Una lezione "salvavita": UNITÀ DI MISURA

"Si sa: la gente da buoni consigli, quando non sa dare il cattivo esempio"

Introduzione

Concetti di base:

- Grandezza fisica
- Misura
- Unità di misura (sistema di unità di misura)

Grandezze fisiche:

- Direttamente misurabili (es. lunghezza, massa ecc.)
- Indirettamente misurabili (es. velocità, accelerazione ecc.)
- Ordinabili (solo temperatura)

Sistema di misura "ideale":

- Decimale
- Coerente (equazione di misura unit.)
- Omogeneo (derivate con equaz.)
- Assoluto (non gravitazionale)

SOLO Sistema Internaz. (SI)

Introduzione

Grandezze fisiche:

Unità di misura:

Direttamente misurabili Ordinabili (temperatura)

Primarie / Fondamentali

Indirettamente misurabili

Secondarie / Derivate (con o senza nome proprio)

Equazioni dimensionali a partire dalle unità primarie

$$w = k_1 \cdot \frac{L}{\tau} = k_1 \cdot L^1 \cdot \tau^{-1} = k_1 \cdot \frac{Lunghezza}{Tempo}$$

Best Practise: Sistema Internazionale

Unità di misura FONDAMENTALI (7) del S.I.:

1. Lunghezza (L): metro, [m]

2. Tempo (τ) : secondo, [s]

3. Massa (M): chilogrammo, [kg]

4. Intensità di corrente (I): Ampere, [A]

5. Temperatura termodin. (θ) : Kelvin, [K]

6. Intensità luminosa (I₁): candela, [cd]

7. Quantità di materia (Q): mole, [mol]

Angolo piano:

• Angolo solido:

radiante, [rad]

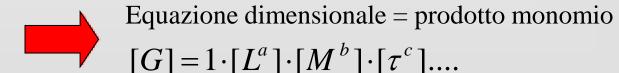
steradiante, [sr]

Supplementari

perché adimensionali

Best Practise: Sistema Internazionale

Esempi di unità di misura DERIVATE del S.I. (con nome proprio):


• Frequenza (f): Hertz, [Hz]: $1 \text{ Hz} = 1 \text{ s}^{-1}$

• Forza (F): Newton, [N]: $1 \text{ N=1 kg} \cdot \text{m/s}^2$

• Pressione (p): Pascal, [Pa]: $1 \text{ Pa=} 1 \text{ N/m}^2$

• Lavoro, energia (E): Joule, [J]: 1 J=1 N·m

• Potenza, flusso termico (P): Watt, [W]: 1 W=1 J/s

Best Practise: Sistema Internazionale

Prefissi multipli e sottomultipli su base 10

Multipli

$$\bullet$$
da = deca = 10^1

•h = etto =
$$10^2$$

•
$$k$$
 = chilo =10³

$$\bullet$$
M = mega = 10^6

$$\bullet G = giga = 10^9$$

•T = tera =
$$10^{12}$$

Sottomultipli

•d =
$$\det = 10^{-1}$$

•c = centi =
$$10^{-2}$$

•m = milli =
$$10^{-3}$$

•
$$\mu$$
 = micro=10⁻⁶

•n = nano =
$$10^{-9}$$

•p =
$$pico = 10^{-12}$$

Es. km, cm, Gb, kW....

Un problema costante: Sistema Metrico Gr. (Tecnico/Pratico)

Unità di misura FONDAMENTALI:

- 1. Lunghezza (L): metro, [m]
- 2. Tempo (τ) : ora, [h]
- 3. Massa (M): chilogrammo, [kg]
- 4. Temperatura (θ): Celsius, [$^{\circ}$ C]
- 5. Forza (F): chilogrammo forza, [kg_f]
- 6. Calore, energia (E): chilocaloria, [kcal], [kWh]

$$g = 9.80665 \text{ m/s}^2 = 1.27 \cdot 10^8 \text{ m/h}^2$$

 $1 \text{ kcal} = 4187 \text{ J} = 4.187 \text{ kJ}$

Unità di misura derivate:

- Potenza (P) [kcal/h], [CV]
- Pressione (p) $[ata]=[kg_f/cm^2]$

L'incubo: Sistema Imperiale

Unità di misura FONDAMENTALI:

1. Lunghezza (L): foot, inch, yard, mile...

2. Tempo (τ) : hour, [h]

3. Massa (M): pound, [lb]

4. Temperatura (θ): Fahrenheit, [°F]

5. Forza (F): libbra forza, [lb_f]

6. Calore, energia (E): British Thermal Unit, [Btu]

1 ft = 12 in (Mars Climate Orbiter, 1999)

1 lb = 0.453 kg 1 Btu = 0.252 kcal

Unità di misura derivate:

• Potenza (P) [Btu/h], [HP]

• Pressione (p) $[psi]=[lb_f/in^2]$

Ricetta salvavita

Unità di lunghezza (L)

	m	in	ft	miglio marino	miglio inglese
m	1	39,3701	3,28084	5,39957 x 10 ⁻⁴	6,21371 x 10 ⁻⁴
in	2,54 x 10 ⁻²	1	8,33333 x 10 ⁻²	1,37149 x 10 ⁻⁵	1,57828 x 10 ⁻⁵
ft	3,048 x 10 ⁻¹	12	1	1,64579 x 10 ⁻⁴	1,89394 x 10 ⁻⁴
miglio marino	1852	72913,4	6076,12	1	1,15078
miglio inglese	1609,34	63360	5280	8,68974 x 10 ⁻¹	1

Tabelle su Moodle, no memoria, no "foglietti"

Buoni Consigli

- Misura, unità di misura, sistemi di u.d.m.
- Sogno: Sistema Internazionale
- <u>Dura realtà</u>: altri sistemi
- Conversione tra sistemi diversi
- Ricetta salvavita
- Kit di sopravvivenza dell'ingegnere

Analisi per tipo di unità di misura: TEMPERATURA (grandezza ordinabile)

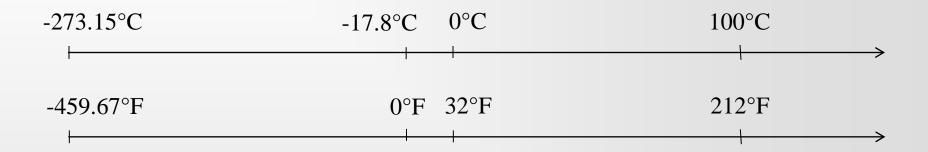
TEMPERATURA

Scala Celsius [°C]

- •0°C : congelamento acqua (1 atm)
- •100°C : ebollizione acqua (1 atm)

Scala Kelvin [K]

- •273.16 K = 0.01°C: punto triplo acqua (inv.)
- •0 K : zero assoluto


$$\Delta T(^{\circ}C) = \Delta T(K)$$

$$T_{K} = t_{\circ C} + 273.15$$
 $t_{\circ C} = T_{K} - 273.15$

TEMPERATURA

Scala Fahrenheit [°F]

- •0°F: congelamento soluzione salina
- •96°F: temperatura corpo umano

$$\Delta T(^{\circ}F) = 0.555 \ \Delta T(^{\circ}C) = 0.555 \ \Delta T(K)$$

$$t_{\circ_{\rm C}} = \frac{t_{\circ_{\rm F}} - 32}{1.8}$$
 $t_{\circ_{\rm F}} = 1.8 \cdot t_{\circ_{\rm C}} - 32$

FORZA

$$1 N = 1 kg m/s^2$$

• ST: chilogrammoforza [kg_f]

$$1 \text{ kg}_{\text{f}} = 9.81 \text{ N}$$

• IM: libbraforza [lb_f]

$$1 lb_f = 4.448 N$$

$$1 \text{ lb} = 0.453 \text{ kg}$$

$$1 \text{ kg} = 2.2 \text{ lb}$$

PRESSIONE

• SI: Pascal [Pa]

 $1 \text{ Pa} = 1 \text{ N/m}^2$

[bar]

 $1 \text{ bar} = 10^5 \text{ Pa}$

[millibar]

 $1 \text{ millibar} = 10^{-3} \text{ bar} = 100 \text{ Pa}$

• ST: atm. tecn. ass. [ata]

1 ata = $1 \text{ kg}_f / \text{cm}^2 = 98066.5 \text{ Pa}$

atm. std. [atm]

1 atm = 101325 Pa

mm_{ca}, torr, mm_{Hg} ...

• IM: pound per square inch abs. [psi, psia]

1 psia = 1 lb_f /in² = 6894.7 Pa

 $1 lb_f/in^2 = 144 lb_f/ft^2$

PRESSIONE (memo)

$$1 \text{ ata} = 98066 \text{ Pa}$$

$$1 \text{ bar} = 100000 \text{ Pa}$$

$$1 \text{ atm} = 101325 \text{ Pa}$$

quindi:

1 bar \cong 1 ata \cong 1 atm

ENERGIA

$$1 J = 1 N m$$

$$1 \text{ kJ} = 10^3 \text{ J}$$

• ST: chilocaloria [kcal]

$$1 \text{ kcal} = 4187 \text{ J}$$

• IM: British Thermal Unit [Btu]

1 Btu=
$$1055.5 J = 0.252 kcal$$

POTENZA

• SI: Watt [W]

1 W = 1 J/s

• ST: [kcal/h]

 $1 \text{ kcal/h} = 1.163 \text{ W} \cong 1 \text{ W}$

1 CV = 735.5 W

• IM: [Btu/h]

1 Btu/h = 0.2931 W

1 HP = 745.7 W

1 HP > 1 CV!!