
Master Degree in Computer Engineering

Final Exam for
Automata, Languages and Computation

January 25th, 2023

1. [4 points] Consider the regular expression R = (10)∗∅(ϵ+01). Convert R into an equivalent ϵ-NFA
using the construction provided in the textbook, and report all the intermediate steps.
Important: do not use any other construction different from the one presented in class, and do not
simplify the regular expression R before applying the construction.

Solution

The construction to convert a regular expression into an equivalent ϵ-NFA is presented in Theorem 3.7
from Chapter 3 of the textbook. The construction must be applied using structural induction, that
is, it must be applied to all the subexpressions of the input regular expression. For a subexpressions
s of r, we write γ(s) to represent its conversion into an equivalent ϵ-NFA.

In the base case, we convert the regular expressions 0, 1, ϵ and ∅, resulting in the following automata:

γ(0):
0

γ(1):
1

γ(ϵ):
ε

γ(∅):

Next, we use γ(0) and γ(1) to convert the regular expressions 10 and 01, resulting in the following
automata:

γ(10):
1 ε 0

γ(01):
0 ε 1

We can now use γ(10) to convert the regular expression (10)∗, resulting in the following automaton:

γ((10)∗):
ε 1 ε 0 ε

ε

ε

To convert the regular expression ϵ+01 we use the automata γ(ϵ) and γ(01) obtained at some previous
steps, resulting in the following automaton:

γ(ϵ+ 01):
ε

ε

0 ε 1

ε
ε

ε

We need to perform two more steps. First we convert the regular expression (10)∗∅ by concatenating
γ(10) with γ(∅). This is done by adding an ε-arc from the final state of γ(10) to the initial state of
γ(∅). In the resulting automaton γ((10)∗∅), the initial state is the initial state of γ(10) and the final
state is the final state of γ(∅). Observe that in γ((10)∗∅) the final state cannot be reached from the
initial state, as expected.

Similarly, we convert the regular expression (10)∗∅(ϵ+01) by concatenating γ((10)∗∅) with γ(ϵ+01).
The resulting automaton is the desired ϵ-NFA.

2. [9 points] Consider the following languages, defined over the alphabet Σ = {a, b}

L1 = {anb2n | n ≥ 1} ;

L2 = {anv | n ≥ 1, v ∈ Σ∗, |v| = 2n} ;

L3 = {uv | n ≥ 1, u, v ∈ Σ∗, |u| = n, |v| = 2n} .

For each of the above languages, state whether it belongs to REG or else CFL∖REG, and provide a
mathematical proof for all of your answers.

Solution

(a) L1 belongs to the class CFL∖REG. We first show that L1 is not a regular language, by applying
the pumping lemma for this class.

Let N be the pumping lemma constant for L1. We choose the string w = aNb2N ∈ L1 with
|w| ≥ N , and consider all possible factorizations w = xyz satisfying the conditions |y| ≥ 1
and |xy| ≤ N . Because of the latter condition, we have that y can only contain occurrences of
symbol a.

According to the pumping lemma, the string wk = xykz should be in L1 for every k ≥ 0. Let
|y| = m ≥ 1 and consider k = 0. We then have w0 = aN−mb2N . From m ≥ 1, it is immediate to
see that w0 ̸∈ L1, against the statement of the pumping lemma for regular languages. We thus
conclude that L1 is not a regular language.

Finally, we need to show that L1 belongs to the class CFL. Consider the CFGG1 with productions:

S → aSbb | abb

It is very easy to see that L(G1) = L1.

(b) L2 belongs to the class CFL∖REG. Again, we first show that L2 is not a regular language by
applying the pumping lemma.

Let N be the pumping lemma constant for L2. We choose the string w = aNb2N ∈ L2 with
|w| ≥ N , and consider all possible factorizations w = xyz satisfying the conditions |y| ≥ 1

and |xy| ≤ N . Because of the latter condition, we have that y can only contain occurrences of
symbol a.

According to the pumping lemma, the string wk = xykz should be in L2 for every k ≥ 0. Let
|y| = m ≥ 1 and consider k = 0. It is easy to see that w0 = aN−mb2N . We now observe
that, for w0 to be in L2, we must be able to chop w0 into three parts of equal length, and the
first part must be entirely composed of occurrences of symbol a. The length of each part is
(3N −m)/3 = N − 1

3m, and the second and third parts together have 2N − 2
3m symbols. Since

there are 2N > 2N − 2
3m occurrences of b in w0, we see that some occurrence of b must appear in

the first part, and therefore w0 cannot belong to L2. Again, we conclude that L2 is not a regular
language.

Consider now the following CFG G2:

S → aSC | aC
C → aa | ab | ba | bb

It is not difficult to see that L(G2) = L2. We thus conclude that L2 belongs to the class CFL.

(c) L3 is in REG. To show this, we observe that every string w ∈ L3 has length n + 2n = 3n for
some n ≥ 1, and there is no restrictions on its symbols. Therefore L3 can be generated by the
following regular expression

(a+ b)(a+ b)(a+ b)((a+ b)(a+ b)(a+ b))∗.

3. [5 points] With reference to push-down automata (PDA), answer the following questions.

(a) Provide the definition of language accepted by final state and language accepted by empty stack.

(b) Prove that if PF is a PDA accepting by final state, then there exists a PDA PN accepting by
empty stack such that L(PF) = N(PN).

Solution

The required construction is reported in Theorem 6.11 from Chapter 6 of the textbook.

4. [6 points] Assess whether the following statements are true or false, providing motivations for all of
your answers.

(a) Let L be a language in REG and let R be the reversal operator. Then the language L′ = {w |
w ∈ L or w ∈ LR} is also in REG.

(b) The class RE is closed under the operation of complementation with respect to Σ = {0, 1} (recall
that every language in RE is defined over the alphabet Σ).

(c) The class P of languages that can be recognized in polynomial time by a TM is closed under
intersection with the class REG.

(d) The class REG is closed under intersection with the class P of languages that can be recognized
in polynomial time by a TM.

Solution

(a) True. We observe that L′ = L ∪ LR. Since the class REG is closed under the reversal operator,
the language LR must be in REG. Since the class REG is closed under the union operator, the
language L ∪ LR must be in REG.

(b) False. We know from Chapter 9 of the textbook that the language Le is the complement of
language Lne, and that Lne is in RE but Le is not in RE.

(c) True. Let L1 be a language in P and let L2 be a language in REG. Then there exists a TM M
working in polynomial time such L(M) = L1 and there exists a DFA A such that L(A) = L2.
We know from Chapter 4 of the textbook that we can decide in linear time whether a string is
accepted by a DFA. We can then construct a TM Mi accepting the language L1∩L2 and working
in polynomial time. On input string w, Mi simulates A on input w in linear time in |w|. If A
rejects then also Mi rejects. If A accepts, then Mi simulates M on input w in polynomial time
in |w|. If M rejects then Mi rejects, otherwise Mi accepts. It is easy to see that the cascade of
the two simulations above can be run in polynomial time in |w|.

(d) False. Let L1 = {a, b}∗ and let L2 = {anbn | n ≥ 1}. It is well known that L1 is in REG. We
now show that L2 is in P by specifying a TM M that recognizes L2 in polynomial time.

M uses a tape with two tracks: the first track contains the input string, and the second track is
used to mark the symbols that have already been matched. The machine first checks that the
input has at least one occurrence of symbol a and at least one occurrence of symbol b, with all
of the b’s placed to the right of all of the a’s. Then M reads the leftmost occurrence of a, marks
it with a special symbol, and matches it to the leftmost occurrence of b by marking the latter
symbol as well. It then proceeds with the next matches, if any, moving back and forth on the tape
and adding two new markers at each pass, each to the right of the existing markers. M accepts
if the count of the a’s equals the count of the b’s. All of the above can be easily implemented in
polynomial time in the size of the input.

We now observe that L1 ∩ L2 = L2, and we know that L2 is not in REG (by application of the
pumping lemma for REG). We then conclude that the class REG is not closed under intersection
with the class P.

5. [9 points] Consider the following property of the RE languages defined over the alphabet Σ = {0, 1}:

P = {L | L ∈ RE, every string in L has prefix 111}

and define LP = {enc(M) | L(M) ∈ P}.

(a) State whether ∅ ∈ P is true or false, and motivate your answer.

(b) Use Rice’s theorem to show that LP is not in REC.

(c) Prove that LP is not in RE.

(d) Consider the language

L⊆ = {enc(M1,M2) | L(M1) ⊆ L(M2)} .

Specify a reduction LP ≤m L⊆ to show that L⊆ is not in RE.

Solution

(a) True. Since there is no string in ∅, the condition P is trivially satisfied.

(b) We apply Rice’s theorem and show that P is not trivial. First, the language ∅ is in RE and we
have already shown that ∅ ∈ P. Therefore we have P ≠ ∅ . Second, the language {101} is in RE
and does not belong to P. Therefore we have P ≠ RE. We then conclude that LP is not in REC.

(c) To prove that LP is not in RE, it is convenient to consider the complement language LP , whose
strings are all the encodings of TMs M such that L(M) contains at least one string that does not
start with 111. We show that LP belongs to RE by specifying a nondeterministic TM N such
that L(N) = LP . Since every nondeterministic TM can be converted into a standard TM, we
conclude that LP is in RE.

Our nondeterministic TM N takes as input the encoding of a TM M and performs the following
steps.

• N nondeterministically guesses a string w ∈ Σ∗, Σ = {0, 1}, such that w does not have
prefix 111.

• N simulates the universal TM U on input enc(M,w). If U halts in an accepting state, then
N accepts. If U halts in a non-accepting state, then N rejects. If U does not halt, then N
does not halt as well.

It is not difficult to see that L(N) = LP .

Since LP is in RE, if its complement language LP were in RE as well, then we would conclude
that both languages are in REC, from a theorem in the textbook. But we have already shown
that LP is not in REC. We must therefore conclude that LP is not in RE.

(d) To specify a reduction LP ≤m L⊆ we need to describe a mapping from strings enc(M) to
strings enc(M1,M2) with the property that enc(M) ∈ LP if and only if the associated string
enc(M1,M2) ∈ L⊆.

Consider the regular language {111} · Σ∗. It is not difficult to construct a TM M111 accepting
such language. Our mapping then sets M1 = M and M2 = M111. The following chain of logical
equivalences shows that the proposed mapping represents a valid reduction:

enc(M) ∈ LP iff L(M) ∈ P (definition of LP)
iff L(M) ⊆ {111} · Σ∗ (definition of P)
iff L(M1) ⊆ L(M2) (definition of our mapping)
iff enc(M1,M2) ∈ L⊆ (definition of L⊆)

Since we have already shown that LP is not in RE, from the above reduction we conclude that
L⊆ is not in RE as well.

