Eliminating useless symbols
Eliminating e-productions
Eliminating unary productions
CFG simplification

Chomsky normal form

Automata, Languages and Computation

Chapter 7 : Properties of Context-Free Languages
Part |

Master Degree in Computer Engineering
University of Padua
Lecturer : Giorgio Satta

Lecture based on material originally developed by :
Gosta Grahne, Concordia University

Automata, Languages and Computation Chapter 7/1

Properties of context-free languages

" / /"
(lllll (Ill (ll

"””(","-ﬂ’r%-’-/f.,-

lt‘lm Pt r'ln"
SO RS

A i
i:,nr'," X ""-’- ',nf,' Nao, AR

(nn'l‘(‘-:r‘:--: (‘m Casaseatag
o0 Bags o g e s (D Yk OV
SRR AR ‘n’ff:""/‘n'fﬁ“n'f'. LA
m’n‘n’na 7 ./"::u I ’- o :n’-m’ -’n’-:x N
(";‘((52 (0 K L '(Q"'I(\glaps Q’I"ll’(g
.”'Q‘K.l’ll’lﬂ’ &lm’(-n-l .'."’(.“l".l“ “(--’--"(;fn
SRR I I AR IR AR IR S

B A SN TN, RN K
TR AT
ng\Y NNV
s S St aten % 8
gN " N > !lf“ll'

'0,’('-“ (-m"(lm‘ ---‘

AR

SRS

. A)=
snsfnsnetus fusns
"ﬂ" Caeles

0/(-'.6: ’

y \
0‘:\
«\"
b

\.
wy
“

Automata, Languages and Computation Chapter 7/1

@ Eliminating useless symbols : we can delete symbols that do not
contribute to the derivation process

© Eliminating e-productions : we can eliminate all derivations
generating the empty string

© Eliminating unary productions : we can eliminate chains of
productions that do not change the length of the sentential
forms

Q CFG simplification : combine all presented elimination
techniques

© Chomsky normal form : every CFL has a CFG in special form

Automata, Languages and Computation Chapter 7/1

Eliminating useless symbols

CFG semplification

Let G be some CFG. We can eliminate some grammatical symbols
and some productions preserving the generated language

The motivation is to make the grammar easier to process

We investigate the following techniques :

@ elimination of variable and terminal symbols that do not
appear in any derivation for strings in the language

@ elimination of e-productions, that is, productions of the form
A—ec

@ elimination of unary productions, that is, productions of the
form A — B

Automata, Languages and Computation Chapter 7/1

Eliminating useless symbols

Useless symbols

Assume a CFG G = (V, T,P,S). Symbol X € V u T is called

o reachable if there exists a derivation S = aXp for some
a,fe(VuT)*

@ generating if there exists a derivation X 2 w for some
we T*

o useful if it is reachable and generating; otherwise, X is called
useless

Automata, Languages and Computation Chapter 7/1

Eliminating useless symbols

Example

Consider the CFG G with the following productions

S—>AB | a
A—b

S, A, a, b are generating, B is not generating

In order to eliminate B we need to eliminate the production
S — AB, resulting in the new grammar

S—a
A—b
Now only S and a are reachable
After eliminating A and b, the resulting grammar has the only

production S — a

Automata, Languages and Computation Chapter 7/I

Eliminating useless symbols

Example

Note :
o If we start by checking the reachable symbols, we find that no
production of the initial grammar must be eliminated

o If we subsequently check for the generating symbols, we have
to eliminate B, resulting in a grammar that has unreachable

symbols

Removal of non-generating symbols might break reachability relation

Automata, Languages and Computation Chapter 7/1

Eliminating useless symbols

Elimination of useless symbols

Let us assume we already have algorithms for computing the sets
of generating and reachable symbols of a CFG

We present these algorithms in the next slides

Algorithm Given as input a CFG G = (V, T, P,S) with
L(G) # &

e we build G; = (V4, T1, P1,S) by eliminating from G all
non-generating symbols (in G) and all productions in which
they appear (S € V4 since L(G) # &)

e we build Gy = (Va, Ty, P2, S) by eliminating from G; all
non-reachable symbols (in G;) and all productions in which
they appear

Automata, Languages and Computation Chapter 7/1

Eliminating useless symbols

Algorithm for generating symbols

Let G = (V,T,P,S). We compute the set g(G) of all generating
symbols of G by means of the following inductive algorithm

Base g(G) — T

Induction if (A — X1X3---X,) € P and X; € g(G) for each i with
1 < i< n, then

8(G) —g(G) v {A}
This algorithm is bottom-up, since information is transferred from the

right-hand side of a production to its left-hand side

Automata, Languages and Computation Chapter 7/1

Eliminating useless symbols

Example

Consider the CFG G with productions

S—>AB| a
A—b

At the base step we have g(G) = {a, b}

From S — a we add S to g(G); from A — b we add A to g(G).
No other production can contribute to set g(G)

We thus have g(G) = {S, A, a, b}

Automata, Languages and Computation Chapter 7/1

Eliminating useless symbols

Algorithm for reachable symbols

Let G = (V,T,P,S). We can compute the set r(G) of all
reachable symbols of G using the following inductive algorithm

Base r(G) <« {S}

Induction if (A — X1 X3---X,) € P and A€ r(G), then for each i
withl1<i<n
r(G) < r(G) u {Xi}

This algorithm is top-down, since information is transferred from the left-hand

side of a production to its right-hand side

Automata, Languages and Computation Chapter 7/1

Eliminating useless symbols

Example

Consider the CFG G with productions

S—>AB| a
A—b

At the base step we have r(G) = {S}

From S — AB we add A and B to r(G).
From S — a we add a to r(G).
From A — b we add b to r(G)

We thus obtain r(G) = {S, A, B, a, b}

Automata, Languages and Computation Chapter 7/1

Eliminating e-productions

Elimination of e-productions

Observation : If e € L we cannot eliminate e-productions
preserving the generated language

We prove that if L is a context-free language, then there is a CFG
without e-productions that generates L \ {e}

String € must be processed separately

Automata, Languages and Computation Chapter 7/1

Eliminating e-productions

Elimination of e-productions

Variable A is nullable if A = ¢

Idea : If Ais nullable and there exists a production B — CAD,
then
@ we remove productions with right-hand side ¢

@ we construct two alternative versions of the above production

B — CD A generates ¢
B — CAD A generates other strings

If also C and D are nullable, we have to remove all possible
combinations of C, A and D from production B — CAD

Automata, Languages and Computation Chapter 7/I

Eliminating e-productions

Algorithm for nullable variables

Let G = (V,T,P,S). We can compute the set n(G) of all nullable
variables of G by means of the following inductive algorithm

Base n(G) — {A| (A—¢€) e P}

Induction If there exists in G a production A — BB, - - - By such
that B; € n(G) for each i, 1 < i < k, then

n(G) < n(G) u {A}

Very similar to the algorithm for generating symbols

Automata, Languages and Computation Chapter 7/1

Eliminating e-productions

Elimination of e-productions

Let G = (V,T,P,S) be some CFG. Given n(G), we can build a
new CFG G1 (V T,P1,S) where Py is computed from P as
follows

@ each production (A — €) € P is excluded from P

o let p: (A— Xy Xo---Xi) € P with k > 1; define
N ={i,i2,...,im} as the set of all indices of nullable
variables X;, m < k

e for every possible choice of set N/ = A/, we add to P; a
production constructed from p by deleting each X; with i € N/’

Exception : In case m = k, we do not add to P; the null
production A — ¢

Automata, Languages and Computation Chapter 7/1

Eliminating e-productions

Example

Elimination of e-production from CFG G with productions

S - AB
A= aAA | e
B— bBB | ¢

We first compute set n(G)
@ A,Ben(G)since A—eand B— ¢
@ Sen(G)since S — AB, with A;B € n(G)

Automata, Languages and Computation Chapter 7/1

Eliminating e-productions

Example

From S — AB we construct the new productions S — AB | A | B

From A — aAA we construct the new productions
A— aAA | aA | a

From B — bBB we construct the new productions
B— bBB | bB | b

The resulting CFG G has productions

S>AB|A|B
A—aAA | aA | a
B — bBB | bB | b
and we have L(G;y) = L(G) ~ {¢}

Automata, Languages and Computation Chapter 7/I

Eliminating unary productions

Elimination of unary productions

Let G = (V, T,P,S) be some CFG. A unary production has the
form A — B, where both A and B are variables in V

Note: A — a and A — ¢ are not unary productions

We can eliminate unary productions by expanding the variables in
the right-hand side

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Example

Our grammar for arithmetic expressions with productions

I—>al|bl|la|lb]|I0]I1
F—1](E)
T>F|TxF
E>T|E+T

has unary productions E - T, T — F and F — |
Expanding the right-hand side of production E — T results in
E—-F | TxF

which introduces a new unary production E — F

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Example

If we in turn expand the right-hand side of E — F we get

E—1|(E)

Finally, if we expand E — | we get

E—al|bl|la|ib]i0] Il

The method of successive expansions does not work if there is
some cycle among unary rules, such as in

A-B B->C, C—-A

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Elimination of unary productions

We now present a method based on the notion of unary pairs
which eliminates the unary productions in the general case

Let G = (V,T,P,S) be some CFG. (A, B) is a unary pair if
AL B using only unary productions

Note : For productions A — BC and C — ¢ we have A 2 B;
however, we have not used unary productions only

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Algorithm for unary pairs

Let G = (V, T,P,S). We can compute the set u(G) of all unary
pairs of G by means of the following inductive algorithm

Base u(G) < {(A/A) | Ae V}
Induction If (A,B) € u(G) and (B — C) € P, then
u(G) — u(G) v {(A C)}

Compare with the algorithm for reachable symbols

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Example

Consider the CFG

I—al|b|la|Ib] 0]l

F—1] (E)
T—F|T«F
E-~T|E+T

In the base step we derive the unary pairs (E,E), (T, T), (F,F)e
(1,1)

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Example

In the inductive step

e from (E,E) and E — T we add pair

) T)
F)

)

E) (E
e from (E, T) and T — F we add pair (E
e from F)

E,F) and F — | we add pair (E, /)
e from (T, T) and T — F we add pair (T, F)
T,F) and F — | we add pair (T, /)
F

,F) and F — | we add pair (F,/)

e from

e from

(
(
(
(

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Eliminating unary productions

Let G = (V,T,P,S) be some CFG. We produce a new CFG
G1 = (V,T,P1,S), where Py is constructed from P as follows

e compute u(G)

e for each (A, B) € u(G) and for each (B — «) € P which is
not a unary production, add to P; the production A — «

Note :

@ In the second step, we might have A = B; in this way
non-unary productions in P are all transferred to P;

@ Unary productions are filtered

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Example

We eliminate unary productions from CFG

I—a|bl|la|b]| 0]l
F—1|(E)
T>F|TxF
E>T|E+T

We have already computed set u(G) in a previous example

Automata, Languages and Computation Chapter 7/1

Eliminating unary productions

Example

The second step of the algorithm results in the following
productions

Pair \Productions

(E,E) |E->E+T

(E,T) | E>T=F

(E.F) | E—(E)

(E,1) |E—a|blla|lb]| 0]/l
(T, T) | T>T=xF

(T,F) | T—(E)

(T,I) | T—albl|la|Ib]I0] I
(F.F) | F—(E)

(F, 1) F—al|b|la]Ib]|I0] /1
(1,1 I —>al|b|la|Ib|I0]]I1

Automata, Languages and Computation Chapter 7/I

Eliminating unary productions

Example

Summing up, after eliminating unary productions from the
grammar G with productions

I—al|bl|la|lb]|I0]I1

F—11](E)
T>F | TxF
E-T|E+T

we have the CFG Gj with productions
E-E+T | T«F|(E)|a|b|la|Ib]I0] /1
T—>Tx«F|(E)|al|b|la|b]I0] I/
F—(E)|al|b|la|Ib]I0]I1
I —>a|b|la|Ib| 0]l

Automata, Languages and Computation Chapter 7/1

CFG simplification

CFG simplification

When simplifying a CFG we need to pay special attention to the
order in which we apply the previous transformations

The correct ordering is
@ elimination of e-productions
@ elimination of unary productions

@ elimination of useless symbols

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Chomsky normal form

A CFG is in Chomsky normal form, or CNF for short, if its
productions have one of the two forms

e A— BC,with A,B,Ce V
e A—a withAeVandae T
and the grammar does not have useless symbols

We show that every CFL without the empty string € can be
generated by CNF grammar

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Chomsky normal form

In order to transform a CFG in CNF, we first need to eliminate in
the specified order

@ e-productions
@ unary productions

@ useless symbols

The resulting grammar has productions of the form
e A—a

@ A— o, whereae (VuT)*and |a| =2

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Chomsky normal form

To transform the previous CFG in CNF, we need to perform two
further transformations

@ right-hand sides of length 2 or larger must only have variables

@ right-hand sides of length larger than 2 must be decomposed
into chains of productions with only two variables in their
right-hand side

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

First transformation

For each production with right-hand side « such that |o| > 2 and
for each occurrence in a of ae T

@ construct a new production A — a (A is a fresh variable)

@ use A in place of a in «

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Second transformation

For each production of the form

A—->BB---By, k=3

@ introduce fresh variables Ci, Gy, ..., Cx_o

@ replace the production with the chain of new productions

A— B
G- BG

Ck—3 = Bk—2Cy2
Ck—2 — By_1Bx

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Example

Consider the CFG from the previous example

E>E+T | T«F|(E)|al|bl|la|ib] 0]l
T>T«F|(E)|a|b|la|Ilb]I0]I1
F>(E)|a|b|la|Ib|i0]1
I—>al|b|la|Ib]l0]I1

The first transformation adds productions for the terminal symbols

A—-a B-b Z—-0 0-1

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Example

The first transformation results in the CFG

E—EPT | TMF | LER | a| b |IA|IB|IZ | IO
T—>TMF | LER|a|b|IA|IB|I1Z]| IO
F—-LER|a|bl|IA|IB|IZ| IO
Il—-al|b|IA]IB|IZ] IO

A—a B—b Z—-0 0-1

P>+ M- L—>(, R-)

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Example

The second transformations performs the following replacements

o E — EPT replaced by
E— ECG,GG— PT

e E > TMF, T — TMF replaced by
E->TG, T—> TG, — MF

o E— LER, T — LER,F — LER replaced by
E— LG, T — LG, F — LG, C; — ER

Some variable optimization has been used

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Example

The second transformation results in the final CFG in CNF

E-EG | TG | LG |a|b|IA]IB|IZ] IO
T->TG | LG |a|b|IA|IB|IZ]| IO
F—-LG|a|b|IA|IB]IZ]IO
I—al|b|IA|IB|IZ] IO

G —-PT, GG—> MF, (33— ER

A—a B—-b Z—-0 0->1

P>+ M-x L—>(, R—)

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Exercise

Cast into CNF the CFG G = ({S, A, B}, {a, b}, P, S) with
production set P

S—bA | aB
A— bAA | aS | a
B aBB | bS | b

There are no e-productions, unary productions, or useless symbols.
Therefore we apply the two transformations for the construction of
the CNF

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Exercise

The first transformation performs he following replacements
@ S — bAreplaced by C, — band S — C,A
@ S — aB replaced by C; > aand S — (C,B
o A — bAA replaced by A — CLAA
@ A — a$ replaced by A — C,5
@ B — aBB replaced by B — C,BB
@ B — bS replaced by B — CpS

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Exercise

The second transformation performs he following replacements
o A — CpAA replaced by A — CpD;1 and D; — AA
e B — (,BB replaced by B — C,D, and D, — BB

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Exercise

The resulting CFG is

Gl = ({5’ A7 Ba Ca, Cba Dla D2}7 {37 b}a Pl? S)
where P’ consists of the following productions

S—>GA | CB
A—CS | CD; | a
B— CpyS | CDy | b
D; — AA

D, — BB

C,— a

C,— b

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Exercise

Given a CFG in CNF, how many steps are needed in order to
generate a sentential form of length 9 having 2 variables and 7
terminal symbols? Discuss your answer

Solution : In CNF every production has one of the forms
A—-BC,A— b

To generate a sentential form of length n > 1 entirely composed by
variables, we need n — 1 derivation steps (proof by induction on n)

Automata, Languages and Computation Chapter 7/I

Chomsky normal form

Exercise

Thus 8 steps are needed for a sentential form of length 9 with 9
variables

In addition, 7 variables must become terminal symbols by means of
productions of the form A — a. Thus we need seven more steps in
the derivation

Overall, we need 8+47=15 derivation steps

Automata, Languages and Computation Chapter 7/1

Chomsky normal form

Greibach normal form

A CFG is in Greibach normal form (GNF) if every production has
the form
A — axa

with ae T and a € V*

Important properties of GNF :

@ every nonempty CFL with non-empty strings only has a GNF
grammar

@ a grammar in GNF generates a string of length n in exactly n
steps

Automata, Languages and Computation Chapter 7/1

	Eliminating useless symbols : we can delete symbols that do not contribute to the derivation process
	Eliminating -productions : we can eliminate all derivations generating the empty string
	Eliminating unary productions : we can eliminate chains of productions that do not change the length of the sentential forms
	CFG simplification : combine all presented elimination techniques
	Chomsky normal form : every CFL has a CFG in special form

