# Ricerca Operativa

Laboratorio: utilizzo di solver per programmazione matematica

## Elementi di un modello di Programmazione Matematica

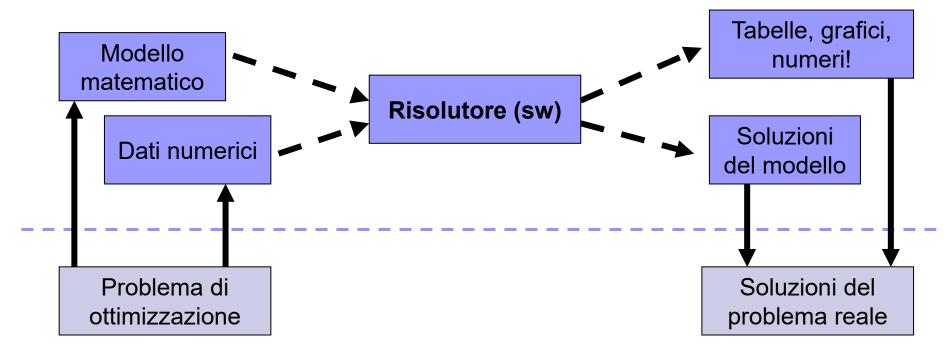
- Insiemi: elementi del sistema;
- Parametri: dati del problema;
- Variabili decisionali o di controllo: grandezze sulle quali possiamo agire;
- Vincoli: relazioni matematiche che descrivono le condizioni di ammissibilità delle soluzioni.
- Funzione obiettivo: e la quantità da massimizzare o minimizzare.

Un modello **dichiara** le caratteristiche della soluzione ottima in linguaggio matematico

## м

### Utilizzo di solver

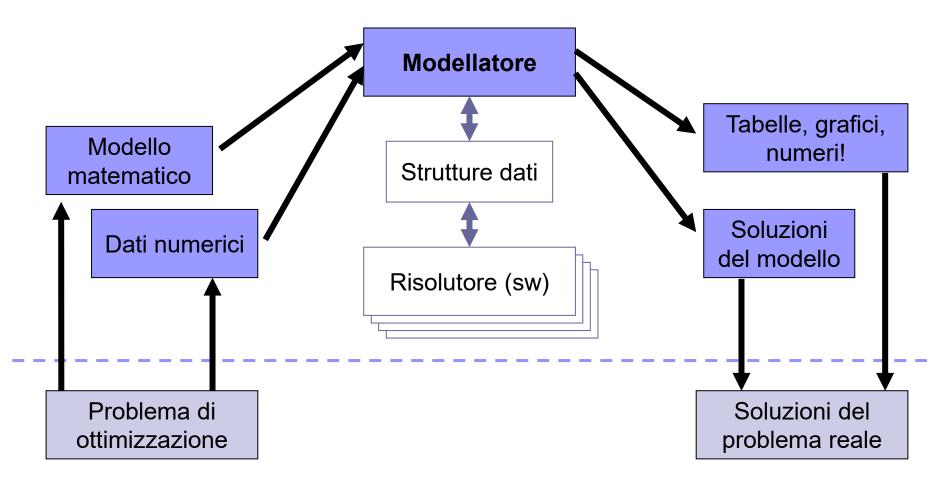
Un **solver** (o risolutore) è un software che riceve in input una descrizione di un problema di ottimizzazione e produce in output la soluzione ottima del modello e informazioni ad essa collegate.



## ×

### Ruolo dei modellatori

Un modellatore fornisce un'interfaccia verso un risolutore.



## 100

### Obiettivi dei modellatori

- Disporre di un linguaggio semplice:
  - □ ad alto livello;
  - □ simile a quello di modellazione (linguaggio matematico);
  - formalmente strutturato;
  - possibilità di commenti.
- Consentire la separazione tra implementazione del modello e implementazione delle tecniche di soluzione
- Dialogare con diversi solver (strutture di I/O standard).
- Mantenere la separazione tra modello e dati del problema: per cambiare l'istanza basta cambiare i dati, non il modello.
- Linguaggio per script.



## Possibili configurazioni (alcune)

#### Modellatori: Solver: Risolutore per fogli elettronici Foglio elettronico Cplex AMPL Gurobi 7IMPI Soplex + SCIP Lingo Xpress **OPL** Minos (Progr. Non Lineare) Mosel Lindo Python, C, Java etc. GPLK (librerie) Google OR Tools Baron Lp\_solve Google GLOP



## Risolutori in fogli elettronici

- Descrivono il modello sotto utilizzando le formule di un foglio elettronico
- Caratteristiche:
  - Facilità di utilizzo (diffusione, interfaccia «familiare»)
  - Integrazione con tool di presentazione
  - Rigidità di utilizzo (no separazione modello/dati)
  - Motori di ottimizzazione poco efficienti
- Esempi
  - □ Risolutore (solver) integrato in Microsoft Excel <a href="http://www.solver.com/excel-solver-help">http://www.solver.com/excel-solver-help</a>
  - □ Solver di LibreOffice

    https://help.libreoffice.org/latest/it/text/scalc/01/solver.html?DbPAR=CALC



#### Risolutore di Excel

- Procedura di attivazione:
  - □ File → Opzioni → Componenti Aggiuntivi → Risolutore → Vai
  - □ II solver si trova negli strumenti «Dati»
- Interfaccia intuitiva per indicare
  - □ Funzione obiettivo
  - □ Variabili («by changing cells»)
  - □ Vincoli (inclusa non negatività)
- Motori di ottimizzazione disponibili
  - □ Simplesso LP (per modelli LINEARI): efficiente, esatto
  - GRG Non Lineare (per modelli «smooth», cioè funzioni «derivabili» per obiettivo e vincoli): meno efficiente, ottimi locali
  - □ Evolutionary (per modelli «qualsiasi»): metodo euristico (basato su algoritmi genetici)



### Esempio

Un coltivatore ha a disposizione 11 ettari di terreno da coltivare a lattuga o a patate. Le risorse a sua disposizione, oltre al terreno, sono: 70 kg di semi di lattuga, 18 t di tuberi, 145 t di concime. Supponendo che il mercato sia in grado di assorbire tutta la produzione e che i prezzi siano stabili, la resa stimata per la coltivazione di lattuga è di 3000 €/ettaro e quella delle patate è di 5000 €/ettaro. L'assorbimento delle risorse per ogni tipo di coltivazione è di 7 kg di semi e 10 t di concime per ettaro di lattuga, e 3 t di tuberi e 20 di concime per le patate. Stabilire quanto terreno destinare a lattuga e quanto a patate in modo da massimizzare la resa economica e sfruttando al meglio le risorse disponibili.



#### Modello matematico

#### Variabili decisionali:

 $x_L$ : quantità in ettari da destinare a lattuga

 $x_p$ : quantità in ettari da destinare a patate

#### Funzione obiettivo:

$$max 3000 x_L + 5000 x_P$$

#### Sistema dei vincoli:

$$x_L + x_P \le 11$$
 (ettari disponibili)  
 $7 x_L \le 70$  (semi disponibili)  
 $3 x_P \le 18$  (tuberi disponibili)  
 $10 x_L + 20 x_P \le 145$  (concime disponibile)  
 $x_L \ge 0, x_P \ge 0$  (dominio)



#### Soluzione

- Soluzione empirica con <u>foglio elettronico</u>
- Soluzione con metodo grafico (modello lineare, due variabili)
- Soluzione ottima con il Risolutore

■ [Risorse: risolutore.xls]



#### Esercizio 1.

Per l'assemblaggio di telecomandi, si hanno a disposizione 10 moduli display, 18 moduli di logica di controllo, 12 moduli di trasmissione, 21 tastierini, 9 moduli di navigazione e 10 moduli led. I telecomandi sono di due tipi. Il tipo A richiede un display, un modulo di navigazione, 2 tastierini, 2 moduli di logica, un modulo di trasmissione e un led. Il tipo B richiede 2 display, 3 tastierini, 2 moduli di logica e 3 moduli di trasmissione. Considerando che il tipo A permette un guadagno netto di 3 euro e il tipo B di 6 euro, determinare la produzione che massimizza il guadagno.

#### Risolvere il problema con il Risolutore di Excel



## Modello PLI

Siano  $x_A$  e  $x_B$  le quantità di telefoni di tipo A e B

$$max \ 3 \ x_{\rm A} + 6 \ x_{\rm B}$$
 (guadagno complessivo)  
 $s.t.$  (display)  
 $x_{\rm A} \le 9$  (navigazione)  
 $2 \ x_{\rm A} + 3 \ x_{\rm B} \le 21$  (tastierini)  
 $2 \ x_{\rm A} + 2 \ x_{\rm B} \le 18$  (logica)  
 $x_{\rm A} + 3 \ x_{\rm B} \le 12$  (trasmissione)  
 $x_{\rm A} = 10$  (led)



### Esercizi

Risolvere con il Risolutore di Excel i seguenti problemi visti a lezione:

- Magliette e Borse (Young Money Makers)
- Problema della dieta
- Problema dei trasporti

[risorse: risolutore.xls]



## Modello PLI

Siano  $x_{\rm M}$  e  $x_{\rm B}$  le quantità di magliette e di borse decorate

$$x_M, x_R \in \mathbb{Z}_+$$

# AMPL

- A Mathematical Programming Language
- Linguaggio di modellazione algebrica
  - □ Esprime un problema di ottimizzazione in una forma comprensibile ad un solutore
  - □ Linguaggio algebrico: contiene diverse primitive per esprimere la notazione matematica normalmente utilizzata per problemi di ottimizzazione (es. sommatorie, funzioni matematiche, etc.)

#### Caratteristiche:

- Flessibilità: separazione modello / dati, script
- Integrazione con motori di ottimizzazione allo stato dell'arte
- Linguaggio «semplice»: traduzione del modello matematico
- Nuovo linguaggio, integrabilità nelle applicazioni

## м

### AMPL: versioni disponibili e installazione

- AMPL è disponibile su <a href="http://ampl.com">http://ampl.com</a>
  - Software commerciale [a pagamento o trial]
  - □ Full per scopi didattici (course edition) [a pagamento o trial]
  - □ «free demo» con max 500 variabili e 500 vincoli [gratuita, include le versioni «free» dei principali solver]
  - □ <a href="https://ampl.com/start-free-now/">https://ampl.com/start-free-now/</a>
    - Link "Download here" in the "Size-Limited Demo" section
    - Sezione "Download bundle with IDE included for [Windows | Linux | Mac]"
    - Ad esempio: <a href="http://ampl.com/demo/amplide.mswin64.zip">http://ampl.com/demo/amplide.mswin64.zip</a>
       https://ampl.com/demo/amplide.linux64.tgz

#### Documentazione

- Manuale sintetico sulla pagina del corso
- □ The AMPL book: https://ampl.com/learn/ampl-book/

# м

#### Accesso ad AMPL «size-limited demo»

- Installare AMPL o accedere a una macchina del laboratorio [vedi istruzioni su moodle]
- Lanciare amplide
  - □ Installazione propria nel percorso folder, eseguire
    - folder\amplide\amplide.exe

[windows]

- folder/amplide/amplide &

[linux]

- Macchina di laboratorio linux
  - da menu, **Ampl IDE**
  - -/usr/local/bin/amplide &



### Esempio base «contadino»: modello

Comandi per la creazione del modello (da console):

```
#DICHIARAZIONE VARIABILI (# commento fine linea)
var xL; #ettari a lattuga
var xP; #ettari a patate
#MODELLO
                    3000 * xL + 5000 * xP;
maximize
       resa:
subject to ettari: xL + xP \le 11;
subject to semi: 7 * xL \le 70;
s.t. tuberi: 3 * xP <= 18;
s.t. conc: 10 * xL + 20 * xP <= 145;
s.t. dominio1: xL >= 0;
s.t.
   dominio2: xP >= 0;
```

## Esempio base «contadino»: soluzione

Comandi per la soluzione del modello (da console):

(\*) possibili solver (vedi eseguibili disponibili nella cartella di installazione):

PLI: cplex (o cplexamp), gurobi, xpress ...

PNL: minos (default solver), baron ... (non gestiscono variabili intere)

# 7

#### AMPL: file .mod e .dat

- Memorizzare i comandi di creazione del modello in un file di testo con estensione .mod
  - □ Si può usare l'IDE (posizionarsi sul percorso desiderato, menu File → new → .mod: contadino) o prepararlo esternamente
- Memorizzare i dati (se presenti) in file di testo .dat
  - □ Si può usare l'IDE (posizionarsi sul percorso desiderato, menu File → new → .dat: contadino) o prepararlo esternamente
- Caricare il modello con i comandi

```
model contadino.mod; # carica il modello
data contadino.dat; # carica i dati
```

Per cancellare modello e dati precedentemente caricati reset;

## ۲

#### AMPL: file .run

- Memorizzare i comandi per caricare e risolvere il modello in file di testo con estensione .run (script)
  - □ Si può usare l'IDE (posizionarsi sul percorso desiderato, menu File → new → .run: contadino) o prepararlo esternamente
- Per eseguire lo script, invocare da console,il comando: include contadino.run;
- Percorso di lavoro (current directory)
  - □ I comandi model, data e include fanno riferimento alla directory corrente.
  - □ La directory corrente è indicata nel file browser o può essere cambiata con il comando cd (e.g. cd /home/luigi/ampl)
  - □ I nomi dei file possono essere completati con il percorso, e.g., include ./script/contadino.run model model/contadino.mod



### Esempio base: contadino [risorse]

contadino.mod

contadino.dat

contadino.run



#### Esercizio 2.

Risolvere il problema dei telecomandi con AMPL

Per le variabili intere:

```
var xA integer;
```

#### [Risorse]

- telecomandi.mod
- telecomandi.dat
- telecomandi.run



### Esempio: sintassi comando var

Dichiarazione di variabili:

Esercizio: ... al massimo 5 telecomandi di tipo A.

```
var xA >= 0 , <= 5 integer;
```



### Implementazione di modelli «generali»

- I modelli precedenti includono i «dati» del problema:
  - □ Se cambiano i dati bisogna cambiare il modello (.mod)
  - □ Poca leggibilità
  - Difficile riportare modifiche del modello
- Separare modello e dati
  - □ File « .mod » con il modello «generale» e la dichiarazione dei parametri del problema
  - ☐ File « .dat » con i dati attribuiti ai parametri
- Per uno stesso modello possiamo utilizzare diversi file dati (ad esempio «contadino» e «telecomandi»)

## м

### Modello generale: esempio (mix ottimo di produzione)

- I insieme dei beni che possono essere prodotti;
- J insieme delle risorse disponibili;
- $P_i$  profitto (unitario) per il bene  $i \in I$ ;
- $Q_j$  quantità disponibile della risorsa  $j \in J$ ;
- $A_{ij}$  quantità di risorsa j necessaria per la produzione di un'unità del bene i.

$$\max \sum_{i \in I} P_i x_i$$
s.t.
$$\sum_{i \in I} A_{ij} x_i \le Q_j \qquad \forall j \in J$$

$$x_i \in \mathbb{R}_+ \left[ \mathbb{Z}_+ \mid \{0, 1\} \right] \quad \forall i \in I$$

# м

## Componenti di un modello «generale» (1)

- Insiemi: elementi del sistema rappresentati da un nome
  - Esempi: insieme R delle risorse; insieme I delle origini; insieme J delle destinazioni; insieme PROD dei prodotti
  - □ Comando AMPL: set <nome>
- Parametri: dati del problema (valori noti) rappresentati in forma astratta da un nome, eventualmente indicizzato da uno o più elementi degli insiemi. Il loro valore è assegnato prima di risolvere il problema
  - □ Esempi: disponibilità  $\mathbf{D_i}$ ,  $\mathbf{i} \in \mathbf{R}$ ; costo unitario di trasporto  $\mathbf{C_{ii}}$ ,  $(\mathbf{i,j}) \in \mathbf{I} \times \mathbf{J}$
  - ☐ Comando AMPL: param <nome>
- Variabili decisionali: incognite, rappresentate da un nome, eventualmente indicizzato da uno o più elementi degli insiemi. Il loro valore è calcolato dal solver
  - □ Esempi: acquisti x<sub>i</sub>, i∈R; q.tà trasportate y<sub>ii</sub>, (i,j)∈I×J
  - □ Comando AMPL: <mark>var <nome></mark>

# 10

## Componenti di un modello «generale» (2)

- Funzione obiettivo: espressione algebrica che include operatori aritmetici, variabili e parametri nella loro forma astratta ed eventualmente indicizzata.
  - $\square$  Esempio: min  $\Sigma_{i \in I, i \in J} c_{ii} y_{ii}$
  - □ Comando AMPL: minimize (maximize) <nome>
  - ☐ Operatore aritmetico «sommatoria» in AMPL: sum
- Vincoli: espressioni algebriche che includono operatori aritmentici, variabili e parametri (astratti ed eventualmente indicizzati). Anche i vincoli possono essere indicizzati da elementi degli insiemi
  - □ Esempio:  $\Sigma_{i \in J} y_{ii} \leq D_i$ ,  $\forall i \in I$
  - □ Comando AMPL: subject to <nome>
- Indicizzazione in AMPL: parametri, variabili, vincoli e operatori aritmetici possono essere indicizzati usando espressioni indicizzanti

```
<nome> { insieme1 , insieme2 ... } per la dichiarazione
<nome> [ indice1 , indice2 ... ] per l'accesso
```

## Dichiarazione e definizione di set e param

■ Dichiarazione (in astratto) di insiemi (nel file .mod)

```
set nome; [i in] Set1, [j in] Set2, ...
```

Dichiarazione (in astratto) di parametri (nel file .mod)

```
param nome [{index_expr}] [default value];
```

 Definizione (assegnazione di specifici valori) di set e param (nel file .dat)

```
set nome := elem1 elem2 ... elemN;
param nome := index1 index2 ... indexN value;
```

Accesso a parametri indicizzati (parentesi quadre []):

```
NomeParam[elem1, elem2, ..., elemN]
```

## M

## Modello «generale» in AMPL: sintassi base

```
#DICHIARAZIONE INSIEMI
                                 Espressioni indicizzanti
set Prodotti;
set Risorse;
#DICHIARAZIONE PARAMETRI
                       # massimo numero prodotti
param maxNumProd;
param P {Prodotti};  # profitto unitario
param Q {Risorse};  / # disponibi/ità risorsa
param A {Prodotti, Risorse};
                       # risorsa per unità di pr.
var x {Prodotti} >=0 , <= maxNumProd;</pre>
maximize profitto: sum {i in Prodotti} P[i]*x[i];
subject to disponib {j in Risorse}:
         sum {i in Prodotti} A[i,j]*x[i] <= Q[j];</pre>
```

## 10

## Dati (definizione di set e param) in AMPL

```
set Prodotti := lattuga patata;
set Risorse := ettari semi tuberi concime;
param maxNumProd := 7;
param P :=
lattuga 3000
patata 5000
param \bigcirc :=
          11
ettari
semi 70
tuberi 18
concime 145
param A : lattuga ettari 1 lattuga semi 7
 lattuga tuberi 0 lattuga concime 10
 patata ettari 1 patata semi 0
 patata tuberi 3 patata concime 20;
```

# M

#### Esercizio 3.

- Risolvere il problema dei telecomandi con AMPL, usando il modello generale.
- + ogni prodotto ha uno specifico limite superiore!

```
_ .mod
param maxNumProd {Prodotti};
var x {i in Prodotti} >=0,<= maxNumProd[i];

_ .dat
param MaxNumProd := telA 5 telB 999;</pre>
```

#### ■ [risorse]

```
□ mixOpt.mod - mixOpt.run
□ mixOpt.contadino.dat - mixOpt.telecomandi.dat
```

Ricorda: expand (visualizza modello specifico esteso)



### Definizione sintetica di parametri

Dichiarazioni sintetiche: più parametri con stessi indici

```
param : P MaxNumProd := #notare i due punti dopo "param"
  telA 3 5
  telB 6 999;
```

Dichiarazioni sintetiche: tabelle

```
param A: ettari semi tuberi concime := #due punti dopo A
lattuga 1 7 0 10
patata 1 0 3 20;
```

Dichiarazioni sintetiche: tabelle trasposte



#### Esercizio 4. Dieta economica

Un dietologo deve preparare una dieta che garantisca un apporto giornaliero di proteine, ferro e calcio di almeno 20 mg, 30 mg e 10 mg, rispettivamente. Il dietologo è orientato su cibi a base di verdura (5 mg/kg di proteine, 6 mg/Kg di ferro e 5 mg/Kg di calcio, al costo di 4 €/Kg), carne (15 mg/kg di proteine, 10 mg/Kg di ferro e 3 mg/Kg di calcio, al costo di 10 €/Kg) e frutta (4 mg/kg di proteine, 5 mg/Kg di ferro e 12 mg/Kg di calcio, al costo di 7 €/Kg). Determinare la dieta di costo minimo.

Risolvere il problema con AMPL (file .mod e .dat separati)

## •

## Modello generale: dieta

I insieme delle risorse disponibili;

J insieme delle domande da coprire;

 $C_i$  costo (unitario) per l'utilizzo della risorsa  $i \in I$ ;

 $D_j$  ammontare della domanda di  $j \in J$ ;

 $A_{ij}$  capacità (unitaria) della risorsa i di soddisfare la domanda j.

$$\min \sum_{i \in I} C_i x_i$$
s.t.
$$\sum_{i \in I} A_{ij} x_i \ge D_j \qquad \forall j \in J$$

$$x_i \in \mathbb{R}_+ \left[ \mathbb{Z}_+ \mid \{0, 1\} \right] \quad \forall i \in I$$



#### Modello PL

Siano  $x_1$ ,  $x_2$  e  $x_3$  le quantità di cibi a base di verdura, carne e frutta, rispettivamente

min 
$$4x_1+10x_2+7x_3$$
 (costo giornaliero dieta)  
s.t.  
 $5x_1+15x_2+4x_3 \ge 20$  (proteine)  
 $6x_1+10x_2+5x_3 \ge 30$  (ferro)  
 $5x_1+3x_2+12x_3 \ge 10$  (calcio)

$$x_i \in \mathbb{R}_+, \ \forall i \in \{1, 2, 3\}$$



#### Esercizio 5.

Il dietologo vuole inserire almeno 3 kg di alimenti a base di pesce azzurro (10 mg/kg di proteine, 15 mg/kg di ferro e 2 mg/kg di calcio, al costo di 3 euro/kg) nella dieta.

Modificare opportunamente i file relativi al problema.

```
[Risorse]
```

```
□ diet.mod - diet.run - diet.1.dat - diet.2.dat
```

#### Comandi

```
□ include diet.run;
□ reset data; data diet.2.dat;
□ solve; display x;
```

# Esercizio 6. Indagine di mercato

Un'azienda pubblicitaria deve svolgere un'indagine di mercato per lanciare un nuovo prodotto. Si deve contattare telefonicamente un campione significativo di persone: almeno 150 donne sposate, almeno 110 donne non sposate, almeno 120 uomini sposati e almeno 100 uomini non sposati. Le telefonate possono essere effettuate al mattino (al costo operativo di 1.1 euro) o alla sera (al costo di 1.6 euro). Le percentuali di persone mediamente raggiunte sono riportate in tabella.

|                    | Mattino | Sera |
|--------------------|---------|------|
| Donne sposate      | 30%     | 30%  |
| Donne non sposate  | 10%     | 20%  |
| Uomini sposati     | 10%     | 30%  |
| Uomini non sposati | 10%     | 15%  |
| Nessuno            | 40%     | 5%   |

Si noti come le telefonate serali sono più costose, ma permettono di raggiungere un maggior numero di persone: solo il 5% va a vuoto. Si vuole minimizzare il costo complessivo delle telefonate da effettuare (mattina/sera) in modo da raggiungere un campione significativo di persone

#### Risolvere il problema con AMPL (usare soluzione Es. 4)



#### Modello PLI

Siano  $x_1$  e  $x_2$  il numero di telefonate da fare al mattino e alla sera, rispettivamente

min 1.1 
$$x_1+1.6 x_2$$
 (costo totale telefonate)  
s.t.  
 $0.3x_1+0.3x_2 \ge 150$  (donne sposate)  
 $0.1x_1+0.2x_2 \ge 110$  (donne non sposate)  
 $0.1x_1+0.3x_2 \ge 120$  (uomini sposati)  
 $0.1x_1+0.15x_2 \ge 100$  (uomini non sposati)

$$x_i \in \mathbb{Z}_+, \ \forall i \in \{1, 2\}$$
 [Risorse] diet.indagine.dat



## Esempio: Localizzazione di servizi

Una città è divisa in sei quartieri, dove si vogliono attivare dei centri unificati di prenotazione (CUP) per servizi sanitari. In ciascun quartiere è stata individuata una possibile località di apertura. Le distanze medie in minuti da ciascun quartiere a ciascuna delle possibili località è indicata in tabella. Si desidera che nessun utente abbia un tempo medio di spostamento superiore a 15 minuti per arrivare al CUP più vicino e si vuole minimizzare il numero di CUP attivati.

|        | Loc. 1 | Loc. 2 | Loc 3 | Loc. 4 | Loc. 5 | Loc. 6 |
|--------|--------|--------|-------|--------|--------|--------|
| Q.re 1 | 5      | 10     | 20    | 30     | 30     | 20     |
| Q.re 2 | 10     | 5      | 25    | 35     | 20     | 10     |
| Q.re 3 | 20     | 25     | 5     | 15     | 30     | 20     |
| Q.re 4 | 30     | 35     | 15    | 5      | 15     | 25     |
| Q.re 5 | 30     | 20     | 30    | 15     | 5      | 14     |
| Q.re 6 | 20     | 10     | 20    | 25     | 14     | 5      |



#### Modello PLI

Sia  $x_i = 1$ , se viene aperto il CUP nel quartiere i, 0 altrimenti



### Modello PLI generale

- Come modello di copertura («dieta»): richiede data preprocessing ([Risorse]: diet.mod - diet.CUP.dat)
- Modello specifico a partire dai dati «grezzi»:

## Modello PLI generale

- Come modello di copertura («dieta»): richiede data preprocessing ([Risorse]: diet.mod - diet.CUP.dat)
- Modello specifico a partire dai dati «grezzi»:

# .

#### Espressioni indicizzanti: riassunto

- Sintassi {...} per definire indici di variabili, parametri, vincoli, sommatorie, comandi etc. Utilizzano insiemi
- ... precedentemente dichiarati: {A} {I}
- ... multidimensionali: {A,B} {I,J} {I,I} {A,B,I}
- ... calcolati:

```
{A cross B} (={A,B}) {I, J, A diff B}
```

... con nomi degli indici espliciti (usati in espressioni)

```
{a in A} {a in I, b in J} {i in I, j in I}
```

... con possibili restrizioni («tale che...»)



#### Esercizio 7. Trasporto di frigoriferi

Una ditta di produzione di elettrodomestici produce dei frigoriferi in tre stabilimenti e li smista in quattro magazzini intermedi di vendita. La produzione settimanale nei tre stabilimenti A, B e C è rispettivamente di 50, 70 e 20 unità. La quantità richiesta dai 4 magazzini è rispettivamente di 10, 60, 30 e 40 unità. I costi per il trasporto di un frigorifero tra gli stabilimenti e i magazzini 1, 2, 3 e 4 sono i seguenti:

- dallo stabilimento A: 6, 8, 3, 4 euro;
- dallo stabilimento B: 2, 3, 1, 3 euro;
- dallo stabilimento C: 2, 4, 6, 5 euro.

Utilizzare AMPL per determinare il piano di trasporti di costo minimo, considerando che non sono ammesse rimanenze alla fine della settimana e che lo stesso modello dovrà essere utilizzato per diverse settimane.



#### Modello PLI

 Sia x<sub>ij</sub> il numero di frigoriferi prodotti nello stabilimento i e smistati nel magazzino j

$$\begin{array}{lll} & min & 6 \ x_{A1} + 8 \ x_{A2} + 3 \ x_{A3} + 4 \ x_{A4} + \\ & + \ 2 \ x_{B1} + 3 \ x_{B2} + 1 \ x_{B3} + 3 \ x_{B4} + \\ & + \ 2 \ x_{C1} + 4 \ x_{C2} + 6 \ x_{C3} + 5 \ x_{C4} \\ & s.t. \\ & x_{A1} + x_{A2} + x_{A3} + x_{A4} \leq 50 & \text{(capacità produttiva stabilimento A)} \\ & x_{B1} + x_{B2} + x_{B3} + x_{B4} \leq 70 & \text{(capacità produttiva stabilimento B)} \\ & x_{C1} + x_{C2} + x_{C3} + x_{C4} \leq 20 & \text{(capacità produttiva stabilimento C)} \\ & x_{A1} + x_{B1} + x_{C1} \geq 10 & \text{(domanda magazzino 1)} \\ & x_{A2} + x_{B2} + x_{C2} \geq 60 & \text{(domanda magazzino 2)} \\ & x_{A3} + x_{B3} + x_{C3} \geq 30 & \text{(domanda magazzino 3)} \\ & x_{A4} + x_{B4} + x_{C4} \geq 40 & \text{(domanda magazzino 4)} \\ & x_{ij} \in \mathbb{Z}_+ \ \forall i \in \{A, B, C\}, j \in \{1, 2, 3, 4\} \\ \end{array}$$



### Modello generale: trasporti

- I insieme dei centri di offerta;  $O_i$  ammontare dell'offerta in  $i \in I$ ;
- J insieme dei centri di domanda;  $D_j$  ammontare della domanda in  $j \in J$ .  $C_{ij}$  costo (unitario) per il trasporto da  $i \in I$  a  $j \in J$ ;

$$\begin{aligned} & \min & \sum_{i \in I} \sum_{j \in J} C_{ij} x_{ij} \\ & s.t. \\ & \sum_{j \in J} x_{ij} \leq O_i & \forall \ i \in I \\ & \sum_{i \in I} x_{ij} \geq D_j & \forall \ j \in J \\ & x_{ij} \in \mathbb{R}_+ \left[ \ \mathbb{Z}_+ \ | \ \{0,1\} \ \right] & \forall \ i \in I, j \in J \end{aligned}$$



#### display e espressioni indicizzanti

Visualizza elementi del modello e della soluzione

```
display elemento1[, elemento2, ...];
display {ind_expr} elemento[indici]
```

Esempi di espr. indicizzanti ind expr (condizionate)

```
display {i in I} C[i,"m3"];
display {i in I, j in J: C[i,j] >= 5} C[i,j];
display {i in I: origine[i].body - O[i] != 0}
O[i]-origine[i].body;
```

il «corpo» (body) di un vincolo è la parte che include le variabili (tutto ciò che non è «termine noto»); l'espressione vincolo.body indica il valore di body in corrispondenza di una soluzione

■ [Risorse]: trasporto.mod - trasporto\_frigo.dat - trasporto frigo.run



#### Script: controllo del flusso

- Sequenza: ordine di esecuzione standard
- Iterazione:

```
□ for{ espressione indicizzante } { . . . }
□ repeat while (condizione logica true) { . . . }
□ repeat { . . . } while (condizione logica true);
□ repeat { . . . } until (condizione logica false);
□ repeat until (condizione logica false) { . . . . }
□ Uso di break e continue
```

#### Selezione

- if (condizione) then { ... } else { ... }
- □ Uso di break



#### Script: altri comandi utili

- let parametro := valore;
  - □ Anche altri parametri definiti nel .run (all'inizio)
- printf " stringa formato " , elenco valori
  - □ C like

    printf "il valore di x[%d] è %7.2f\n", indice, x[indice]
- fix (o unfix) variabile := valore;
- ... e molto altro ...

I comandi e il controllo di flusso nei file . run



#### Esercizio: distribuzione PC

Un'azienda assembla dei PC in tre diversi stabilimenti con diverso costo unitario di produzione. I PC sono venduti a cinque clienti bancari e si sopportano dei costi di trasporto (inclusi gli oneri di importazione) per spedire un PC da ciascuno stabilimento a ciascun cliente. Sono definite le richieste di PC di ogni cliente e la produzione di ciascuno stabilimento è limitata. Non sono ammessi eccessi di produzione. I dati sono riassunti nella tabella seguente.

Scrivere in AMPL un modello del problema e fornire la soluzione, in termini di costo complessivo di trasporto e di quantità trasportate tra stabilimenti e sedi bancarie.

# м

## Esercizio: distribuzione PC (dati)

| Produzione |                |               | Costi di trasporto |               |                 |                  |               |
|------------|----------------|---------------|--------------------|---------------|-----------------|------------------|---------------|
| Unità      | costo<br>unit. | Capa-<br>cità | Banca<br>Intesa    | Uni<br>Credit | Anton<br>Veneta | Credit<br>Suisse | Banca<br>Cina |
| Italia     | 220            | 10000         | 5,5                | 7,5           | 6,9             | 8,0              | 10,3          |
| Cina       | 180            | 20000         | 15,0               | 14,3          | 13,0            | 16,4             | 5,0           |
| Francia    | 200            | 10000         | 6,0                | 7,8           | 6,3             | 6,8              | 11,0          |
|            | Do             | manda         | 7100               | 3400          | 9700            | 5 200            | 3050          |



## Esercizio: distribuzione PC (modello base)

Insiemi: S (stabilimenti) e B (banche)

Parametri:  $w_i$  (costi prod.),  $c_{ij}$  (costi trasp.),  $a_i$  (capacità prod.),  $b_i$  (richieste)

$$\min \sum_{i \in S, j \in B} (w_i + c_{ij}) x_{ij}$$

s. t. 
$$\sum_{j \in B} x_{ij} \le a_i$$
,  $\forall i \in S$ 

$$\sum_{i \in S} x_{ij} = b_j, \qquad \forall j \in B \qquad \text{(no eccessi di produzione } \Rightarrow \text{uguaglianza)}$$

$$x_{ij} \in Z_+ \quad \forall i \in S, j \in B$$



### Esercizio: distribuzione PC (scenari)

Per bilanciare la produzione, l'azienda richiede che nello stabilimento italiano si assemblino almeno il 25% dei PC.

- 1. Inoltre, l'azienda richiede che nello stabilimento italiano si assemblino almeno il 30% dei PC (ipotesi 1) [o il 40% dei PC (ipotesi 2)] prodotti in ciascuno degli altri stabilimenti
- 2. Produrre un elenco che permetta di individuare i casi in cui una banca riceve forniture da un solo paese.
- 3. Visualizzare l'utilizzo delle capacità produttive per paese.
- 4. Conviene, nell'ipotesi 2, potenziare di 5000 unità la produzione in Cina, al costo di 4.000 euro?
- 5. Tornare alla situazione senza bilanciamenti e studiare gli effetti della diminuzione (a intervalli di <u>6</u> euro) del costo di produzione in Italia (diminuzione massima di <u>40</u> euro), indicando in quali casi in Italia la produzione complessiva supera quella della Francia.

# 10

## Esercizio: distribuzione PC (modello esteso)

Insiemi: S (stabilimenti) e B (banche)

Parametri:  $w_i$  (costi prod.),  $c_{ij}$  (costi trasp.),  $a_i$  (capacità prod.),  $b_j$  (richieste),  $\alpha$  (bilanciamento generale),  $\beta$  (bilanciamento singolo)

$$\min \sum_{i \in S, j \in B} (w_i + c_{ij}) x_{ij}$$

s.t. 
$$\sum_{i \in B} x_{ij} \le a_i \quad \forall i \in S$$

$$\sum_{i \in S} x_{ij} = b_j \qquad \forall j \in B \qquad \text{(no eccessi di produzione } \Rightarrow \text{uguaglianza)}$$

$$\sum_{j \in B} x_{\text{Italia } j} \ge \alpha \sum_{i \in S, j \in B} x_{ij}$$

$$\sum_{j \in B} x_{\text{Italia } j} \ge \beta \sum_{j \in B} x_{ij} \qquad \forall \ i \in S \setminus \{\text{Italia}\}\$$

$$x_{ij} \in Z_+ \quad \forall i \in S, j \in B$$

PC.run

(PC plus.run)

## Esercizio: fonderia (testo)

Un'acciaieria acquista rottame di quattro tipi differenti (T1, T2, T3, T4) per ottenere due leghe (L1, L2) con caratteristiche chimiche differenti. I quattro tipi di rottame hanno i seguenti contenuti in percentuale di Piombo, Zinco e Stagno, e il seguente prezzo unitario di acquisto (in migliaia di € a tonnellata).

|        | T1  | T2  | Т3  | <b>T</b> 4 |
|--------|-----|-----|-----|------------|
| Piombo | 40% | 30% | 25% | 38%        |
| Zinco  | 35% | 40% | 35% | 32%        |
| Stagno | 25% | 30% | 40% | 30%        |
| prezzo | 2.5 | 1.8 | 2   | 2.2        |

La lega L1 deve avere un contenuto non superiore al 30% di piombo, al 60% di zinco e al 42% di stagno.

La lega L2 deve avere un contenuto non superiore al 46% di piombo, al 38% di zinco e al 56% di stagno.

Definire le quantità di ciascun tipo di rottame da utilizzare in ciascuna delle leghe in modo da minimizzare il costo complessivo e soddisfare esattamente un ordine di 1500 tonnellate di lega L1 e 2000 tonnellate di lega L2.

# 1

### Esercizio: fonderia (modello specifico)

min 
$$2.5(x_{11} + x_{12}) + 1.8(x_{21} + x_{22}) + 2(x_{31} + x_{32}) + 2.2(x_{41} + x_{42})$$
  
 $s.t. \ x_{11} + x_{21} + x_{31} + x_{41} = 1500$   
 $x_{12} + x_{22} + x_{32} + x_{42} = 2000$   
 $0.4x_{11} + 0.3x_{21} + 0.25x_{31} + 0.38x_{41} \le 0.3(x_{11} + x_{21} + x_{31} + x_{41})$   
 $0.35x_{11} + 0.4x_{21} + 0.35x_{31} + 0.32x_{41} \le 0.6(x_{11} + x_{21} + x_{31} + x_{41})$   
 $0.25x_{11} + 0.3x_{21} + 0.40x_{31} + 0.3x_{41} \le 0.42(x_{11} + x_{21} + x_{31} + x_{41})$   
 $0.4x_{12} + 0.3x_{22} + 0.25x_{32} + 0.38x_{42} \le 0.46(x_{12} + x_{22} + x_{32} + x_{42})$   
 $0.35x_{12} + 0.4x_{22} + 0.35x_{32} + 0.32x_{42} \le 0.38(x_{12} + x_{22} + x_{32} + x_{42})$   
 $0.25x_{12} + 0.3x_{22} + 0.40x_{32} + 0.3x_{42} \le 0.56(x_{12} + x_{22} + x_{32} + x_{42})$   
 $x_{ij} \ge 0 \quad i = 1, \dots, 4 \quad j = 1, 2$ 



#### Esercizio: fonderia (todo)

Modello generale (...)

Insiemi: I (ROTTAMI); J (LEGHE); K (METALLI).

Parametri:  $C_i$  (Prezzo rottame  $i \in I$ );  $R_j$  (Ordine lega  $j \in J$ );  $A_{k,i}$  (contenuto metallo  $k \in K$  in rottame  $i \in I$ );  $U_{k,j}$  (contenuto max di metallo  $k \in K$  nella lega  $j \in J$ ).

Variabili:  $x_{ij}$  (acquisti di rottame  $i \in I$  usati per la lega  $j \in J$ )

Modello PL:

$$egin{aligned} \min & \sum_{i \in I} C_i \sum_{j \in J} x_{ij} \ s.t. \ & \sum_{i \in I} A_{ki} x_{ij} \leq U_{kj} \sum_{i \in I} x_{ij} & orall j \in J, k \in K \ & \sum_{i \in I} x_{ij} = R_j & orall j \in J, \ & x_{ij} \in \mathbb{R}_+ & orall j \in I, j \in J \end{aligned}$$

Implementazione in AMPL (file .mod e .dat ...)

[Risorse] rottame.\*

## Esercizio: ovile (testo)

L'azienda Ovile produce due tipi di cibo per animali: granulare e in polvere. Le materie prime utilizzate per la produzione sono: avena, mais e melassa. Tali materie, ad eccezione della melassa, devo essere macinate prima della lavorazione. In seguito si mescolano le varie sostanze e si processa il composto (granulazione o polverizzazione) al fine di ottenere i due diversi tipi di prodotto. La percentuale di proteine, grassi e fibre contenute nelle materie prime e i requisiti nutrizionali (in %) che i prodotti devono soddisfare sono riportati nella seguente tabella.

| Materie prime | Proteine | Grassi | Fibre |
|---------------|----------|--------|-------|
| Avena         | 13.6     | 7.1    | 7     |
| Mais          | 4.1      | 2.4    | 3.7   |
| Melassa       | 5        | 0.3    | 25    |
| Requisiti     | ≥ 9.5    | ≥ 2    | ≤ 6   |

Di seguito sono riportati la disponibilità delle materie prime e i costi unitari per il loro acquisto.

| Materie prime | Disponibilità (kg) | Costo (Euro/kg) |
|---------------|--------------------|-----------------|
| Avena         | 11900              | 0.13            |
| Mais          | 23500              | 0.17            |
| Melassa       | 750                | 0.12            |

Infine, i costi di produzione (per un kg di materie prime) sono riportati nella seguente tabella.

| Macina | Mescola | Granulazione | Polverizzazione |
|--------|---------|--------------|-----------------|
| 0.25   | 0.05    | 0.42         | 0.17            |

Tenendo conto che la domanda giornaliera (esatta) è di 9 tonnellate per il prodotto granulare e di 12 tonnellate per quello in polvere, determinare il piano produttivo che minimizza il costo totale.

## Esercizio: ovile (modello specifico)

Variabili:  $x_{ij}$  è la quantità (in kg) di materia prima i (1=avena, 2=mais, 3=melassa) destinata al tipo di prodotto j (1=granulare, 2=polvere)

min 
$$0.13(x_{11} + x_{12}) + 0.17(x_{21} + x_{22}) + 0.12(x_{31} + x_{32})$$
 costi avena, mais e melassa  $+0.25(x_{11} + x_{12} + x_{21} + x_{22})$  kg macinati  $+0.05(x_{11} + x_{12} + x_{21} + x_{22} + x_{31} + x_{32})$  kg mescolati  $+0.42(x_{11} + x_{21} + x_{31})$  kg in granuli  $+0.17(x_{12} + x_{22} + x_{32})$  kg in polvere  $0.136x_{11} + 0.041x_{21} + 0.05x_{31} \ge 0.095(x_{11} + x_{21} + x_{31})$  min  $9.5\%$  proteine per granulare  $0.071x_{11} + 0.024x_{21} + 0.003x_{31} \ge 0.095(x_{11} + x_{21} + x_{31})$  min  $2\%$  grassi per granulare  $0.07x_{11} + 0.037x_{21} + 0.25x_{31} \le 0.06(x_{11} + x_{21} + x_{31})$  max  $6\%$  fibre per granulare  $0.136x_{12} + 0.041x_{22} + 0.05x_{32} \ge 0.095(x_{12} + x_{22} + x_{32})$  min  $9.5\%$  proteine per polvere  $0.071x_{12} + 0.024x_{22} + 0.003x_{32} \ge 0.095(x_{12} + x_{22} + x_{32})$  min  $2\%$  grassi per polvere  $0.071x_{12} + 0.037x_{22} + 0.25x_{32} \le 0.06(x_{12} + x_{22} + x_{32})$  max  $6\%$  fibre per polvere  $0.07x_{12} + 0.037x_{22} + 0.25x_{32} \le 0.06(x_{12} + x_{22} + x_{32})$  max  $6\%$  fibre per polvere  $0.07x_{12} + 0.037x_{22} + 0.25x_{32} \le 0.06(x_{12} + x_{22} + x_{32})$  max  $6\%$  fibre per polvere  $0.07x_{12} + 0.037x_{22} + 0.25x_{32} \le 0.06(x_{12} + x_{22} + x_{32})$  max  $6\%$  fibre per polvere  $0.07x_{12} + x_{22} + x_{32} = 0.000$  domanda granulare  $0.07x_{12} + x_{22} + x_{32} = 0.000$  domanda granulare  $0.07x_{12} + x_{22} + x_{32} = 0.000$  domanda polvere  $0.07x_{12} + x_{22} + x_{32} = 0.000$  domanda polvere  $0.07x_{12} + x_{22} + x_{32} = 0.000$  domanda polvere  $0.07x_{12} + x_{22} + x_{32} = 0.000$ 



#### Esercizio: ovile (todo)

Modello generale (...)

Insiemi: I (MATERIE); J (CIBI); K (SOSTANZE); R (LAVORAZIONI).

Parametri: ...;  $P_{rij} = 1$  se è richiesta la lavorazione r sulla materia i per il cibo j, 0 altrimenti; ...

#### Modello PL:

$$\begin{aligned} & \min & & \sum_{i \in I} C_i \sum_{j \in J} x_{ij} + \sum_{r \in R} F_r \sum_{i \in I} \sum_{j \in J} P_{rij} x_{ij} \\ & s.t. \end{aligned}$$

$$& \sum_{i \in I} A_{ik} x_{ij} \geq B_k \sum_{i \in I} x_{ij} \qquad \forall j \in J, k \in K : B_k > 0$$

$$& \sum_{i \in I} A_{ik} x_{ij} \leq U_k \sum_{i \in I} x_{ij} \qquad \forall j \in J, k \in K : U_k < 1$$

$$& \sum_{i \in I} x_{ij} \leq Q_i \qquad \forall i \in I,$$

$$& \sum_{i \in I} x_{ij} = D_j \qquad \forall j \in J,$$

$$& \forall j \in J, \qquad \forall j \in J, \qquad$$

Implementazione in AMPL (file .mod e .dat ...)

[Risorse] ovile.\*

## Dualità in AMPL: un esempio (testo)

 Modellare il seguente problema, trovare la soluzione ottima e analizzarla alla luce della teoria della dualità

Un'industria produce due tipi di creme: fondente e gianduia. Per avere un kg di ciascuna crema sono necessari, tra gli altri, due ingredienti grezzi (zucchero e cacao) e la lavorazione su una macchina, come riportato in tabella:

|                   | Fondente | Gianduia |
|-------------------|----------|----------|
| Zucchero (kg)     | 3        | 2        |
| Cacao (kg)        | 4        | 1        |
| Lavorazione (ore) | 2        | 1        |

Settimanalmente, si hanno a disposizione al più 1200 Kg di zucchero e al più 1000 Kg di cacao, mentre la disponibilità massima settimanale di ore lavorative della macchina è pari a 700. Un kg di fondente è venduto a 24 Euro e un kg di gianduia è venduto a 14 Euro. Si vuole pianificare la produzione settimanale in modo da massimizzare il ricavo complessivo.



### Dualità in AMPL: un esempio (modelli)

#### PROBLEMA PRIMALE

#### PROBLEMA DUALE

$$\begin{array}{l} \max 24x_1 + 14x_2 \\ 3x_1 + 2x_2 \leq 1200 \\ 4x_1 + x_2 \leq 1000 \\ 2x_1 + x_2 \leq 700 \\ x_1 \geq 0, x_2 \geq 0 \end{array} \\ \begin{array}{l} \min 1200u_1 + 1000u_2 + 700u_3 \\ 3u_1 + 4u_2 + 2u_3 \geq 24 \\ 2u_1 + u_2 + u_3 \geq 14 \\ u_1 \geq 0, u_2 \geq 0, u_3 \geq 0 \end{array}$$

Implementare il problema primale e il problema duale dell'esempio e:

- 1. verificare il valore ottimo delle variabili primali e duali
- 2. verificare il teorema della dualità forte
- 3. verificare le condizioni di complementarietà primale-duale
- 4. vedere come cambiano i valori ottimi delle funzioni obiettivo primale e duale variando i termini noti dei vincoli primali, <u>uno per volta</u>
- 5. dire se esiste una relazione tra il valore ottimo delle variabili duali e le variazioni osservate nel valore ottimo della funzione obiettivo

# м

#### Dualità in AMPL: un esempio (analisi)

Per visualizzare il valore della variabile duale associata a un vincolo:

```
display nome_vincolo.dual; oppure
display nome vincolo;
```

Per i punti 4 e 5, osserviamo che

- prima della variazione z\*=c<sup>T</sup>x\*, w\*=b<sup>T</sup>u\*, z\*=w\*
- **se la variazione**  $\Delta b$  **di b non è troppo elevata**, le variabili duali **u**\* sono ancora ottime, quindi w\*<sub>new</sub> =  $(b+\Delta b)^T u^* = w^* + \Delta b^T u^*$
- per la dualità forte,  $\mathbf{z^*}_{new} = \mathbf{w^*}_{new} = \mathbf{w^*} + \Delta \mathbf{b^T} \mathbf{u^*} = \mathbf{z^*} + \Delta \mathbf{b^T} \mathbf{u^*}$
- pertanto u<sub>i</sub>\* è la variazione della funzione obiettivo primale se b<sub>i</sub>
   varia di un'unità
- u<sub>i</sub>\* indica di quanto aumenta il ricavo se aumentiamo di un'unità la risorsa i, quindi quanto siamo disposti a spendere per ottenere un'unità aggiuntiva di risorsa i: u<sub>i</sub>\* è il prezzo ombra della risorsa i

[Risorse] mixopt2.mod, mixopt creme.dat, duale.mod, mixopt dualita.run