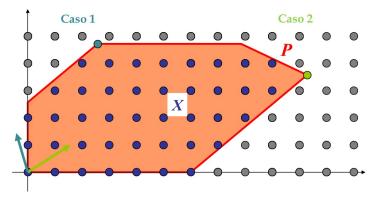
Branch-and-bound per problemi di programmazione lineare intera

Luigi De Giovanni

Dipartimento di Matematica, Università di Padova

Programmazione Lineare Intera

$$\begin{array}{ll}
\min / \max & c^T x \\
\text{s.t.} & Ax = b \\
& x \in \mathbb{Z}_+^n
\end{array}$$



Branch-and-Bound (B&B) per PLI: Fatto 1

Problema di PLI(M)

$$z_{I} = \frac{\max/\min c^{T} x}{Ax \le b}$$

$$x \ge 0$$

$$x_{i} \in \mathbb{Z}, \qquad i \in I.$$
(1)

Rilassamento continuo (o lineare)

$$z_{L} = \max/\min c^{T} x$$

$$Ax \le b$$

$$x \ge 0$$
(2)

```
Problema max: z_L \ge z_I z_L è un Upper Bound (UB)!
Problema min: z_L \le z_I z_L è un Lower Bound (UB)!
```

In generale, z_L è stima ottimistica di z_I

Branch-and-Bound (B&B) per PLI: Fatto 2

Principio divide et impera

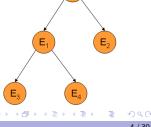
$$z = \operatorname{opt}\{f(x) : x \in X\}$$

$$X = \bigcup_{i=1}^{n} X_i = X$$

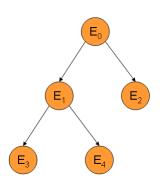
$$z^{(k)} = \operatorname{opt}\{f(x) : x \in X_k\}$$

$$z = \text{opt } \{ z^{(k)}, k = 1, ..., n \}$$

Applicazione ricorsiva tramite **branching**: la regione ammissibile di un sottoproblema E_i è ulteriormente suddivisa, generando una struttura ad *albero*



Branching: regole base

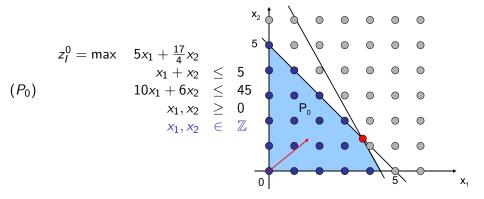


•
$$E_0 = X$$

$$\bullet \quad E_i = \bigcup_{j \text{ figlio di } i} E_j$$

• preferibilmente $E_j \cap E_k = \emptyset, \ \forall \ j, k \ \text{figli di} \ i$

Esempio: applicazione dei fatti al problema P_0

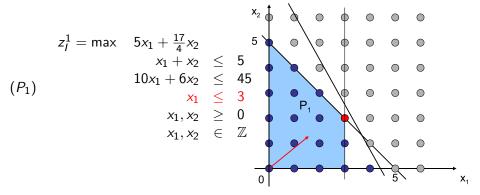


Rilassamento lineare: $x_1 = 3.75$, $x_2 = 1.75$, con valore $z_L^0 = 24.06$

Branch da P_0 su variabile frazionaria $x_1 = 3.75$

- Non perdo soluzioni intere: $E_1 \cup E_2 = E_0$, $z_I = \max\{z_I^1, z_I^2\}$
- z_I^0 esclusa!

Problema P_1

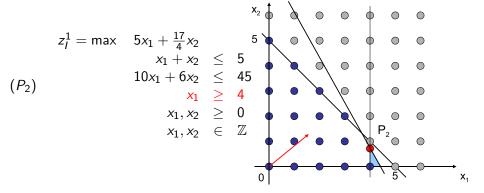


Rilassamento lineare: $x_1 = 3$, $x_2 = 2$, con valore $z_L^1 = 23.5$

Soluzione intera (rilassamento ammissibile): nodo potato per **S.A.** aggiornamento incumbent, $\bar{z}=23.5$

4□ > 4□ > 4 = > 4 = > = 90

Problema P2

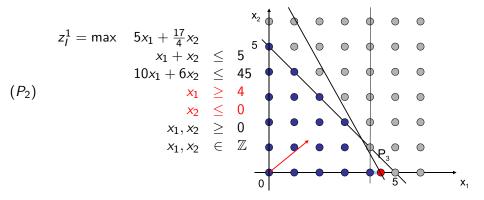


Rilassamento lineare: $x_1 = 4$, $x_2 = 0.83$, con valore $z_L^2 = 23.54$

Branch da P_2 su variabile frazionaria $x_2 = 0.83$

$$E_3 \cup E_4 = E_2$$

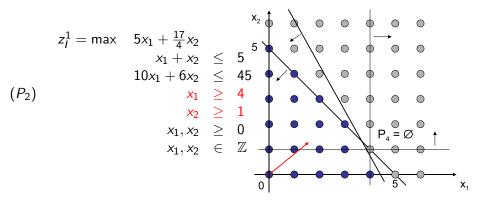
Problema P_3



Rilassamento lineare: $x_1 = 4.5$, $x_2 = 0$, con valore $z_L^3 = 22.5$

 $z_L^3 \leq \bar{z}$: nodo potato per **N.M.**

Problema P_4

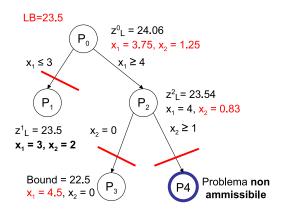


Rilassamento lineare: non ammissibile.

Anche (P_4) non è ammissibile: nodo potato per **N.A.**

Tutti i nodi fathomed: $\bar{x} = (2,3) \text{ con } \bar{z} = 23.5 \text{ ottima!}$

Albero di branch-and-bound



Branch-and-bound: idea base

- Branch: costruzione dell'albero delle soluzioni (enumerazione ricorsiva)
 - Nel caso peggiore, genera tutte le "foglie", corrispondenti alle singole soluzione intere nella regione ammissibile (i vincoli determinano univocamente ciascun valore)
- **Soluzione ammissibile** (incumbent solution): valore possibile, ma non dimostrabilmente ottimo
- Bound: valutazione ottimistica della funzione obiettivo per le soluzioni associate ad un nodo (sottoalbero)
- Fathom: se il bound di un nodo non è migliore dell'incumbent, il relativo sottoalbero si può potare

Enumerazione implicita dello spazio delle soluzioni

Metodo del Branch-and-Bound (B&B) per PLIM

Inizializzazione: Risolvi rilassamento ottenendo x_0^R e stima ottimistica B_0 e poni $L = \{(P_0, B_0)\}, \ \bar{x} = \emptyset, \ \bar{z} = +\infty(\min)[-\infty(\max)]$

Repeat:

Criterio di Stop: Se $L = \emptyset$, allora stop: \bar{x} è la soluzione ottima.

Selezione nodo: Seleziona ed estrai $(P_i, B_i) \in L$ per effettuare il branch Branching: Dividi P_i in $P_{|L|+1}$ $(x_{ik} \le |x_{ik}^R|)$ e $P_{|L|+2}$ $(x_{ik} \ge \lceil \hat{x}_{ik}^R \rceil)$

For each sottoproblema P_i , j = |L| + 1...|L| + 2:

Bounding: Risolvi rilassamento di P_j ottenendo stima ottimistica B_j

e soluzione x_i^R oppure inammissibilità

Fathoming: If P_j non è ammissibile: continue

elseif B_i non è migliore di \bar{z} : continue

elseif x_i^{R} è intera:

if x_j^R anche migliore di \bar{z} : aggiorna $\bar{z} \leftarrow B_j$, $\bar{x} \leftarrow x_{ij}^R$

elimina da L tutti i nodi k con L_k non migliore di \bar{z} continue $(x_i^R \text{ è ottima per } P_i)$

Ricorsione: else aggiungi (P_i, B_i) a L $(B_i \in più promettente di <math>\bar{z})$

Esempio

Risolvere con il metodo del Branch-and-bound:

$$\begin{array}{ll} \max & 3\,x_1 - 8\,x_2 + 3\,x_3 - 8\,x_4 + 13\,x_5 \\ s.t. & -2\,x_1 + 7\,x_2 + 4\,x_3 + 1.5\,x_4 + 9\,x_5 \leq 16 \\ & -6\,x_1 + 5\,x_2 + 5\,x_3 + 7.2\,x_4 - 3\,x_5 \geq 7 \\ & x_1, \ldots, x_5 \in Z^+ \end{array}$$

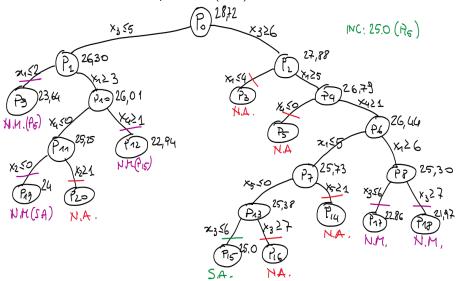
- Branching: binario su variabile "meno frazionaria"
- Bound: rilassamento continuo (usare AMPL!)
- Fathoming: standard
- Esplorazione: a piacere (Best Bound First)
- Stop: lista nodi aperti vuota

Esempio: soluzione

Nodi numerati nell'ordine di esplorazione (BBF)

Esempio: soluzione

Nodi numerati nell'ordine di esplorazione (BBF)



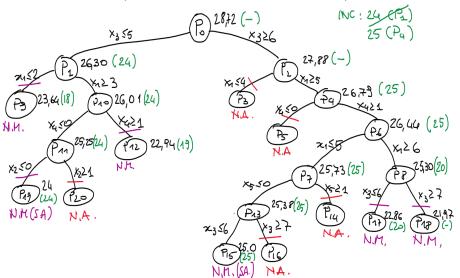
Esempio - miglioramenti

Si consideri il problema dell'Esempio. Quale sarebbe lo sviluppo dell'albero di B&B con le seguenti varianti:

- Variante A: provare a generare, ad ogni nodo, una soluzione ammissibile approssimando la soluzione frazionaria ottenuta con il rilassamento continuo
- Variante B: migliorare il bound osservando che tutti i coefficienti e tutte le variabili della funzione obiettivo, nello specifico problema in esame, sono interi, quindi il valore della fuzione obiettivo è intero.

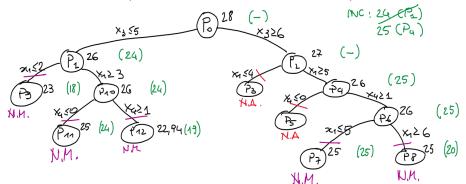
Esempio con Variante A: soluzione

Esempio con Variante A: soluzione



Esempio con Varianti A e B: soluzione

Esempio con Varianti A e B: soluzione



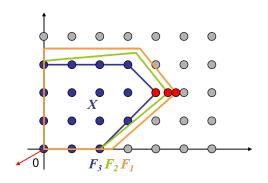
Esempio "PLI generico": osservazioni

- variante A: si ottengono diverse soluzioni ammissibili, che permettono rapidamente di aggiornare l'incumbent prima al valore 24 (nodo P₁) e poi al valore 25 (noto P₄). Seguendo l'esplorazione BBF, alcuni nodi (ad esempio P₉) vengono chiusi prima rispetto al precedente albero (con un piccolo risparmio di memoria utilizzata), tuttavia non si risparmia in termini i nodi complessivamente valutati.
- variante A+B: in questo caso, tutti i bound ottenuti con il rilassamento continuo possono essere ulteriormente approssimati all'intero inferiore (problema di massimo), permettendo, grazie all'incumbent ottenuta con l'arrotondamento al non P₄, di chiudere subito anche i nodi P₇, P₈ e P₁₁ come non miglioranti.

B&B per PLI: scelte progettuali (cenni)

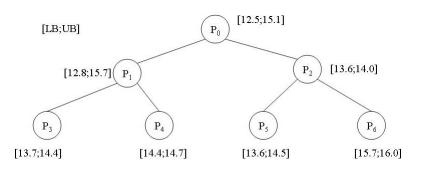
- Bound con rilassamento continuo
 - sfruttare proprietà del problema allo studio, formulazioni più stringenti*
- Branch binario su una variabile frazionaria
 - scelgo, e.g., "più" frazionaria, "più" intera, diving etc.)
 - possibile branching t-ario se pochi valori alternativi
- Fathoming standard
 - ▶ [N.M.] Assenza di soluzione migliorante (B_i non migliora $f(\bar{x})$)
 - ▶ [S.A.] Valutazione ottimistica (rilassaè anche di soluzione ammissibile
 - ► [N.A.] Sottoproblema (rilassamento) non ammissibile
- Strategie di esplorazione: Depth First, Best Bound First, Mista, diving etc.
- Valutazione di soluzioni ammissibili
 - euristiche (o meta-euristiche) ad-hoc prima del branch-and-bound
 - rounding heuristic sulla soluzione frazionaria ad ogni nodo (o sotto particolari condizioni)
- Arresto standard (tutti nodi fathomed, \bar{x} ottima), oppure max time (\bar{x} potrebbe non essere ottima), optimality gap entro soglia etc.

*Esempio: bound e formulazioni alternative per PLIM



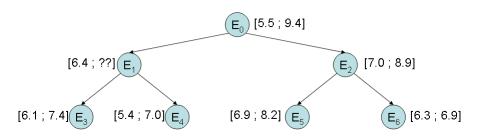
- F₂ è migliore di F₁: fornisce bound più stringenti (più vicini all'ottimo): UB più bassi (per problemi di max) o LB più alti (per problemi di min)
- F_3 è la formulazione ideale: permette di risolvere il problema al nodo radice (senza branching)

Esercizio



- min o max?
- nodi da chiudere?
- intervallo ottimo?
- best bound first?
- LB e UB per chiudere...

Esercizio



- min o max? valore '??'?
- intervallo ottimo?
- nodi da chiudere?
- best bound first?
- LB e UB per chiudere...

- Regole di branching: strategia per costituire sottoproblemi sempre più semplici (al limite una soluzione: converge!)
 - $-E_i: \cup_i E_i = E \text{ (must!)} [e E_i \cap E_i = \emptyset \text{ opzionale}]$
- Bound: lower bound (min, LB) o upper bound (max, UB).
 - Valutazione **ottimistica**...: $LB \le f(E_i)$ $UB \ge f(E_i)$
 - ...ma non troppo! efficienza computazionale .vs. qualità bound
- Regole di fathoming: evito di esplorare nodo se
 - [N.M.] Assenza di soluzione migliorante (B_i non migliora $f(\bar{x})$)
 - [S.A.] Valutazione ottimistica è anche di soluzione ammissibile
 - [N.A.] Sottoproblema non ammissibile ($E_i = \emptyset$)
- Strategie di esplorazione: Depth First, Best Bound First, Mista
- Valutazione di soluzioni ammissibili: opzionale!
 - sforzo computazionale .vs. possibilità di potare nodi
- **Criteri di arresto**: tutti i nodi *fathomed* per garanzia di ottimalità (oppure criteri *euristici* con garanzia di performance)

26 / 30

- Regole di branching: strategia per costituire sottoproblemi sempre più semplici (al limite una soluzione: converge!)
 - $-E_i: \bigcup_i E_i = E \text{ (must!)} [e E_i \cap E_i = \emptyset \text{ opzionale}]$
- Bound: lower bound (min, LB) o upper bound (max, UB).
 - Valutazione **ottimistica**...: $LB \le f(E_i)$ $UB \ge f(E_i)$
 - ...ma non troppo! efficienza computazionale .vs. qualità bound
- Regole di fathoming: evito di esplorare nodo se
 - [N.M.] Assenza di soluzione migliorante (B_i non migliora $f(\bar{x})$)
 - [S.A.] Valutazione ottimistica è anche di soluzione ammissibile
 - [N.A.] Sottoproblema non ammissibile ($E_i = \emptyset$)
- Strategie di esplorazione: Depth First, Best Bound First, Mista
- Valutazione di soluzioni ammissibili: opzionale!
 - sforzo computazionale .vs. possibilità di potare nodi
- **Criteri di arresto**: tutti i nodi *fathomed* per garanzia di ottimalità (oppure criteri *euristici* con garanzia di performance)

- Regole di branching: strategia per costituire sottoproblemi sempre più semplici (al limite una soluzione: converge!)
 - $-E_i: \cup_i E_i = E \text{ (must!)} [e E_i \cap E_i = \emptyset \text{ opzionale}]$
- Bound: lower bound (min, LB) o upper bound (max, UB).
 - Valutazione **ottimistica**...: $LB \le f(E_i)$ $UB \ge f(E_i)$
 - ...ma non troppo! efficienza computazionale .vs. qualità bound
- Regole di fathoming: evito di esplorare nodo se
 - [N.M.] Assenza di soluzione migliorante (B_i non migliora $f(\bar{x})$)
 - [S.A.] Valutazione ottimistica è anche di soluzione ammissibile
 - **[N.A.]** Sottoproblema non ammissibile ($E_i = \emptyset$)
- Strategie di esplorazione: Depth First, Best Bound First, Mista
- Valutazione di soluzioni ammissibili: opzionale!
 - sforzo computazionale .vs. possibilità di potare nodi
- **Criteri di arresto**: tutti i nodi *fathomed* per garanzia di ottimalità (oppure criteri *euristici* con garanzia di performance)

- Regole di branching: strategia per costituire sottoproblemi sempre più semplici (al limite una soluzione: converge!)
 - $-E_i: \cup_i E_i = E \text{ (must!)} [e E_i \cap E_i = \emptyset \text{ opzionale}]$
- Bound: lower bound (min, LB) o upper bound (max, UB).
 - Valutazione **ottimistica**...: $LB \le f(E_i)$ $UB \ge f(E_i)$
 - ...ma non troppo! efficienza computazionale .vs. qualità bound
- Regole di fathoming: evito di esplorare nodo se
 - [N.M.] Assenza di soluzione migliorante (B_i non migliora $f(\bar{x})$)
 - [S.A.] Valutazione ottimistica è anche di soluzione ammissibile
 - **[N.A.]** Sottoproblema non ammissibile $(E_i = \emptyset)$
- Strategie di esplorazione: Depth First, Best Bound First, Mista
- Valutazione di soluzioni ammissibili: opzionale!
 - sforzo computazionale .vs. possibilità di potare nodi
- **Criteri di arresto**: tutti i nodi *fathomed* per garanzia di ottimalità (oppure criteri *euristici* con garanzia di performance)

- Regole di branching: strategia per costituire sottoproblemi sempre più semplici (al limite una soluzione: converge!)
 - $-E_i: \cup_i E_i = E \text{ (must!)} [e E_i \cap E_i = \emptyset \text{ opzionale}]$
- Bound: lower bound (min, LB) o upper bound (max, UB).
 - Valutazione **ottimistica**...: $LB \le f(E_i)$ $UB \ge f(E_i)$
 - ...ma non troppo! efficienza computazionale .vs. qualità bound
- Regole di fathoming: evito di esplorare nodo se
 - [N.M.] Assenza di soluzione migliorante (B_i non migliora $f(\bar{x})$)
 - [S.A.] Valutazione ottimistica è anche di soluzione ammissibile
 - **[N.A.]** Sottoproblema non ammissibile $(E_i = \emptyset)$
- Strategie di esplorazione: Depth First, Best Bound First, Mista
- Valutazione di soluzioni ammissibili: opzionale!
 - sforzo computazionale .vs. possibilità di potare nodi
- **Criteri di arresto**: tutti i nodi *fathomed* per garanzia di ottimalità (oppure criteri *euristici* con garanzia di performance)

- Regole di branching: strategia per costituire sottoproblemi sempre più semplici (al limite una soluzione: converge!)
 - $-E_i: \bigcup_i E_i = E \text{ (must!)} [e E_i \cap E_i = \emptyset \text{ opzionale}]$
- Bound: lower bound (min, LB) o upper bound (max, UB).
 - Valutazione **ottimistica**...: $LB \le f(E_i)$ $UB \ge f(E_i)$
 - ...ma non troppo! efficienza computazionale .vs. qualità bound
- Regole di fathoming: evito di esplorare nodo se
 - [N.M.] Assenza di soluzione migliorante (B_i non migliora $f(\bar{x})$)
 - [S.A.] Valutazione ottimistica è anche di soluzione ammissibile
 - **[N.A.]** Sottoproblema non ammissibile $(E_i = \emptyset)$
- Strategie di esplorazione: Depth First, Best Bound First, Mista
- Valutazione di soluzioni ammissibili: opzionale!
 - sforzo computazionale .vs. possibilità di potare nodi
- Criteri di arresto: tutti i nodi fathomed per garanzia di ottimalità (oppure criteri euristici con garanzia di performance)

Esempio (dummy): scelta ottima di appalti

Una grossa azienda di costruzioni edili deve decidere la combinazione ottimale degli appalti da accettare per la costruzione degli edifici $A, B \in C$. I profitti attesi per i tre edifici sono di $3, 5 \in 7$ milioni di euro rispettivamente. L'azienda dispone di 4 ruspe speciali e gli edifici richiedono risp. $3, 2 \in 3$ ruspe. È possibile inoltre affittare fino a due altre ruspe speciali per la durata dei lavori, al costo di un milione di euro a ruspa.

Decisioni

- accettare appalto $i, i \in \{A, B, C\}$. Possibili decisioni: sì/no.
- numero di ruspe da affittare. Possibili decisioni: 0, 1 o 2.

Possibili combinazioni: 2 imes 2 imes 2 imes 3 = 24

Branch: scegliere una decisione (nell'ordine A-B-C-num.ruspe) e creare un sottoproblema per ogni valore

Bound: somma profitti di tutti gli appalti possibili meno costo ruspe "fissate" (valutazione imprecisa ma ottimistica e veloce, senza ragionamenti su ruspe "necessarie")

Esempio (dummy): scelta ottima di appalti

Una grossa azienda di costruzioni edili deve decidere la combinazione ottimale degli appalti da accettare per la costruzione degli edifici $A, B \in C$. I profitti attesi per i tre edifici sono di 3, 5 e 7 milioni di euro rispettivamente. L'azienda dispone di 4 ruspe speciali e gli edifici richiedono risp. 3, 2 e 3 ruspe. È possibile inoltre affittare fino a due altre ruspe speciali per la durata dei lavori, al costo di un milione di euro a ruspa.

Decisioni:

- accettare appalto $i, i \in \{A, B, C\}$. Possibili decisioni: sì/no.
- numero di ruspe da affittare. Possibili decisioni: 0, 1 o 2.

Possibili combinazioni: $2 \times 2 \times 2 \times 3 = 24$

Branch: scegliere una decisione (nell'ordine A-B-C-num.ruspe) e creare un sottoproblema per ogni valore

Bound: somma profitti di tutti gli appalti possibili meno costo ruspe "fissate" (valutazione imprecisa ma ottimistica e veloce, senza ragionamenti su ruspe "necessarie")

Esempio: albero di branch-and-bound

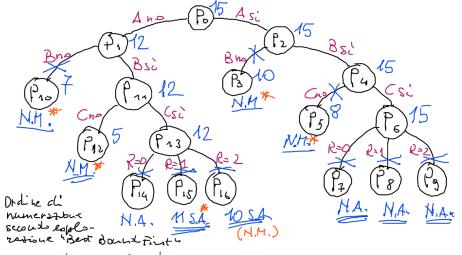
A: 3 M\$, 3 ruspe B: 5 M\$, 2 ruspe C: 7 M\$, 3 ruspe

Esempio: albero di branch-and-bound

A: 3 M\$, 3 ruspe

B: 5 M\$, 2 ruspe

C: 7 M\$, 3 ruspe



Solothine in Pis!

Esempio: regola alternativa per bound migliore

Bound: sommare i profitti di tutti gli appalti possibili e valutare una stima per difetto R delle ruspe necessarie (sulla base degli appalti fissati)

(A: 3 M\$, 3 ruspe B: 5 M\$, 2 ruspe C: 7 M\$, 3 ruspe)

Esempio: regola alternativa per bound migliore

Bound: sommare i profitti di tutti gli appalti possibili e valutare una stima per difetto R delle ruspe necessarie (sulla base degli appalti fissati)

(A: 3 M\$, 3 ruspe B: 5 M\$, 2 ruspe C: 7 M\$, 3 ruspe)

(in blu: UR) Lo la stima di R porte non solo de un U.B., ma anche e une solutione ammissimile.

Esempio: algoritmo generale per path-finding

Vogliamo trovare un cammino minimo "generalizzato" con costi che variano nel tempo o dipendono dal cammino parziale, presenza dinamica di ostacoli **etc.**

- Branching: ad ogni passo, esplora le diverse direzioni ammesse
- Bounding: verifica ammissibilità; costo parziale¹ + cammino minimo con costi statici (LB su ogni arco) e senza vincoli
- Eventuale soluzione ammissibile: euristiche rapide di completamento (e.g., scelta greedy del prossimo arco)

Luigi De Giovanni Branch-and-bound per PLI 30 / 30