 2.462e-06
alternative hypothesis:
true difference in means is greater than 0
95 percent confidence interval:
1.00761 Inf

sample estimates:
mean of x mean of y

22.575 21.130
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Darwin’s cuckoos
. . . not forgetting wrens and redbreasts

Interpretation and comments
Conclusion The data strongly suggest that there was an

adaptation, or, if you prefer, that
“the cuckoos vote for Darwin”.

Two-sample t test Allows us to make inference on the mean
difference of two groups under the assumption
that the distribution of the phenomenon of
interest within the groups is normal.

Welch yes or no? Use Welch unless you are sure that the variances
are equal.
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Yet, are butterflies, cuckoos, readbreasts and
wrens normal?

Better pay attention
Watch out for outlying observations.
Use a test for normality.
They aren’t very powerful for small n, but at least they
highlight severe problems.
Cross-check the results with those obtained from a
non-parametric test.

207



Darwin’s cuckoos
. . . not forgetting wrens, redbreasts and why not ostriches

●

1 2

20
25

30
35

I added an outlying observations to the wren data (a so-called outlier).
Now, the p-value increases to 0,26. That is, a single observation changes
our conclusion.
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Testing for normality

There are several tests for normality.
The hypotheses are

H0 :

 the distribution of the
phenomenon considered in the

target population is normal


against

H1 : the distribution isn’t normal.

Shapiro-Wilk’s test is among the most suitable ones.
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Testing for normality

Butterfly wings
> shapiro.test(monarche)

Shapiro-Wilk normality test

data: monarche
W = 0.9458, p-value = 0.4978

Cuckoo eggs in redbreast nests
> shapiro.test(redbreasts)

Shapiro-Wilk normality test

data: redbreasts
W = 0.9521, p-value = 0.5239
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Testing for normality

Cuckoo eggs in wren nests
> shapiro.test(wrens)

Shapiro-Wilk normality test

data: wrens
W = 0.9329, p-value = 0.3019

Cuckoo eggs in wren nests (plus one ostrich)

> shapiro.test(wrens_ostrich)

Shapiro-Wilk normality test

data: wrens_ostrich
W = 0.4614, p-value = 1.032e-06
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