Master Degree in Computer Engineering

Final Exam for Automata, Languages and Computation

February 12th, 2021

1. [6 points] Consider the FA A whose transition function is graphically represented as follows

Consider the algorithm for transforming a FA into a regular expression, based on state elimination. Apply the algorithm to eliminate state q_1 from A, and display the resulting automaton A'. Furthermore, eliminate state q_3 from A', and display the resulting automaton A''. If you simplify any of the resulting regular expressions, **add some discussion**.

Solution After the elimination of q_1 from A we obtain the automaton A', graphically represented as

After the elimination of q_3 from A' we obtain the automaton A'', graphically represented as

2. [8 points] Consider the following languages, defined over the alphabet $\Sigma = \{a, b\}$

$$\begin{split} L_1 &= \{ a^p b a^q b a^q b a^r \mid p,q,r \geq 1 \} , \\ L_2 &= \{ a^p b a^q b a^{q+r} \mid p,q,r \geq 1 \} , \\ L_3 &= \{ a^{p+q} b a^{q+r} \mid p,q,r \geq 1 \} . \end{split}$$

State whether L_1 , L_2 and L_3 are regular languages, and provide a mathematical proof of your answers. Solution

- (a) L_1 is not a regular language. To prove this statement we apply the pumping lemma for regular languages. Let N be the pumping lemma constant associated with L_1 . We choose the string $w = aba^N ba^N ba, w \in L_1$, and consider all possible factorizations w = xyz satisfying the conditions $y \neq \varepsilon$ and $|xy| \leq N$. We separately discuss all possible cases in what follows.
 - If y contains an occurrence of b, the iterated string xyyz will not belong to L_1 , since it contains more than three occurrences of b. Therefore in the next items we assume that y does not contain any occurrence of b.
 - If y contains the leftmost occurrence of a in w, we must have $x = \varepsilon$ and y = a. Then the iterated string xz will not belong to L_1 , since it starts with b.
 - If y contains any occurrence of a from the second run of a's in the string $w = aba^N ba^N ba$, we have that the iterated string xz has the form $aba^p ba^N ba$ with p < N, which again cannot be in L_1 because the second and the third runs of a's do not have the same length.
 - No other case is possible for the factorization w = xyz, since from condition $|xy| \leq N$ we have that y cannot contain any occurrence of a from the third run of a's in the string $w = aba^N ba^N ba$.

Since we have falsified the pumping lemma, we must conclude that L_1 is not a regular language.

(b) L_2 is not a regular language. To prove this statement we again apply the pumping lemma for regular languages. Let N be the pumping lemma constant associated with L_2 . We choose the string $w = aba^N ba^{N+1}$, $w \in L_2$, and consider all possible factorizations w = xyz. We separately discuss all possible cases in what follows; the discussion is very similar to the one in item (a) above.

- If y contains an occurrence of b, the iterated string xyyz will not belong to L_2 , since it contains more than two occurrences of b. Therefore in the next items we assume that y does not contain any occurrence of b.
- If y contains the leftmost occurrence of a in w, we must have $x = \varepsilon$ and y = a. Then the iterated string xz will not belong to L_2 , since it starts with b.
- If y contains any occurrence of a from the second run of a's in the string aba^Nba^{N+1} , we have that the iterated string xyyz has the form $aba^{N+p}ba^{N+1}$ with p > 0, which cannot be in L_2 because the second run of a's is not shorter in length than the third run of a's.
- No other case is possible for the factorization w = xyz, since from condition $|xy| \le N$ we have that y cannot contain any occurrence of a from the third run of a's in the string w.
- Since we have falsified the pumping lemma, we must conclude that L_2 is not a regular language.
- (c) L_3 is a regular language. In fact, it is not difficult to see that L_3 is generated by the regular expression aaa^*baaa^* .
- 3. [6 points] Considering the intersection operation between two languages, answer the following questions
 - (a) Show that the class of context-free languages is not closed under intersection.
 - (b) Specify in detail the construction that takes as input a PDA P and a DFA A and produces a PDA P' that accepts the language $L(P) \cap L(A)$.

Solution

- (a) The textbook reports two languages in CFL whose intersection is no longer in CFL.
- (b) The specification of the state set and of the transition function of the intersection PDA are reported in the textbook.
- 4. **[6 points]** Assess whether the following statements are true or false, providing a mathematical proof for all of your answers.
 - (a) Every language in CFL is also in \mathcal{P} , and there exists a language $L \in \mathcal{P}$ such that L is not in CFL.
 - (b) Let L_1 and L_2 be two languages such that $L_1 \leq_m L_2$ and $\overline{L_1}$ not in REC. In some cases, we might have $\overline{L_2}$ in REC.
 - (c) Let L_1 , L_2 and L_3 be languages such that $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$. Then we have $L_1 \leq_p L_3$ (symbol \leq_p indicates the existence of a polynomial time reduction between two languages).

Solution

(a) True. Here \mathcal{P} is the class of languages that can be recognized in polynomial time by a TM. Let L be a CFL. To decide whether an input string belongs to L, we use the CKY algorithm specified in the textbook, which takes polynomial time on a RAM machine. Since we can simulate a RAM program with a TM with only polynomial time overhead, we can decide whether any input string belongs to L on a TM using polynomial time.

Consider now the language $L = \{a^n b^n c^n \mid n \ge 1\}$. It is easy to show that L is not in CFL, using the pumping lemma. Furthermore, it is not difficult to define a TM recognizing L and running in polynomial time.

- (b) False. From $\overline{L_1}$ not in REC we have that L_1 must also be outside of REC, following a theorem from the textbook. From $L_1 \leq_m L_2$ and the definition of reduction, we have that L_2 must be outside of REC as well. But then $\overline{L_2}$ cannot belong to REC.
- (c) True. In other words, we need to prove that the polynomial time reduction relation is transitive. Since $L_1 \leq_p L_2$, there exists a TM program P_1 that runs in polynomial time $O(n^{p_1})$ and that transforms instances of the problem associated with L_1 into instances of the problem associated with L_2 , with the property that $P_1(x)$ is a positive instance if and only if x is a positive instance. Similarly, from $L_2 \leq_p L_3$ we have that there exists a TM program P_2 that runs in polynomial time $O(n^{p_2})$ and that transforms instances of the problem associated with L_2 into instances of the problem associated with L_3 , with the property that $P_2(x)$ is a positive instance if and only if x is a positive instance. If we compose P_1 and P_2 into $P_2 \circ P_1$, we have a TM program that runs in polynomial time $O((n^{p_1})^{p_2}) = O(n^{p_1 \cdot p_2})$. It is easy to see that $P_2 \circ P_1$ transforms instances of the problem associated with L_3 , with the property that $P_2 \circ P_1$ transforms instances of the problem associated with L_3 , with the property that $P_2 \circ P_1$ transforms instances of the problem associated with L_1 into instances of the problem associated with L_3 , we have that number of the problem associated with L_1 into instances. We thus in polynomial time $O((n^{p_1})^{p_2}) = O(n^{p_1 \cdot p_2})$. It is a positive instance. We thus property that $P_2 \circ P_1(x)$ is a positive instance if and only if x is a positive instance. We thus conclude that $L_1 \leq_p L_3$.

Note: a common mistake for this question is to assert that $P_2 \circ P_1$ runs in polynomial time $O(n^{p_1+p_2})$.

5. [7 points] Define the following property of the RE languages defined over the alphabet $\Sigma = \{0, 1\}$

$$\mathcal{P} = \{L \mid L \in \mathrm{RE}, \ L \neq \Sigma^* \} .$$

Assess whether the language $L_{\mathcal{P}}$ belongs to the class REC, and provide a mathematical proof of your answer. Consider also the following language

$$L = \{\operatorname{enc}(M, M') \mid L(M) \cap L(M') \neq \Sigma^*\}$$

where M, M' are generic TMs accepting languages defined over Σ , and enc(M, M') is a binary string representing a fixed encoding for M, M'. Assess whether the language L belongs to the class REC, and provide a mathematical proof of your answer.

Solution Recall that $L_{\mathcal{P}} = \{ \mathsf{enc}(M) \mid L(M) \in \mathcal{P} \}$. We prove that $L_{\mathcal{P}}$ is not in REC by applying Rice's theorem. We need to show that \mathcal{P} is not a trivial property.

- $\mathcal{P} \neq \emptyset$. Consider a string $w \in \Sigma$ and the finite language $L = \{w\}$. We have $L \neq \Sigma^*$ and thus $L \in \mathcal{P}$ and \mathcal{P} is not empty.
- $\mathcal{P} \neq \text{RE}$. It is immediate to see that the language Σ^* does not belong to \mathcal{P} . Since Σ^* is in RE, we have that \mathcal{P} is not RE.

Since \mathcal{P} is not trivial, from Rice's theorem we have that \mathcal{P} is not in REC.

To answer the second point, we show that L is not in REC. Note that we cannot apply Rice's theorem in this case, since a string in L is not the encoding of a single TM, it is instead the encoding of a *pair* of TMs. We then need to produce a reduction. Since we know from the first part of this question that $L_{\mathcal{P}}$ is not in REC, we prove $L_{\mathcal{P}} \leq_m L$.

We need to provide an effective construction, that is, a construction that can be implemented by a TM with output that always halts, that maps strings of the form enc(M) into strings of the form

 $\operatorname{enc}(M', M'')$ such that $\operatorname{enc}(M) \in L_{\mathcal{P}}$ if and only if $\operatorname{enc}(M', M'') \in L$. To do this, we simply set M' = M and M'' = M. In this way, we have the following chain of logical equivalences, which proves that the construction is a valid reduction

$$\begin{array}{lll} \mathsf{enc}(M) \in L_{\mathcal{P}} & \text{iff} & L(M) \neq \Sigma^* & (\text{definition of } L_{\mathcal{P}}) \\ & \text{iff} & L(M) \cap L(M) \neq \Sigma^* & (\text{definition of } \cap) \\ & \text{iff} & L(M') \cap L(M'') \neq \Sigma^* & (\text{construction of } M', M'') \\ & \text{iff} & \mathsf{enc}(M', M'') \in L & (\text{definition of } L). \end{array}$$