Master Degree in Computer Engineering

Final Exam for Automata, Languages and Computation

July 18th, 2022

1. [5 points] Consider the two DFAs A_1 and A_2 whose transition functions are graphically represented as follows

Apply the construction in the textbook, using the cross-product of the state sets of A_1 and A_2 , to produce a new DFA A that recognizes the intersection language $L(A_1) \cap L(A_2)$. For the transition function of A, provide either a tabular representation or else a graphical representation.

2. [10 points] Consider the following languages, defined over the alphabet $\Sigma = \{a, b\}$

$$L_{1} = \{ w \mid w = a^{n}b^{n}b^{m}a^{m}, n, m \ge 1 \} ;$$

$$L_{2} = \{ w \mid w = a^{n}b^{n}b^{n}a^{n}, n \ge 1 \} ;$$

$$L_{3} = \{ w \mid w = a^{n}a^{n}a^{n}a^{n}, n \ge 1 \} ;.$$

For each of the above languages, state whether it belongs to one of the classes REG and CFL\REG, or else if it is outside of CFL. Provide a mathematical proof for all of your answers.

- 3. [5 points] With reference to push-down automata (PDA), answer the following questions.
 - (a) Provide the definition of language accepted by final state and language accepted by empty stack.
 - (b) Prove that if P_N is a PDA accepting by empty stack, then there exists a PDA P_F accepting by final state such that $N(P_N) = L(P_F)$.

(please see next page)

- 4. [5 points] Provide the definition of a nondeterministic TM M_N and of the recognized language $L(M_N)$. Prove that for each nondeterministic TM M_N there exists a TM M_D such that $L(M_N) = L(M_D)$
- 5. [6 points] Let N be the set of natural numbers. Consider the following property of the RE languages defined over the alphabet $\Sigma = \{0, 1\}$

$$\mathcal{P} = \{L \mid L \in \text{RE}, \exists n \in \mathbf{N}, \Sigma^n \subseteq L\}.$$

In words, a language L is in \mathcal{P} if for some n, all strings of length n are in L.

Assess whether the language $L_{\mathcal{P}}$ belongs to one of the classes REC and RE\REC, or else does not belong to RE, and provide a mathematical proof of your answer.

6. [2 points] Let \mathcal{P} be the class of languages that can be recognised in polynomial time by a TM. Prove that if L_1 is in \mathcal{P} and L_2 is in CFL, then $L_1 \cdot L_2$ is still in \mathcal{P} .