Master Degree in Computer Engineering

Final Exam for Automata, Languages and Computation

January 26th, 2022

1. [5 points] Let E be a regular expression and let L(E) be the generated language. Let R be the string reversal operator, extended to languages in the usual way. Using structural induction, construct a regular expression E^R such that $L(E^R) = (L(E))^R$, and prove this relation.

Solution

The required construction can be found in Chapter 4 of the textbook, Theorem 4.11.

2. [8 points] Consider the following languages, defined over the alphabet $\Sigma = \{a, b, c\}$

$$L_1 = \{ w \mid w = a^p b^q c^r, \ p, q, r \ge 1, \ p = r = 2q \} ;$$

$$L_2 = \{ w \mid w = a^p b^q c^r, \ p, q, r \ge 1, \ p + r = 2q \} .$$

State whether L_1 and L_2 are context-free languages, and motivate your answers.

Solution

- (a) L_1 is not a context-free language. To prove this statement, we use the pumping lemma for context-free languages. Let us start by reformulating the definition of the language as $L_1 = \{w \mid w = a^{2q}b^qc^{2q}, q \ge 1\}$. Let N be the pumping lemma constant. We choose the string $z = a^{2N}b^Nc^{2N} \in L_1$ and consider all possible factorizations z = uvwxy satisfying the conditions $|v| + |x| \ge 1$ and $|vwx| \le N$. Because of the latter condition, we have that vx can contain occurrences of at most two symbols from Σ , and these two symbols can be either a and b or else b and c, but not a and c. We separately discuss all possible cases in what follows.
 - If vx contains at most one symbol X from Σ , the string $uv^k wx^k y$ with k = 0 will not belong to L_1 , because there will be some mismatch in the length of the three blocks of a's, b's and c's.
 - If v contains only X and y contains only Y, X and Y from Σ such that $X \neq Y$, then there must be a symbol $Z \in \Sigma$ such that Z does not occur in v and in x. Again, the string $uv^k wx^k y$ with k = 0 will not belong to L_1 , because there will be some mismatch in the length of the three blocks.
 - If v contains two (distinguishable) symbols X and Y from Σ , it is easy to see that any string $uv^k wx^k y$ with $k \geq 2$ will not belong to L_1 , because of alternating occurrences of X and Y. A similar argument holds if x contains two symbol from Σ .

We thus conclude that L_1 is not a context-free language.

(b) L_2 is a context-free language. To see this, we reformulate the definition of the language as $L_2 = L'_2 \cup L''_2$, where

$$\begin{array}{lll} L_2' &=& \{w ~|~ w = a^p b^q c^r, ~p,q,r \geq 1, ~p+r = 2q, ~p ~\text{is even}\} ; \\ L_2'' &=& \{w ~|~ w = a^p b^q c^r, ~p,q,r \geq 1, ~p+r = 2q, ~p ~\text{is odd}\} . \end{array}$$

We now define CFGs G' and G'' such that $L(G') = L'_2$ and $L(G'') = L''_2$. Our claim then follows from the closure of context-free languages under the union operator. Grammar G' is implicitly defined by the following productions:

$$S \to S_1 S_2$$

$$S_1 \to aa S_1 b \mid aab$$

$$S_2 \to b S_2 cc \mid bcc$$

Grammar G'' is implicitly defined by the following productions:

$$S \to S_1 S_2$$

$$S_1 \to aa S_1 b \mid a$$

$$S_2 \to b S_2 cc \mid bc$$

3. [5 points] Consider the CFG G implicitly defined by the following productions:

$$S \to ABA \mid BAB$$
$$A \to aA \mid bB$$
$$B \to b \mid \varepsilon$$

Perform on G the following transformations that have been specified in the textbook, in the given order. Report the CFGs obtained at each of the intermediate steps.

- (a) Eliminate the ε -productions
- (b) Eliminate the unary productions
- (c) Eliminate the useless symbols
- (d) Produce a CFG in Chomsky normal form equivalent to G.

Solution

We start by observing that $\varepsilon \notin L(G)$, therefore we can construct a new CFG in Chomsky normal form that is equivalent to G. All of the algorithms that need to be applied to the grammar G are reported in Chapter 7 of the textbook.

(a) The set of nullable variables of G is $n(G) = \{B\}$. After elimination of the ε -productions we obtain the intermediate CFG G_1

$$S \rightarrow ABA \mid AA \mid BAB \mid AB \mid BA \mid A$$
$$A \rightarrow aA \mid bB \mid b$$
$$B \rightarrow b$$

(b) The only unary production in G_1 is $S \to A$. Thus the set of unary pairs of G_1 is

$$u(G_1) = \{(S,A)\} \cup \{(X,X) \mid X \in \{S,A,B\}\}.$$

After elimination of the unary productions we obtain the intermediate CFG G_2

$$S \rightarrow ABA \mid AA \mid BAB \mid AB \mid BA \mid aA \mid bB \mid b$$
$$A \rightarrow aA \mid bB \mid b$$
$$B \rightarrow b$$

- (c) All nonterminals in G_2 are reachable and generating, that is, there are no useless nonterminals in G_2 . Therefore this step does not change the intermediate CFG obtained at the previous step.
- (d) The construction of a CFG in Chomsky normal form from G_2 proceeds in two steps. The first step eliminates terminal symbols in the right-hand side of the productions of G_2 , in case they appear along with some other symbols. To do this we introduce new nonterminal symbols C_a, C_b and produce the intermediate CFG G_3

$$\begin{array}{l} S \rightarrow ABA \ | \ AA \ | \ BAB \ | \ AB \ | \ BA \ | \ C_aA \ | \ C_bB \ | \ b \\ A \rightarrow C_aA \ | \ C_bB \ | \ b \\ B \rightarrow b \\ C_a \rightarrow a \\ C_b \rightarrow b \end{array}$$

The second step factorizes productions of G_3 having right-hand side of length larger than two. To do this we introduce new nonterminal symbols D, E and produce the final CFG G_4

$$\begin{array}{l} S \rightarrow AD \mid AA \mid BE \mid AB \mid BA \mid C_aA \mid C_bB \mid b \\ D \rightarrow BA \\ E \rightarrow AB \\ A \rightarrow C_aA \mid C_bB \mid b \\ B \rightarrow b \\ C_a \rightarrow a \\ C_b \rightarrow b \end{array}$$

- 4. [6 points] Assess whether the following statements are true or false, providing motivations for all of your answers.
 - (a) If L_1 and L_2 are not in CFL, then the language $L_1 \cap L_2$ cannot be in CFL.
 - (b) If $L_1 \cup L_2$ is a regular language, then also L_1 and L_2 are regular languages.
 - (c) Let Σ be some fixed alphabet and let L_i , $i \geq 1$, be finite languages over Σ . Then the language

$$L = \bigcup_{i=1}^{\infty} L_i$$

is always a regular language.

(d) The class \mathcal{P} of languages that can be recognized in polynomial time by a TM is closed under intersection with regular languages.

Solution

- (a) False. Consider the alphabet $\Sigma = \{a, b, c\}$ and the counterexample $L_1 = \{a^n b^n a^n \mid n \ge 1\}$, $L_2 = \{b^n a^n b^n \mid n \ge 1\}$. It is easy to show that L_1 and L_2 are not in CFL, using the pumping lemma. But the language $L_1 \cap L_2$ is the empty language, which is a regular language and therefore a CFL as well.
- (b) False. Consider the alphabet $\Sigma = \{a, b\}$ and the counterexample $L_1 = \{w \mid w \in \Sigma^*, \#_a(w) = \#_b(w)\}$, $L_2 = \{w \mid w \in \Sigma^*, \#_a(w) \neq \#_b(w)\}$. It is easy to see that $L_1 \cup L_2 = \Sigma^*$ and thus a regular language. However, L_1 and L_2 are not regular languages.
- (c) False. Consider the alphabet $\Sigma = \{a, b\}$ and, for each $i \ge 1$, the language $L_i = \{a^i b^i\}$. Each L_i contains exactly one string, therefore each L_i is a finite language. However, $L = \bigcup_{i=1}^{\infty} L_i = \{a^n b^n \mid n \ge 1\}$, which is not a context-free language and therefore not a regular language.
- (d) True. Let L_1 be an arbitrary language in \mathcal{P} . By definition of \mathcal{P} , there exists some TM M_1 such that $L(M_1) = L_1$ and M_1 processes its input in polynomial time. Let also L_2 be a regular language. It is not difficult to devise a TM M_2 that simulates a DFA for L_2 and that runs in polynomial time. We can now construct a TM M that, given as input a string w, simulates M_1 and M_2 on w in polynomial time. M accepts if both M_1 and M_2 accept, and rejects otherwise. This shows that the intersection language $L_1 \cap L_2$ is in \mathcal{P} . Since L_1 and L_2 were chosen arbitrarily, we have shown that the class \mathcal{P} is closed under intersection with regular languages.
- 5. [9 points] For a property \mathcal{P} of the RE languages, define $L_{\mathcal{P}} = \{\mathsf{enc}(M) \mid L(M) \in \mathcal{P}\}$.
 - (a) Let k be some fixed natural number with k > 1. Consider the following properties of the RE languages defined over the alphabet $\Sigma = \{0, 1\}$:

$$\mathcal{P}_{k} = \{L \mid L \in \operatorname{RE}, |L| \ge k\}.$$

Assess whether each of the languages $L_{\mathcal{P}_{\leq k}}$ and $L_{\mathcal{P}_{\geq k}}$ belongs to the classes REC, RE\REC, or else does not belong to RE.

(b) Let $enc(M_1, M_2)$ be a binary string representing some fixed encoding of TMs M_1, M_2 . Consider the following language, where '·' denotes the concatenation operation between languages:

 $L = \{ \mathsf{enc}(M_1, M_2) \mid |L(M_1) \cdot L(M_2)| < k \}.$

Prove that L does not belong to the class RE.

Solution

(a) Language $L_{\mathcal{P}_{\geq k}}$ is not in REC. To prove this statement, we apply Rice's theorem and show that property $\mathcal{P}_{\geq k}$ is not trivial. First, Σ^* is in RE and has more than k strings. Therefore we have $\Sigma^* \in \mathcal{P}_{\geq k}$ and $\mathcal{P}_{\geq k}$ is not empty. Second, the empty language \emptyset is in RE and has fewer than kstrings, since $k \geq 1$. Therefore we have $\emptyset \notin \mathcal{P}_{\geq k}$, and $\mathcal{P}_{\geq k}$ does not contain every RE language. Since $\mathcal{P}_{\geq k}$ is not trivial, we can conclude that $L_{\mathcal{P}_{\geq k}}$ is not in REC, according to Rice's theorem. We now prove that $L_{\mathcal{P}_{\geq k}}$ is in RE. To this end, we specify a nondeterministic TM N such that $L(N) = L_{\mathcal{P}_{\geq k}}$. Let $\operatorname{enc}(M)$ be the input to N.

- Using nondeterminism, N guesses k different strings $w_i \in \Sigma^*$, $1 \le i \le k$.
- For each i = 1, ..., k in the given order, N simulates M on input w_i .
- If any of the k simulations above does not halt, then N does not halt as well.
- If all of the k simulations halt, N accepts in case every simulation reaches a final state, and rejects otherwise.

It is not difficult to see that $L(N) = L_{\mathcal{P}_{\geq k}}$. Since nondeterministic TMs are equivalent to TMs, we conclude that $L_{\mathcal{P}_{>k}}$ is in RE.

Consider now the language $L_{\mathcal{P}_{\leq k}}$. We observe that $L_{\mathcal{P}_{\leq k}}$ is the complement language of $L_{\mathcal{P}_{\geq k}}$ with respect to Σ^* . Since $L_{\mathcal{P}_{\geq k}}$ is in RE\REC, from a well-known property we conclude that $L_{\mathcal{P}_{\leq k}}$ cannot be in RE.

(b) Language L is not in RE. To prove this statement, we use the fact that $L_{\mathcal{P}_{<k}}$ is not in RE, as shown in (a), and define a reduction $L_{\mathcal{P}_{<k}} \leq_m L$.

We need to map instances $\operatorname{enc}(M)$ of $L_{\mathcal{P}_{\leq k}}$ into instances $\operatorname{enc}(M_1, M_2)$ of L. We set $M_1 = M$ and $M_2 = M_{\varepsilon}$, where M_{ε} is any TM that recognizes the language $\{\varepsilon\}$. The following chain of logical equivalences shows that the construction represents a valid reduction:

$$\begin{array}{lll} \mathsf{enc}(M) \in L_{\mathcal{P}_{< k}} & \text{iff} & |L(M)| < k & (\text{definition of } \mathcal{P}_{< k}) \\ & \text{iff} & |L(M) \cdot \{\varepsilon\}| < k & (\text{definition of concatenation}) \\ & \text{iff} & |L(M_1) \cdot L(M_{\varepsilon})| < k & (\text{definition of our reduction}) \\ & \text{iff} & \mathsf{enc}(M_1, M_2) \in L & (\text{definition of } L) \ . \end{array}$$