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Outline
Revenue Management (RM) tactical level:

calculate and update booking limits

Single resource capacity control: optimally allocating capacity of 
a resource to different classes of demand (in contrast with 
multiple resources, or Network RM)

Static models: demand arrives in increasing fare order

• 2-Class problem

o Exact solution

• Multi-Class Problem

o EMSR Heuristics (= Expected Marginal Seat Revenue)

• Examples
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2-Class problem

2 classes: discount (𝑑) and full fare (𝑓) customers

𝑝𝑑 ,𝑝𝑓 : respective fares, with 𝑝𝑓 > 𝑝𝑑 > 0

Hypothesis: 

• 𝑑 pax book before 𝑓 pax

• Discount demand and full fare demand are independent r.v.

• No cancellations or overbooking or no-shows

 What is the optimal booking limit 𝑏 for 𝑑 pax?

 What is the optimal protection level 𝑦 for 𝑓 pax?

Simplification: we optimize only expected revenue. Incremental
cost (meal, fuel, fees …) and ancillary contribution (sales on 
board) are not considered.
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Risks

• Booking limit too low → empty seats (spoilage)

• Booking limit too high → deny boarding to f pax (dilution)

C = capacity

Dd = r.v. discount demand, with cdf Fd(x) 

Df = r.v. full fare demand, with cdf Ff(x)

Marginal analysis: compare two different booking limits, b-1 and 
b, and the corresponding revenues
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Marginal analysis

∆ = revenue variation, 
changing the booking limit from b-1 to b

o If Dd ≤ b-1 then ∆ = 0

o If Dd ≥ b and Df ≤ C-b then ∆ = pd

o If Dd ≥ b and Df > C-b then ∆ = pd-pf

E[∆]  =  0∙Fd(b-1) + pd∙(1-Fd(b-1)) ∙Ff(C-b)

+(pd-pf)∙(1-Fd(b-1))∙(1-Ff(C-b))

= (1-Fd(b-1))∙[pd-pf∙(1-Ff(C-b))]
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Marginal analysis

E[∆]  =  (1-Fd(b-1))∙[pd-pf∙(1-Ff(C-b))]

E[∆] ≥ 0  pd/pf ≥ 1-Ff(C-b)

• The sign of E[∆] does not depend on Fd !

• 1-Ff(C-b) increases as b increases

• C-b = Protection level y for f pax

• If   pd/pf < 1-Ff(C) = P[Df>C]   then b=0 
(do not allocate any seats for d-pax)
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Littlewood’s rule

The optimal discount booking limit b* is such that:

1-Ff(C-b*) = pd/pf

Equivalently, the optimal full fare protection level y* is such that:

1-Ff(y*) = pd/pf

Assuming strict monotonicity of Ff:

y* = MIN [C; Ff
-1(1-pd/pf)]

b* and y* are independent of the forecast discount demand!!
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Example 1

If an airline has set an optimal discount booking limit equal to 
80 seats on a 150-seats aircraft, what is the optimal discount 
booking limit on a 100-seats aircraft for the same flight?
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Example 1

If an airline has set an optimal discount booking limit equal
to 80 seats on a 150-seats aircraft, what is the optimal
discount booking limit on a 100-seats aircraft for the same
flight?

• If C = 150, then b* = 80  and           
y* = C-b* = 150-80 = 70

• If C = 100, then y* = 70 still holds, and    
b* = C–y* = 100-70 = 30
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Example 2

Assume that Df is N(μf = 50; σf = 100), and C = 100.

1. What is the maximum fare ratio pd/pf such that the optimal 
booking limit is zero?

2. What is the minimum fare ratio pd/pf such that the optimal 
booking limit is equal to C?

3. What is the optimal booking limit b* if

• pd/pf = 0.4 ?

• pd/pf = 0.5 ?

• pd/pf = 0.6 ?
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Example 2

Assume that Df is N(μf = 50; σf = 100), and C = 100.

1. What is the maximum fare ratio pd/pf such that the optimal 
booking limit is zero?
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Example 2

Assume that Df is N(μf = 50; σf = 100), and C = 100.

1. What is the maximum fare ratio pd/pf such that the optimal 
booking limit is zero?

Remember: 
If  pd/pf < 1-Ff(C) = P[Df>C] then b=0 
(do not allocate any seats for d-pax)

1-Ff(C) = P[Df>C] = 0.309

If pd/pf ≤ 0.309 then b=0
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Example 2

Assume that Df is N(μf = 50; σf = 100), and C = 100.

2. What is the minimum fare ratio pd/pf such that the optimal 
booking limit is equal to C?
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Example 2

Assume that Df is N(μf = 50; σf = 100), and C = 100.

2. What is the minimum fare ratio pd/pf such that the optimal 
booking limit is equal to C?

If b = C = 100, then 
1-Ff(C-b) = 1-Ff(0) = 0.691

If pd/pf ≥ 0.691 then b* = C
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Example 2: values of b and 1-Ff(C-b)
pd/pf = 0.4

b 1- Ff(C-b) b 1- Ff(C-b) b 1- Ff(C-b)

24 0.397 49 0.496 75 0.599

25 0.401 50 0.500 76 0.603

26 0.405 51 0.504 80 0.618

30 0.421 55 0.520 85 0.637

35 0.440 60 0.540 90 0.655

40 0.460 65 0.560 95 0.674

45 0.480 70 0.579 100 0.691
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Example 2: values of b and 1-Ff(C-b)
pd/pf = 0.5

b 1- Ff(C-b) b 1- Ff(C-b) b 1- Ff(C-b)

24 0.397 49 0.496 75 0.599

25 0.401 50 0.500 76 0.603

26 0.405 51 0.504 80 0.618

30 0.421 55 0.520 85 0.637

35 0.440 60 0.540 90 0.655

40 0.460 65 0.560 95 0.674

45 0.480 70 0.579 100 0.691
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Example 2: values of b and 1-Ff(C-b)
pd/pf = 0.6

b 1- Ff(C-b) b 1- Ff(C-b) b 1- Ff(C-b)

24 0.397 49 0.496 75 0.599

25 0.401 50 0.500 76 0.603

26 0.405 51 0.504 80 0.618

30 0.421 55 0.520 85 0.637

35 0.440 60 0.540 90 0.655

40 0.460 65 0.560 95 0.674

45 0.480 70 0.579 100 0.691

17

b* = 75



Special case: Littlewood’s Rule with 
Independent Normal Demands

Ff(x) = Ф[(x-μf)/σf] ֜ Ф[(C-b*-μf)/ σf] = 1 – pd/pf

b* = [C- σf Ф
-1(1-pd/pf) – μf]

+

y* = min[μf + σf Ф-1(1-pd/pf) ; C]

b* and y* are linear functions of σf (if in (0,C))

• If  pd/pf = ½,   then Ф-1(1-pd/pf) = 0   ֜ b* = C-μf    and    y* = μf

(assuming μf ∈ [0, 𝐶])

• If pd/pf < ½,  then y* > μf  and y* increases with σf

• If pd/pf > ½,  then y* < μf  and y* decreases with σf
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Example 3

A flight has C = 100

2 fare classes

pf = 300€

Ff is N(70, σf)

If pd = 150€ then

b* = …

y* = …
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Example 3

A flight has C = 100

2 fare classes

pf = 300€

Ff is N(70, σf)

If pd = 150€ then

b* = C - y* = 100 – 70 = 30

y* = 70

20



Multiple Fare Classes:
Assumptions

• n classes

• fares: p1 > p2 > … > pn (class 1 is the highest fare class, class n 
is the lowest fare class; we say that class 1 is the highest class)

• Demand in each class is independent r.v.

• Demands book in increasing fare order

• There are no cancellations or no-shows or overbooking

Problem:

Find the booking limit bj for each class j (and corresponding
protection level) in order to maximize expected revenue
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Booking process

Period n n-1 … 3 2 1 Time

Fare pn pn-1 … p3 p2 p1

Bookings xn xn-1 … x3 x2 x1

Low fare bookings High fare 
bookings
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Dj: demand in class j
fj (x): probability distribution of Dj

Fj (x): cdf of Dj



Exact vs Heuristic Solutions

• Exact Solution is possible (Dynamic Programming) but
computationally intensive

• Exact Solution is NOT used in practice

• Heuristic solutions:

– EMSR-a

– EMSR-b

(EMSR: Expected Marginal Seat Revenue) 
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EMSR-a
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To compute 𝑦𝑗
∗, the total protection level for class 𝑗:

• consider a single class 𝑖 ∈ 𝑗, 𝑗 − 1,… , 1

• compare classes  𝑗 + 1 and  𝑖 using Littlewood’s rule: reserve 
capacity 𝑦𝑗+1,𝑖 for class 𝑖 as 

𝑦𝑗+1,𝑖 = 𝐹𝑖
−1 1 −

𝑝𝑗+1
𝑝𝑖

• Repeating for each 𝑖 ∈ 𝑗, 𝑗 − 1,… , 1 and adding:

𝑦𝑗 = σ𝑖=1
𝑗

𝑦𝑗+1,𝑖 = σ𝑖=1
𝑗

𝐹𝑖
−1 1 −

𝑝𝑗+1

𝑝𝑖

• 𝑦𝑗
∗ = 𝑀𝐼𝑁 𝐶; 𝑦𝑗



EMSR-a
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In case of demand normally distributed 𝐷𝑖~N(𝜇𝑖,𝜎𝑖) 

obtain the protection level 𝑦𝑗
∗ as:

𝑦𝑗
∗= 𝑀𝐼𝑁[𝐶; 𝑦𝑗]

where 𝑦𝑗 is given by:

𝑦𝑗 =෍

𝑖=1

𝑗

𝜇𝑖 + 𝜎𝑖 Φ
−1

𝑝𝑖 − 𝑝𝑗+1
𝑝𝑖



EMSR-b
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• Assume demands are normally distributed 𝐷𝑖~N(𝜇𝑖,𝜎𝑖) 

• Compute in each period “artificial” average demand µ, price 𝑝
and standard deviation 𝜎 as: 

• 𝜇 = σ𝑖=1
𝑗

𝜇𝑖 𝑝 = σ𝑖=1
𝑗

𝑝𝑖𝜇𝑖/𝜇 𝜎 = σ
𝑖=1
𝑗

σ𝑖
2

• 𝑦𝑗
∗ = 𝑀𝐼𝑁 𝜇 + σ Φ−1 1 −

𝑝𝑗+1

𝑝
; 𝐶



Example (See file EMSR)

Demand statistics Protection levels

Class Fare Mean Std. Dev. EMSR-a EMSR-b Optimal 

1 1050€ 17.3 5.8 9.7 9.7 9.7

2 950€ 45.1 15.0 50.5 53.3 54.0

3 699€ 39.6 13.2 91.6 96.8 98.2

4 520€ 34.0 11.3
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Numerical experiments show that EMSR heuristics perform
within 1% of the optimal revenue.



Extensions

• Capacity allocation with dependent demands

• Buy up (Sell up): closing a discount fare class leads to 
increased demand in higher classes

• Cannibalization: opening a discount fare class leads to 
decreased demand in higher classes

• Dynamic models: relax the assumption that the demand for 
classes arrives in a strict low-to-high fare order.

28



See

R.L. Phillips

Pricing and Revenue Management

Stanford University Press, 2005 [Chapter 7]

K.T. Talluri, G.J. Van Ryzin
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