(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 10359, 262] NotebookOptionsPosition[ 9597, 240] NotebookOutlinePosition[ 10057, 257] CellTagsIndexPosition[ 10014, 254] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Modi EDOLCC di grado 2", "Title", CellChangeTimes->{{3.912131643986404*^9, 3.9121316472794285`*^9}, { 3.9121316856054*^9, 3.912131898216857*^9}, {3.912131988926337*^9, 3.9121320256995807`*^9}, {3.9121556464821243`*^9, 3.912155671143511*^9}},ExpressionUUID->"c68ffc5f-d3e1-4b08-9b7a-\ 3ef44b7cfc63"], Cell[TextData[{ "I modi delle equazioni differenziali ordinarie lineari a coefficienti \ costanti sono funzioni del tipo:\n", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"{", RowBox[{ SuperscriptBox[ StyleBox["t", "TI"], StyleBox["k", "TI"]], SuperscriptBox[ StyleBox["e", "TI"], RowBox[{ SubscriptBox["\[Lambda]", StyleBox["i", "TI"]], StyleBox["t", "TI"]}]]}], "}"}], TraditionalForm], "errors" -> {}, "input" -> "\\left\\{ t^k e^{\\lambda_i t}\\right\\}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "61f4d463-fb1a-4924-8d9f-f00d09cceea7"], " con ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["i", "TI"], "\[Element]", RowBox[{"{", RowBox[{"1", ",", "2", ",", "\[Ellipsis]", ",", StyleBox["r", "TI"]}], "}"}]}], TraditionalForm], "errors" -> {}, "input" -> "$i\\in\\{1,2,\\ldots,r\\}$", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "0be89104-dce5-41bd-83ca-9da8e58120c4"], " e ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["k", "TI"], "\[Element]", RowBox[{"{", RowBox[{"0", ",", "1", ",", "\[Ellipsis]", ",", SubscriptBox[ StyleBox["n", "TI"], StyleBox["i", "TI"]]}], "}"}]}], TraditionalForm], "errors" -> {}, "input" -> "$k\\in\\{0,1,\\ldots,n_i\\}$", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "067fc511-1a9c-430d-9a59-db211661d98b"], " dove ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox["\[Lambda]", StyleBox["i", "TI"]], TraditionalForm], "errors" -> {}, "input" -> "$\\lambda_i$", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "7b32891b-bf9f-46c0-9814-b981e7bd4993"], " \[EGrave] l\[CloseCurlyQuote]i-esima delle r radici distinte del polinomio \ caratteristico e la sua molteplicit\[AGrave] \[EGrave] ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ StyleBox["n", "TI"], StyleBox["i", "TI"]], TraditionalForm], "errors" -> {}, "input" -> "$n_i$", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "11cc1660-22d2-4e1d-8db4-e399840a47b1"], ".\nNel caso di equazione di secondo grado a coefficienti reali, i modi sono \ funzioni del tipo:\n", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox[ StyleBox["t", "TI"], StyleBox["k", "TI"]], SuperscriptBox[ StyleBox["e", "TI"], "\[Sigma]"], StyleBox["t", "TI"], "cos", RowBox[{"(", RowBox[{"\[Omega]", StyleBox["t", "TI"], "+", "\[Theta]"}], ")"}]}], TraditionalForm], "errors" -> {}, "input" -> "$t^k e^\\sigma t \\cos\\left( \\omega t + \\theta \\right)$", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]], FontSize->18, FontWeight->"Bold",ExpressionUUID->"f2ecf092-fd4b-4720-9a20-6b371573f7aa"], "\nNel seguito vengono illustrate tale funzioni, con la scelta dei parametri \ ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["k", "TI"], ",", "\[Sigma]", ",", "\[Omega]", ",", "\[Theta]"}], TraditionalForm], "errors" -> {}, "input" -> "$k, \\sigma, \\omega, \\theta$", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "4cc4b98d-6534-4303-8cca-09af82842778"] }], "Text", CellChangeTimes->{{3.912131643986404*^9, 3.9121316472794285`*^9}, { 3.9121316856054*^9, 3.912131898216857*^9}, {3.912131988926337*^9, 3.9121320256995807`*^9}, 3.9121556464821243`*^9, {3.912155684411152*^9, 3.9121556870515194`*^9}, {3.9121558302790575`*^9, 3.91215588078829*^9}, { 3.9121559352585697`*^9, 3.912156158803138*^9}, {3.912156253602567*^9, 3.9121562735301027`*^9}, {3.912156363304744*^9, 3.9121563637543154`*^9}},ExpressionUUID->"0db730b7-0691-4e10-b389-\ d7c09e654d1f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{"sigma", "*", "x"}], "]"}], "*", RowBox[{"x", "^", "k"}], "*", RowBox[{"Cos", "[", RowBox[{ RowBox[{"w", "*", "x"}], " ", "+", " ", "theta"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "2.5"}], ",", "2.5"}], "}"}], ",", " ", RowBox[{"PlotRange", "->", "Full"}]}], "]"}], ",", RowBox[{"{", RowBox[{"w", ",", RowBox[{"{", RowBox[{"0", ",", "10", ",", " ", "100"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"{", RowBox[{"0.0", ",", "1.0"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"sigma", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], " ", ",", "0", ",", "1"}], " ", "}"}]}], "}"}], ",", " ", RowBox[{"{", RowBox[{"theta", ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ RowBox[{"-", "Pi"}], "/", "2"}]}], "}"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.912131643986404*^9, 3.9121316472794285`*^9}, { 3.9121316856054*^9, 3.912131898216857*^9}, 3.912131988926337*^9, { 3.9121320490799975`*^9, 3.9121321650520315`*^9}, {3.9121551701797304`*^9, 3.912155193768501*^9}, {3.91215541445448*^9, 3.912155419289598*^9}, { 3.9121554783273773`*^9, 3.912155479008112*^9}, {3.9121555599839945`*^9, 3.912155560742992*^9}, {3.912155691531657*^9, 3.9121557341484623`*^9}, { 3.912155795556415*^9, 3.912155799358008*^9}}, CellLabel->"In[18]:=",ExpressionUUID->"fa9fc001-d3cc-4244-857e-6703dd3fc68c"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`k$$ = 0., $CellContext`sigma$$ = 0, $CellContext`theta$$ = 0, $CellContext`w$$ = 10, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`w$$], {0, 10, 100}}, { Hold[$CellContext`k$$], {0., 1.}}, { Hold[$CellContext`sigma$$], {-1, 0, 1}}, { Hold[$CellContext`theta$$], {0, Rational[-1, 2] Pi}}}, Typeset`size$$ = {360., {109., 113.87420196121224`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`k$$ = 0., $CellContext`sigma$$ = -1, $CellContext`theta$$ = 0, $CellContext`w$$ = 0}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[Exp[$CellContext`sigma$$ $CellContext`x] \ $CellContext`x^$CellContext`k$$ Cos[$CellContext`w$$ $CellContext`x + $CellContext`theta$$], \ {$CellContext`x, -2.5, 2.5}, PlotRange -> Full], "Specifications" :> {{$CellContext`w$$, {0, 10, 100}}, {$CellContext`k$$, {0., 1.}}, {$CellContext`sigma$$, {-1, 0, 1}}, {$CellContext`theta$$, {0, Rational[-1, 2] Pi}}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{406., {188.1340331430547, 193.8659668569453}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.9121316878818865`*^9, {3.912131732941931*^9, 3.9121317487851753`*^9}, { 3.9121317976076527`*^9, 3.9121318135158014`*^9}, {3.9121318592020645`*^9, 3.912131899535817*^9}, {3.9121320526296554`*^9, 3.912132103061173*^9}, 3.9121321384643745`*^9, 3.912155420595216*^9, 3.9121554803358803`*^9, 3.912155561615529*^9, {3.912155719234915*^9, 3.912155735382132*^9}, 3.912155800453766*^9}, CellLabel->"Out[18]=",ExpressionUUID->"83c23d99-e920-4ca4-b0aa-80d806319a76"] }, Open ]] }, Open ]] }, WindowSize->{842.5714285714286, 809.5714285714286}, WindowMargins->{{ 261.4285714285714, Automatic}, {-4.285714285714334, Automatic}}, FrontEndVersion->"13.3 for Microsoft Windows (64-bit) (July 24, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"1db0c840-dd2e-43b8-aabd-06008d79073e" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 313, 5, 98, "Title",ExpressionUUID->"c68ffc5f-d3e1-4b08-9b7a-3ef44b7cfc63"], Cell[896, 29, 4356, 108, 159, "Text",ExpressionUUID->"0db730b7-0691-4e10-b389-d7c09e654d1f"], Cell[CellGroupData[{ Cell[5277, 141, 1663, 43, 48, "Input",ExpressionUUID->"fa9fc001-d3cc-4244-857e-6703dd3fc68c"], Cell[6943, 186, 2626, 50, 401, "Output",ExpressionUUID->"83c23d99-e920-4ca4-b0aa-80d806319a76"] }, Open ]] }, Open ]] } ] *)