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1. [6 points] Consider the DFA A whose transition function is graphically represented as follows (arcs
with double direction represent two arcs in opposite directions)

q0 q1 q2

q3 q4 q5

Start 0

1

1

0

1

0

0

0 1

1

(a) Provide the definition of equivalent pair of states for a DFA.

(b) Apply to A the tabular algorithm for detecting pairs of equivalent states, reporting all the
intermediate steps.

(c) Specify the minimal DFA equivalent to A.

Solution

(a) The required definition can be found in the textbook.

(b) The textbook describes an inductive algorithm for detecting distinguishable state pairs. On input
A, the algorithm constructs the table reported below.

q1

q2

q3

q4

q5

q0 q1 q2 q3 q4

X X X X

Y X Y

Y X

X X

Y
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We have marked with X the entries in the table corresponding to distinguishable state pairs that
are detected in the base case of the algorithm, that is, state pairs that can be distinguished by the
string ε. We have then marked with Y distinguishable state pairs detected at the next iteration
by some string of length one. At the successive iterations, strings of length larger than one do
not provide any new distinguishable state pairs.

(c) From the above table we get the following state equivalences: q0 ≡ q3, q1 ≡ q4 and q2 ≡ q5. The
minimal DFA equivalent to A is then

q0 q1 q2
Start

1

0

0

1

0

1

2. [8 points] For a symbol X and a string x, we write #X(x) to denote the number of occurrences
of X in x. Consider the following languages, defined over the alphabet Σ = {a, b, c}

L1 = {w | w ∈ Σ∗, #a(w) < #b(w), #a(w) < #c(w)} ;

L2 = {w | w ∈ Σ∗, #a(w) < #b(w) or #a(w) < #c(w)} .

State whether these languages are context-free, and provide a mathematical proof of your answer.

Solution

(a) L1 is not a context-free language. To prove this statement, we start by intersecting L1 with the
language generated by the regular expression a∗b∗c∗. It is easy to see that the resulting language
is

L′
1 = {anbpcq | n, p, q ≥ 0, n < p, n < q} .

If L1 is a context-free language, then L′
1 should also be a context-free language, because of the

closure of context-free languages under the intersection with regular languages. We now prove
that L′

1 is not a context-free language, establishing therefore a contradiction. We use the pumping
lemma for context-free languages.

Let N be the pumping lemma constant. We choose the string z = aNbN+1cN+1 ∈ L′
1 and consider

all possible factorizations z = uvwxy satisfying the conditions |v| + |x| ≥ 1 and |vwx| ≤ N .
Because of the latter condition, we have that vx can contain occurrences of at most two symbols
from Σ, and these two symbols can be either a and b or else b and c, but not a and c. We
separately discuss all possible cases in what follows.

• If v contains two symbol X and Y from Σ, it is easy to see that any string uvkwxky with
k ≥ 2 will not belong to L′

1, because of alternating occurrences of X and Y . A similar
argument holds if x contains two symbol from Σ.
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• If vx contains at most one symbol X from Σ, we distinguish two scenarios. If X = a, the
string uvkwxky with k ≥ 2 will not belong to L′

1, because the number of occurrences of b
or c will not be larger than the number of occurrences of a. If X = b or X = c, the string
uvkwxky with k = 0 will not belong to L′

1, because the number of occurrences of b or c will
not be larger than the number of occurrences of a.

• If v contains only X and y contains only Y , X ̸= Y , then there must be a symbol Z ∈ Σ
such that Z does not occur in v and in x. We have already excluded the case Z = b, because
|vwx| ≤ N . If Z = a, the string uvkwxky with k = 0 will not belong to L′

1, because the
number of occurrences of b or c will not be larger than the number of occurrences of a.
If Z = c, the string uvkwxky with k ≥ 2 will not belong to L′

1, because the number of
occurrences of a will be larger than the number of occurrences of c.

We thus conclude that L′
1 is not a context-free language.

(b) L2 is a context-free language. To prove this statement, let us define

L′
2 = {w | w ∈ Σ∗, #a(w) < #b(w)} ,

L′′
2 = {w | w ∈ Σ∗, #a(w) < #c(w)} ,

and observe that L2 = L′
2∪L′′

2. It is easy to show that both L′
2 and L′′

2 are context-free languages,
by providing push-down automata that recognize these languages. Since the class of context-free
languages is closed under union, we have that L2 is a context-free language.

3. [5 points] Assess whether the following statements are true or false, providing a mathematical proof
for all of your answers.

(a) If L1 ∪ L2 is a context-free language then also L1 and L2 are context-free languages.

(b) Given two languages L1 and L2 in REC, the language L1 ∖ L2 is always in REC.

(c) Given two languages L1 and L2 in RE, the language L1 ∖ L2 is always in RE.

Solution

(a) False. We know that if L1 and L2 are context-free languages, then L1 ∪ L2 is a context-free
language as well. However, the inverse implication which is proposed in the exercise does not
hold in general. To see this, we can consider a counterexample. Let Σ = {a, b, c} and let
L1 = {anbncn | n ≥ 0} and L2 = {aibjck | i, j, k ≥ 0, i, j, k are not equal}. It is not difficult to
see that L1 ∪L2 = {aibjck | i, j, k ≥ 0}, which is a regular language and therefore a context-free
language. However, both L1 and L2 are not context-free languages, as can easily be shown using
the pumping lemma for context-free languages.

(b) True. Since L1 and L2 are in REC, there exists TMs M1 and M2 that always halt and such
that L(M1) = L1 and L(M2) = L2. We construct a TM M that always halts and such that
L(M) = L1 ∖ L2. The main idea underlying the definition of M is exemplified by the following
block digram, using the technique of lazy evaluation already exploited in several exercises in the
course lectures
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w

M
M1

no

yes

M2 no

yes no

Start

yes

On input w, M simulates M2 on w. If M2 accepts, then M rejects, according to the definition of
set difference. If M2 rejects, then M starts the simulation of M1 on w. If M1 accepts, then M
also accepts; otherwise M rejects, according to the definition of set difference. It is easy to show
that M always halts.

(c) False. Consider the following counterexample. Let L1 = {0, 1}∗, which is a regular language and
therefore also a RE language. Let also L2 be some language in RE∖REC. It is not difficult to see
that L1 ∖L2 = L2, where L2 is the complement of L2. We know from a theorem in the textbook
that the complement of a language in RE∖REC is not an RE language. We therefore conclude
that L2 is not in RE.

4. [6 points] Consider the DFA A whose transition function δ is graphically represented as

q0 q1 q2
Start

a

b

a

b

a, b

(a) Describe in words the language L recognized by A.

(b) For each state q of A, provide a definition for properties Pq in such a way that, for any string
x ∈ {a, b}∗, we have

Pq(x) ⇔ δ̂(q0, x) = q .

(c) Using mutual induction, prove the relation Pq2(x) ⇒ δ̂(q0, x) = q2.

Solution

(a) DFA A accepts the language L defined as the set of all strings over {a, b} that contain bb as a
substring.

(b) We define the required properties as follows

• For every x ∈ {a, b}∗, Pq0(x) holds if and only if x ̸∈ L and x does not end with a b.

• For every x ∈ {a, b}∗, Pq1(x) holds if and only if x ̸∈ L and x ends with a b.

• For every x ∈ {a, b}∗, Pq2(x) holds if and only if x ∈ L.
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(c) Proof of Pq2(x) ⇒ δ̂(q0, x) = q2. The proof is by induction on the length of x.

Base. We have x = ε. Since Pq2(x) is false, the implication is true.

Induction. Let |x| = n > 0. If Pq2(x) is true then x ∈ L. Let us write x = yY with Y ∈ {a, b}
and y ∈ {a, b}∗, |y| = n− 1. We distinguish two cases.

• If y ∈ L, then Pq2(y) holds true. We then apply the inductive hypotheses (|y| = n− 1) and

conclude that δ̂(q0, y) = q2. We can write δ̂(q0, x) = δ(δ̂(q0, y), Y ) = δ̂(q2, Y ) = q2 for any
Y ∈ {a, b}.

• If y ̸∈ L, then the only possible scenario is that Y = b and y ends with a b. By definition we
have Pq1(y) and, using mutual induction (|y| = n− 1), we have δ̂(q0, y) = q1. We can write

δ̂(q0, x) = δ(δ̂(q0, y), b) = δ̂(q1, b) = q2.

5. [8 points] Let L1 = {0n1n | n ≥ 1}. Define the following property of the RE languages

P = {L | L ∈ RE, L ∩ L1 = ∅} ,

and let P be the complement of P. Assess whether the languages LP and LP belong to the classes
REC, RE∖REC, or are outside of RE, and provide a proof of your answers.

Solution The property P is not trivial. There are several ways to prove this. For instance, the
language L = ∅ is a regular language and therefore also a RE language. We have L ∈ P, since
L ∩ L1 = ∅. Furthermore, the language L′ = {0, 1}∗ is a regular language and therefore also a RE
language. We have L′ ̸∈ P, since L′ ∩L1 = L1 ̸= ∅. By applying Rice’s theorem, we can conclude that
LP is not in REC.

We have P = {L | L ∈ RE, L ∩ L1 ̸= ∅}. Thus, a TM M accepts a language in P if and only if
enc(M) ̸∈ LP . We then cnclude that LP = LP .

We know from a theorem in the textbook that the complement of a language not in REC cannot be
in REC. Since we have already assessed that LP is not in REC, we must conclude that LP is not in
REC as well.

We have that LP is a RE language. To see this, consider a NTM NP that, on input enc(M), guesses
a string w ∈ L1 and simulates M on w, accepting if and only if M accepts. It is easy to see that
L(NP) = LP . Since NP can be transformed into a (deterministic) TM, we have thus shown that LP
is a RE language.

Since LP is in RE∖REC, we can apply a known theorem from the textbook and conclude that LP is
not an RE language. This concludes the exercise.
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