Master Degree in Computer Engineering

Final Exam for Automata, Languages and Computation

July 4th, 2024

- 1. [4 points] Consider the regular expression $R = (ab + ba)^* \emptyset(aa)$. Convert R into an equivalent ϵ -NFA using the construction provided in the textbook, and report all the intermediate steps. Important: do not simplify the regular expression R before applying the construction.
- 2. [9 points] Let $\Sigma = \{a, b, c\}$. For $w \in \Sigma^*$ and $X \in \Sigma$, we write $\#_X(w)$ to denote the number of occurrences of X in w. Consider the following languages

$$L_1 = \{ w \mid w \in \Sigma^*, \ \#_a(w) = \#_b(w) = \#_c(w) \} ;$$

$$L_2 = \{ w \mid w \in \Sigma^*, \ \#_a(w) = \#_c(w) \} .$$

- (a) Prove that L_1 is outside of CFL.
- (b) Prove that L_2 is in CFL.
- (c) Prove that L_2 is not in REG.
- 3. [5 points] Consider the CFG G implicitly defined by the following productions:

$$\begin{array}{l} S \rightarrow AAB \mid ABB \mid BBB \\ A \rightarrow aAB \mid bBB \\ B \rightarrow b \mid \varepsilon \end{array}$$

Perform on G the transformations indicated below, that have been specified in the textbook, in the given order. Report the CFGs obtained at each of the intermediate steps.

- (a) Eliminate the ε -productions
- (b) Eliminate the unary productions
- (c) Eliminate the useless symbols
- (d) Produce a CFG in Chomsky normal form equivalent to G.

(please turn to the next page)

- 4. **[5 points]** Assess whether the following statements are true or false, providing motivations for all of your answers.
 - (a) Let L_1 be a language in REG with L_1 non-finite, and let L_2 be a language in CFL\REG. The language $L_1 \cap L_2$ may be in CFL\REG.
 - (b) Let L_1 be a language in REG with L_1 non-finite, and let L_2 be a language in CFL\REG. The language $L_1 \cap L_2$ may be in REG.
 - (c) Let L_1, L_2 be languages in CFL. The language $L_1 \cap L_2$ belongs to \mathcal{P} , the class of languages that can be recognized in polynomial time by a TM.
 - (d) Let R be the string reversal operator, which we extend to languages. Let L be a language in REC. Then L^R belongs to REC.
- 5. [4 points] Define the diagonalization language L_d . Show that L_d is not an RE language, using the proof reported in the textbook.
- 6. [6 points] Consider the following property of the RE languages defined over the alphabet $\Sigma = \{0, 1\}$:

 $\mathcal{P} = \{L \mid L \in \text{RE, every string in } L \text{ has even length} \}$

and define $L_{\mathcal{P}} = \{\mathsf{enc}(M) \mid L(M) \in \mathcal{P}\}.$

- (a) Use Rice's theorem to show that $L_{\mathcal{P}}$ is not in REC.
- (b) Prove that $L_{\mathcal{P}}$ is not in RE.