# Introduction

#### Background

- Untargeted metabolomics data generated from LC-HRMS experiments are typically characterized by 1000s of peaks with unknown chemical identities.
- To assist with compound identification, tandem MS (called MS/MS or MS2) spectra are often collected.
- MS2 methods such as DDA and SWATH-DIA are commonly used

#### Data Formats

Raw spectra files must be saved in common open-source formats and uploaded individually as separate zip files. LC-MS spectra data is mandatory, while MS2 is optional. There are four opensource formats supported:

- i. mzML (recommended);
- ii. mzXML;
- iii. cdf/CDF;
- iv. mzData (phasing-out).

#### **Expected Results**

LC-MS raw spectra processing module provides user comprehensive results on LC-MS1 features and MS2-based compound identifications:

- i. Compound identifcation summary table;
- ii. Visualization on MS2 matching pattern and annotation of fragments;

| TPP compatibility: 🛃 Package in gzip: 🗌      |                                                   |                       |
|----------------------------------------------|---------------------------------------------------|-----------------------|
| Use numpress linear compression;             |                                                   |                       |
| Use numpress short logged float compression: |                                                   |                       |
| Use numpress positive integer compression:   |                                                   |                       |
| Combine ion mobility scans:                  |                                                   |                       |
| SIM as spectra: SRM as spectra:              |                                                   |                       |
| Presets: Generic Defaults                    | Save Preset  Show Command Line Files to convert i | n parallel: 6 🔹 Start |



# Spectra processing and peak calling

#### Go to MetaboAnalyst (<u>https://www.metaboanalyst.ca</u>), and select the module











#### How to use the dynamic EIC generation,

- 1. Select MS feature. From the PCA loading plot, double click the node of interest. Then a dialog will be pop-up automatically;
- 2. View the boxplot and click the sample node: The intensity of all samples are statistically summarized as a boxplot. Double any node to add the EIC of the sample to the right panel. By clicking multiple samples, you can dynamically add more layers into the EIC panel.
- **3. Reset the EIC**: If you want to reset the EIC plot, click the reset circle to empty the EIC panel.



- 1. **Result Summary:** This summary box is used to summarize the basic information of this job;
- 2. Spectra/Sample Table: This table offers detailed information on all samples (see the example at the right side).
- **3.** Feature/Peak Table: This table provides detailed information on all detected features and its putative annotation (see the example from the next page).

|                |                      |            |                 |                |                            | Click the " <b>View</b> " icon to view the corresponding Total Ion |      |  |  |  |
|----------------|----------------------|------------|-----------------|----------------|----------------------------|--------------------------------------------------------------------|------|--|--|--|
| Result Summary | Spectra / Sample Tal | ble Featur | re / Peak Table |                | Chromatogram of the sample |                                                                    |      |  |  |  |
| Spectra ↑↓     |                      | Group ↑↓   | Peaks No. ↑↓    | Missing (%) ↑↓ | RT Range                   | m/z Range                                                          | View |  |  |  |
| Semi_157       | S                    | emi_immune | 5850            | 48.83          | 1.91~296.45                | 85.048~1264.1306                                                   |      |  |  |  |
| Naive_007      | Ν                    | laive      | 4465            | 60.95          | 1.91~297.5                 | 85.0844~1274.5201                                                  |      |  |  |  |
| Naive_027      | Γ                    | laive      | 4497            | 60.67          | 1.91~297.5                 | 85.0762~1274.5201                                                  |      |  |  |  |
| Naive_071      | Ν                    | laive      | 4076            | 64.35          | 1.91~297.5                 | 85.0844~1270.6334                                                  |      |  |  |  |
| Naive_109      | Γ                    | laive      | 4518            | 60.48          | 1.91~297.5                 | 85.0844~1270.6334                                                  |      |  |  |  |
| Naive_127      | Ν                    | laive      | 4500            | 60.64          | 1.91~297.5                 | 85.048~1274.5201                                                   |      |  |  |  |
| Naive_139      | ١                    | laive      | 4364            | 61.83          | 1.91~297.5                 | 85.0844~1274.5201                                                  |      |  |  |  |
| QC_001         | c                    | QC         | 5777            | 49.47          | 1.91~296.45                | 85.048~1264.1306                                                   |      |  |  |  |
| QC_003         | 0                    | QC         | 5836            | 48.95          | 19.25~296.45               | 85.048~1264.1306                                                   |      |  |  |  |
| QC_005         | C                    | QC         | 5636            | 50.7           | 19.25~296.45               | 85.048~1264.1306                                                   |      |  |  |  |
| Semi_025       | S                    | emi_immune | 5634            | 50.72          | 1.91~297.5                 | 85.048~1264.1306                                                   |      |  |  |  |

|   |                                                                                                                    |                                                                                         |                                                                                                        |                                                                            |                                                                                          |                                                                                       |                                                       |                                   | Putative ID     | ls                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                                                                           |
|---|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Desult Cummon                                                                                                      | Spectro / Sample                                                                        | Table Feature                                                                                          | / Peak Table                                                               |                                                                                          |                                                                                       |                                                       |                                   | Formul          | as Compounds                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |
| _ | <ul> <li>For isotopes/add</li> <li>All compounds/f</li> <li>Intensity is avera</li> <li>When group info</li> </ul> | lucts annotation, the<br>formulas are match-<br>ge of all samples. Commation is provide | e matching is based<br>ed to <u>HMDB</u> (v5) ba<br>Coefficient of variation<br>d, p values wiil be co | d on the m/z va<br>sed on the mas<br>on (CV) is also t<br>alculated with t | lue of its correspond<br>ss error (ppm value)<br>he summarized base<br>-test/ANOVA based | ding parent ion. Ot<br>for raw spectra pro<br>ed on all samples.<br>on log transforme | therwise, it is considered as<br>ocessing.<br>d data. | in the format of the primary ion. | <u>C15H24C</u>  | 1-Hydroxyepiacorone: Acorusdiol<br>4.11:4.12-diepoxy-3-eudesmanol:<br>11.12-Dihydroxy-110-spirovetiven<br>Apotrichodiol: 6alpha-Carissanol: ;<br>23: Epioxylubimin: Dihydromyoporon<br>Zedoarondiol: Hydroxypelenolide:<br>Urodiolenone: Bisacurone B; 2.3-D<br>alcohol: 3-Methyl-5-pentyl-2-fura<br>3-Methyl-5-progyl-2-furanheptan | I: 34->5-Abeo-<br>: 4B SS.7B.11R-<br>n-2-one:<br>alpha-Carissanol:<br>ne: Piperalol:<br>I: Toxin FS2:<br>Dihydroabscisic<br>angentanoic acid:<br>noic acid: |
|   | m/z ↑↓                                                                                                             | RT/s ↑↓                                                                                 | Intensity ↑↓                                                                                           | cv (%)<br>↑↓                                                               | P values ↑↓                                                                              | FDR                                                                                   | Annotations                                           | Putative<br>IDs View              | Click<br>the pu | the " <b>Putative ID</b> " ico<br>tative ID results. Ple                                                                                                                                                                                                                                                                             | on to view<br>ease note,                                                                                                                                    |
|   | 544.370236354959                                                                                                   | 38.6911764                                                                              | 1.1206938E7                                                                                            | 45.27                                                                      | 6.2481402E-23                                                                            | 0.0                                                                                   |                                                       |                                   | this ch         | nemical ID is generation on the MS1 information                                                                                                                                                                                                                                                                                      | ted based                                                                                                                                                   |
|   | 684.830841124181                                                                                                   | 91.503288                                                                               | 4.3811566E7                                                                                            | 49.65                                                                      | 1.1195928E-22                                                                            | 0.0                                                                                   |                                                       |                                   | Feat            | ures without the puta                                                                                                                                                                                                                                                                                                                | ative IDs                                                                                                                                                   |
|   | 237.170126537048                                                                                                   | 28.9694562                                                                              | 8.1026999E7                                                                                            | 51.62                                                                      | 8.2754042E-22                                                                            | 0.0                                                                                   | M0 M-H-                                               |                                   | from            | HMDB database we show the Icon.                                                                                                                                                                                                                                                                                                      | ould not                                                                                                                                                    |
|   | 293.196509329594                                                                                                   | 23.9772402                                                                              | 1.1601194E7                                                                                            | 38.33                                                                      | 8.1127794E-21                                                                            | 0.0                                                                                   | 13C/12C ACN                                           |                                   |                 |                                                                                                                                                                                                                                                                                                                                      | ·i                                                                                                                                                          |
|   | 336.945587666283                                                                                                   | 59.710875                                                                               | 3.4089651E7                                                                                            | 48.97                                                                      | 1.199339E-20                                                                             | 0.0                                                                                   | M0 M-H-                                               |                                   |                 |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |
|   | 238.173669143381                                                                                                   | 28.4439942                                                                              | 8563085.0                                                                                              | 44.38                                                                      | 1.7304435E-20                                                                            | 0.0                                                                                   | 13C/12C M-H-                                          |                                   | i               |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |
|   | 830.365552376317                                                                                                   | 72.322668                                                                               | 4.2872149E7                                                                                            | 40.62                                                                      | 1.9462206E-20                                                                            | 0.0                                                                                   |                                                       |                                   |                 | Click the " <b>View</b> " id<br>the corresponding<br>EIC plot pa                                                                                                                                                                                                                                                                     | con to start<br>g dynamic<br>anel.                                                                                                                          |
|   | 125.060050295032                                                                                                   | 275.9517                                                                                | 5525526.0                                                                                              | 42.88                                                                      | 2.8978219E-20                                                                            | 0.0                                                                                   |                                                       |                                   |                 |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |

#### **Tandem MS**



#### **Tandem MS**



# Spectra processing and peak calling

#### Go to MetaboAnalyst (<u>https://www.metaboanalyst.ca</u>), and select the module



#### Spectra processing and peak calling



https://new.metaboanalyst.ca/MetaboAnalyst/faces/Share?ID=q2m2bo7wo\_12873



All processed results are displayed at the results, including MS1 spectra processing results (summary and visualization) and MS2 results. Result Summary Spectra / Sample Table Feature / Peak Table MS/MS Results

• For isotopes/adducts annotation, the matching is based on the m/z value of its corresponding parent ion. Otherwise, it is considered as in the format of the primary ion.

All compounds/formulas are matched to HMDB (v5) based on the mass error (ppm value) for raw spectra processing.

Intensity is average of all samples. Coefficient of variation (CV) is also the summarized based on all samples.

• When group information is provided, p values will be calculated with t-test/ANOVA based on log transformed data.

| m/z ↑↓   | RT/s Î↓ | Intensity ↑↓ | cv (%)<br>↑↓ | P values  ↑↓ | FDR        | Annotations | Putative<br>IDs | View |
|----------|---------|--------------|--------------|--------------|------------|-------------|-----------------|------|
| 160.8422 | 79.23   | 11036.9      | 46.45        | 1.5068802E-4 | 0.01476743 |             |                 | 6    |
| 217.0301 | 84.55   | 215276.0     | 10.02        | 0.0027741963 | 0.0659002  |             |                 |      |
| 117.0555 | 138.64  | 20089.0      | 25.41        | 0.0029012625 | 0.0659002  |             |                 | 6    |
| 96.9598  | 72.13   | 38909.9      | 14.77        | 0.0036270983 | 0.0659002  |             |                 |      |
| 678.5083 | 81.66   | 9218.9       | 69.89        | 0.0065294412 | 0.0659002  |             |                 | 6    |
| 215.0331 | 84.66   | 577626.3     | 8.77         | 0.0082779721 | 0.0659002  |             |                 | 6    |



### **Summary peak calling**

- Raw spectra files must be saved in common opensource formats and uploaded individually as separate zip files.
- LC-MS spectra data is mandatory, while MS2 is optional. Upon data uploading, MetaboAnalyst 6.0 automatically validates the status of MS files.
- For SWATH-DIA data, the SWATH window design is automatically extracted from the spectra. If the related information is missing, users will be prompted to enter the window design manually.
- On the parameters setting page, users are given the option to choose the default auto-optimized centWave algorithm or use the *asari* algorithm for LC-MS data processing.
- If MS2 data is included, spectra deconvolution, consensus, and database searching are performed automatically, using the MS features as target list. Once the spectra processing is complete, users can explore both MS and MS2 data processing results.

#### Go to MetaboAnalyst (<u>https://www.metaboanalyst.ca</u>), and select the module

| 6.0                           | MetaboAnalyst <b>6.0</b>                                                                                             | - from raw spectra to b                                   | iomarkers, patterns, fund                                                                                          | ctions and systems biolo                                         | ogy                                                                                                                                                                                     |                        |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| ie<br>i Formats               | Module Overview                                                                                                      |                                                           |                                                                                                                    |                                                                  |                                                                                                                                                                                         |                        |  |
| als                           | Input Data Type                                                                                                      | Available Modules (click on a mo                          | odule to proceed, or scroll down to e                                                                              | xplore a total of 18 modules includir                            | g <u>utilities</u> )                                                                                                                                                                    |                        |  |
| <mark>orum</mark><br>AnalystR | LC-MS Spectra<br>(mzML, mzXML or mzData)                                                                             |                                                           | N                                                                                                                  | Spectra Processing<br>[LC-MS1 w/wo MS2]                          |                                                                                                                                                                                         |                        |  |
| ons<br>fistory                | MS Peaks<br>(peak list or intensity table)                                                                           |                                                           | Peak Annotation<br>[MS2-DDA/DIA]                                                                                   | Functional Analysis<br>[LC-MS]                                   | Functional Meta-analysis<br>[LC-MS1]                                                                                                                                                    |                        |  |
|                               | Generic Format<br>(.csv or .bxt table files)                                                                         | Statistical Analysis<br>[one factor]                      | Statistical Analysis<br>[metadata table]                                                                           | Biomarker Analysis                                               | Statistical Meta-analysis                                                                                                                                                               | Dose Response Analysis |  |
|                               | Annotated Features<br>(metabolite list or table)                                                                     |                                                           | Enrichment Analysis                                                                                                | Pathway Analysis                                                 | Network Analysis                                                                                                                                                                        |                        |  |
|                               | Link to Genomics & Phenotypes<br>(metabolite list)                                                                   |                                                           |                                                                                                                    | Causal Analysis<br>[Mendelian randomization]                     |                                                                                                                                                                                         |                        |  |
| airs                          | >> Spectral Processing.[LC-MS1.w/                                                                                    | wo MS2]                                                   | >> Peak Annotation [MS2-DIA/D                                                                                      | DAI                                                              | >>> Functional Analysis [LC-MS1                                                                                                                                                         | 1                      |  |
| ON<br>atto                    | This module allows users to upload raw<br>(mzML, mzXML or mzData) to be proce<br>optimized workflow based on MetaboA | r LC-MS spectra<br>issed using our<br>AnalystR 4.0 or the | This module performs MS2 peak ann<br>comprehensive list of public databas<br>directly enter a two-column peak list | otation based on a<br>es. Users can either<br>containing m/z and | This module accepts high-resolution LC-MS spectral peak<br>data to perform metabolic pathway enrichment analysis<br>and visual exploration based on the <u>mummichog</u> or <u>GSEA</u> |                        |  |

#### File preparation

#### Two files need to prepared:

- 1. LC-MS1 peak list: this file should consist of multiple columns containing complete LC-MS1 features. m/z, retention time (rt), and p values are required for accurate functional analysis. Besides, users are recommended to provide t scores column. Please note that this peak list must contain all LC-MS1 features (no matter they are significant or not). Usually, for untargeted metabolomics on a biological sample, the complete features number is over 5,000.
- 2. MS2-based compound candidate list: This file should consist of the MS2-based compound identification results. This table can be in two formats:
  - Format 1: A specific column, named as "index" added before the compound candidate columns. The index refers to the corresponding number the LC-MS1 peak list (see example below). Users can provide 3-10 chemical candidate for each MS1 feature;
  - **Format 2:** The number of rows of the two data should be the same and corresponding (see next page).

|    | Α        | В      | C        | D |
|----|----------|--------|----------|---|
| 1  | mz       | rt     | p.value  |   |
| 2  | 139.5311 | 44.87  | 5.38E-06 |   |
| 3  | 204.056  | 42.26  | 2.31E-05 |   |
| 4  | 203.1279 | 784.65 | 7.5E-05  |   |
| 5  | 521.3151 | 304.9  | 0.001754 |   |
| 6  | 345.1516 | 577.72 | 0.002652 |   |
| 7  | 250.1777 | 481.76 | 0.004474 |   |
| 8  | 714.5077 | 762.3  | 0.004555 |   |
| 9  | 189.0737 | 53.16  | 0.004971 |   |
| 10 | 307.5487 | 461.67 | 0.005336 |   |
| 11 | 366.1607 | 190.66 | 0.005795 |   |
| 12 | 776.3663 | 782.33 | 0.005948 |   |
| 13 | 486.2957 | 714.81 | 0.006051 |   |
| 14 | 599.4561 | 768.32 | 0.006113 |   |
| 15 | 344.2124 | 512.66 | 0.006171 |   |
| 16 | 492.2939 | 319.1  | 0.006195 |   |
| 17 | 678.3317 | 782.33 | 0.007085 |   |
| 18 | 713.422  | 283.4  | 0.00759  |   |
| 19 | 238.5637 | 44.38  | 0.008047 |   |

|    | A     | В                 | C                | D                | E                 | F               | G         | Н     |
|----|-------|-------------------|------------------|------------------|-------------------|-----------------|-----------|-------|
| 1  | index | InchiKey_1        | InchiKey_2       | InchiKey_3       | InchiKey_4        | InchiKey_5      |           |       |
| 2  | 2     | MGSKVZWGBWPBTF    | TZJAEGCLMLTGRJ-U | OVRNDRQMDRJTHS   | NA                | NA              |           |       |
| 3  | 8     | FWULQXYJOANGSS-   | JDVVGAQPNNXQDW   | BJTZATWAPRKXBV-U | LIWMQSWFLXEGMA    | VEQOALNAAJBPNY- | UHFFFAOY  | SA-N  |
| 4  | 10    | LUALIOATIOESLM-U  | NA               | NA               | NA                | NA              |           |       |
| 5  | 42    | WIYUZYBFCWCCQJ-   | HGSOUJPIFSDBKJ-O | NA               | NA                | NA              |           |       |
| 6  | 44    | HOVAGTYPODGVJG-   | RYYVLZVUVIJVGH-U | NA               | NA                | NA              |           |       |
| 7  | 56    | FQZPXSRKCOWUEI-   | YRXOQXUDKDCXME   | YRXOQXUDKDCXME   | OTGQIQQTPXJQRG-   | NA              |           |       |
| 8  | 68    | RYYVLZVUVIJVGH-UI | PXQPEWDEAKTCGB   | KSEBMYQBYZTDHS-  | QURCVMIEKCOAJU-   | NA              |           |       |
| 9  | 70    | HJMQDJPMQIHLPB-   | AMDPNECWKZZEBQ   | IRZVHDLBAYNPCT-U | NA                | NA              |           |       |
| 10 | 74    | YEJYLHKQOBOSCP-   | OKJCFMUGMSVJBG-  | NPJICTMALKLTFW-C | NA                | NA              |           |       |
| 11 | 94    | XJLSEXAGTJCILF-UF | JWYOAMOZLZXDER-  | NILQLFBWTXNUOE-  | PJDFLNIOAUIZSL-UH | DDSLGZOYEPKPSJ- | UHFFFAOYS | A-N   |
| 12 | 112   | DKLKMKYDWHYZTD-   | SSEBTPPFLLCUMN-  | MTFCPNHRBINLRQ-  | IGLHHSKNBDXCEY-   | NA              |           |       |
| 13 | 123   | IEPGNWMPIFDNSD-   | IEPGNWMPIFDNSD-  | WECGLUPZRHILCT-  | NA                | NA              |           |       |
| 14 | 129   | HXFOXFJUNFFYMO-   | NA               | NA               | NA                | NA              |           |       |
| 15 | 141   | OTCCIMWXFLJLIA-B  | NXQJDVBMMRCKQG   | NRNCYVBFPDDJNE-  | POJWUDADGALRAB-   | NA              |           |       |
| 16 | 160   | IZYCZPAFZQFMCQ-U  | NVEPPWDVLBMNME   | GHOKWGTUZJEAQD   | WTDRDQBEARUVNC    | JXXCENBLGFBQJM- | UHFFFAOY  | SA-N  |
| 17 | 161   | LUINDDOUWHRIPW    | DFQOXFIPAAMFAU-U | NA               | NA                | NA              |           |       |
| 18 | 186   | VLSMHEGGTFMBBZ-   | NA               | NA               | NA                | NA              |           |       |
| 19 | 198   | IRZTUXPRIUZXMP-U  | RTIXKCRFFJGDFG-U | LCAWNFIFMLXZPQ-  | NA                | NA              |           |       |
| 20 | 205   | XUQWWIFROYJHCU    | SEKYBDYVXDAYPY-A | SEKYBDYVXDAYPY-U | IDTCGADOYRIRKB-U  | NA              |           |       |
| 21 | 206   | CMRNMZJAUFXOQF    | FMMOOAYVCKXGM    | XSXIVVZCUAHUJO-H | XSXIVVZCUAHUJO-U  | XUJWOMMOEOHPF   | P-UTJQPWE | SSA-N |
|    |       |                   |                  |                  |                   |                 |           |       |

#### File preparation

|     |            |        |           | Heade | er of data is requir | red  |      |                 |        |                  |                       |                  |                  |           |       |
|-----|------------|--------|-----------|-------|----------------------|------|------|-----------------|--------|------------------|-----------------------|------------------|------------------|-----------|-------|
|     | A          | В      | /         | U U   |                      |      | А    | В               |        | С                | D                     | E                | F                | G         | Н     |
| 1   | mz         | rt     | p.value   |       |                      | 1 Jo | ndex | nchiKey 1       | լ      | nchiKey_2        | InchiKey 3            | InchiKey_4       | InchiKey 5       |           |       |
| 5   | 139 5311   |        | 538E-06   |       |                      | 2    | 2    | MGSKVZWGBWPE    | BTF T2 | ZJAEGCLMLTGRJ-U  | <b>OVRNDRQMDRJTHS</b> | NA               | NA               |           |       |
|     | 204 056    | 42.26  | 2 31 E-05 |       |                      | 3    | 8    | WULQXYJOANG     | SS- JE | OVVGAQPNNXQDW    | BJTZATWAPRKXBV-U      | LIWMQSWFLXEGMA   | VEQOALNAAJBPNY-U | HFFFAOYS/ | -N    |
| Ľ   | 204.000    | 704 65 | 7 55 05   |       |                      | 4    | 10   | LUALIOATIOESLM  | 1-U N  | A                | NA                    | NA               | NA               |           |       |
| 4   | 501.0151   | 704.05 | 7.5E-05   |       |                      | 5    | 42   | WIYUZYBFCWCC    | QJ- H  | IGSOUJPIFSDBKJ-O | NA                    | NA               | NA               |           |       |
| 2   | 521.5151   | 504.9  | 0.001754  |       |                      | 6    | 44   | HOVAGTYPODGV    | JG-R   | YYVLZVUVIJVGH-UI | NA                    | NA               | NA               |           |       |
| 6   | 345.1516   | 5/7.72 | 0.002652  |       |                      | 7    | 56   | FQZPXSRKCOWU    | EI- YI | RXOQXUDKDCXME    | YRXOQXUDKDCXME        | OTGQIQQTPXJQRG-  | NA               |           |       |
| 7   | 250.1///   | 481.76 | 0.004474  |       |                      | 8    | 68   | RYYVLZVUVIJVGH  | I-UIP  | XQPEWDEAKTCGB    | KSEBMYQBYZTDHS-       | QURCVMIEKCOAJU-  | NA               |           |       |
| - 8 | 714.5077   | 762.3  | 0.004555  |       |                      | 9    | 70   | HJMQDJPMQIHLP   | PB-IA  | MDPNECWKZZEBQ    | IRZVHDLBAYNPCT-U      | NA               | NA               |           |       |
| 9   | 189.0737   | 53.16  | 0.004971  |       |                      | 10   | 74   | YEJYLHKQOBOSC   | CP-10  | KJCFMUGMSVJBG-   | NPJICTMALKLTFW-C      | NA               | NA               |           |       |
| 1   | 307.5487   | 461.67 | 0.005336  |       |                      | 11   | 94   | KJLSEXAGTJCILF- | -UF JV | WYOAMOZLZXDER-   | NILQLFBWTXNUOE-       | PJDFLNIOAUIZSL-U | DDSLGZOYEPKPSJ-U | HFFFAOYSA | -N    |
| 1   | 1 366.1607 | 190.66 | 0.005795  |       |                      | 12   | 112  | DKLKMKYDWHYZ    | TD-S   | SEBTPPFLLCUMN-   | MTFCPNHRBINLRQ-       | IGLHHSKNBDXCEY-  | NA               |           |       |
| 1.  | 2 776.3663 | 782.33 | 0.005948  |       |                      | 13   | 123  | EPGNWMPIFDNS    | SD- IE | PGNWMPIFDNSD-    | WECGLUPZRHILCT-       | NA               | NA               |           |       |
| 1   | 486.2957   | 714.81 | 0.006051  |       |                      | 14   | 129  | HXFOXFJUNFFYM   | 10-I N | A                | NA                    | NA               | NA               |           |       |
| 1.  | 4 599.4561 | 768.32 | 0.006113  |       |                      | 15   | 141  |                 | A-B N  | XQJDVBMMRCKQG    | NRNCYVBFPDDJNE-       | POJWUDADGALRAB   |                  |           |       |
| 1   | 5 344.2124 | 512.66 | 0.006171  |       |                      | 16   | 160  |                 | Q-UN   |                  | GHOKWGTUZJEAQD        | WIDRDQBEARUVNC   | JXXCENBLGFBQJM-U | HFFFAUYS/ | A-IN  |
| 1   | 5 492,2939 | 319.1  | 0.006195  |       |                      | 1/   | 101  |                 |        | FQUXFIPAAMFAU-U  |                       | NA               | NA               |           |       |
| 1   | 7 678.3317 | 782.33 | 0.007085  |       |                      | 18   | 100  |                 | DZ-IN  |                  |                       |                  | NA               |           |       |
| 1   | 713 422    | 283.4  | 0.00759   |       |                      | 20   | 205  |                 |        |                  |                       |                  |                  |           |       |
| 1   | 238 5637   | 44.38  | 0.008047  |       |                      | 20   | 200  |                 |        |                  |                       |                  |                  |           | SA N  |
|     | 230.3037   | 44.30  | 0.000047  |       |                      | 21   | 206  |                 | QF-FI  | MMOUATVCKAGMI    | X3XIVVZCUARUJU-P      | V2VIANO10-0      | XUIWOMMOEOHPPP   | UNQPWES   | SH-IN |

LC-MS1 peak list

LC-MS2-based compound identification results list

#### File preparation

The number of rows of the two data should be the same and corresponding to each other; If there are no MS2-based compound identification results, please fill **NA** in the rows. You can provide 3-10 chemical candidate for each MS1 feature.

|    | A        | В       | C       | D       | E        |         |    | A                | В                | С                     | D               | E         |
|----|----------|---------|---------|---------|----------|---------|----|------------------|------------------|-----------------------|-----------------|-----------|
| 1  | mz       | rt      | t.score | p.value | mode     |         | 1  | Inchikey1        | Inchikey2        | Inchikey3             | Inchikey4       | Inchikey5 |
| 2  | 52.99813 | 1202.7  | 1.4439  | 0.165   | positive |         | 2  | NA               | NA               | NA                    | NA              | NA        |
| 3  | 53.00038 | 1295.16 | 2.474   | 0.0193  | positive |         | 3  | NA               | NA               | NA                    | NA              | NA        |
| 4  | 53.00228 | 1291.68 | 2.7635  | 0.0094  | positive |         | 4  | NA               | NA               | NA                    | NA              | NA        |
| 5  | 53.00296 | 1273.08 | 3.1435  | 0.0037  | positive |         | 5  | NA               | NA               | NA                    | NA              | NA        |
| 6  | 53.00432 | 1264.08 | 2.7164  | 0.0106  | positive |         | 6  | NA               | NA               | NA                    | NA              | NA        |
| 7  | 59.04659 | 1076.76 | 2.1416  | 0.042   | positive |         | 7  | NA               | NA               | NA                    | NA              | NA        |
| 8  | 59.04682 | 1106.76 | 0.9601  | 0.3477  | positive |         | 8  | XUWHAWMETYGRKE   | NYEZZYQZRQDLEH-  | SECXISVLQFMRJM-U      | NA              | NA        |
| 9  | 59.04705 | 992.94  | 1.3661  | 0.1827  | positive |         | 9  | XUWHAWMETYGRKE   | NYEZZYQZRQDLEH-  | SECXISVLQFMRJM-U      | NA              | NA        |
| 10 | 59.04716 | 871.5   | 1.6124  | 0.1168  | positive |         | 10 | XUWHAWMETYGRKE   | NYEZZYQZRQDLEH-  | SECXISVLQFMRJM-U      | NA              | NA        |
| 11 | 59.04739 | 1259.94 | 0.2004  | 0.8432  | positive |         | 11 | PAFZNILMFXTMIY-U | NA               | NA                    | NA              | NA        |
| 12 | 59.04752 | 1129.98 | 0.5856  | 0.5635  | positive |         | 12 | PAFZNILMFXTMIY-U | NA               | NA                    | NA              | NA        |
| 13 | 59.04757 | 677.64  | 0.2032  | 0.8408  | positive |         | 13 | NA               | NA               | NA                    | NA              | NA        |
| 14 | 59.04778 | 1002.6  | 0.1681  | 0.8682  | positive |         | 14 | DYDCUQKUCUHJBH   | KYCJNIUHWNJNCT-  | <b>KHIQJCVGWNEQMI</b> | DYDCUQKUCUHJBH  | NA        |
| 15 | 59.048   | 1302.06 | 2.0595  | 0.0483  | positive |         | 15 | NA               | NA               | NA                    | NA              | NA        |
| 16 | 59.04802 | 968.1   | 0.2093  | 0.8358  | positive |         | 16 | NA               | NA               | NA                    | NA              | NA        |
| 17 | 59.04805 | 1184.76 | 0.852   | 0.402   | positive |         | 17 | NA               | NA               | NA                    | NA              | NA        |
| 18 | 59.04829 | 1122.66 | 0.2977  | 0.7684  | positive |         | 18 | NA               | NA               | NA                    | NA              | NA        |
| 19 | 59.04842 | 865.98  | 0.387   | 0.7017  | positive |         | 19 | NA               | NA               | NA                    | NA              | NA        |
| 20 | 59.04854 | 1069.5  | 0.8101  | 0.428   | positive |         | 20 | NUVWVUPJCXRIIW-  | KFDVPJUYSDEJTH-U | KGIGUEBEKRSTEW-       | YAXKTBLXMTYWDQ- | NA        |
| 21 | 59.04856 | 1033.62 | 1.0973  | 0.2836  | positive |         | 21 | NUVWVUPJCXRIIW-  | KFDVPJUYSDEJTH-U | KGIGUEBEKRSTEW-       | YAXKTBLXMTYWDQ- | NA        |
|    |          |         |         |         |          | <u></u> |    |                  |                  |                       |                 |           |

LC-MS2-based compound identification results list

LC-MS1 peak list

#### Please upload your data

This module supports functional analysis of untargeted metabolomics data generated from high-resolution mass spectrometry (HRMS). The basic assumption is that <u>putative annotation at individual compound level can collectively predict changes at functional levels</u> as defined by **metabolite sets** or **pathways**. This is because changes at group level rely on "collective behavior" which is more tolerant to random errors in compound annotation as demonstrated by <u>Li et al</u>. To use this approach,

The input peak list or peak table must contain the complete data, not just significant data - we need the complete data to estimate the null model (background);



#### Data Integrity Check:

- Checking sample names spaces will replaced with underscore, and special characters will be removed;
- Checking the class labels at least three replicates are required in each class.
- The data (except class labels) must not contain non-numeric values.
- · If the samples are paired, the pair labels must conform to the specified format.
- The presence of missing values or features with constant values (i.e. all zeros).

Data processing information: Checking data content ...passed. A total of 7340 m/z features were found in your uploaded data. 5 compounds found in your uploaded data. The instrument's mass accuracy is 5 ppm. The instrument's analytical mode is positive . The uploaded data contains 3 columns. The column headers of uploaded data are m.z, p.value, r.t. The range of m/z peaks is trimmed to 50-2000. 0 features have been trimmed. A total of 7340 input mz features were retained for further analysis. A total of 1455 InchiKeys Compounds included. Click "Proceed" button Missing Values Edit Groups Proceed to continue.

MetaboAnalyst could

process your data and do

an integrity check at first.

The integrity check results

are summarized here.

