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Also known: IMMUNOMETABOLISM




Immunometabolism across the immune system
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Variety of cell types

- multiple phenotypes

- local microenvironments
- different functions

Common denominators
- actionable

- highly plastic

- Interactive

- migrate and adapt



Metabolically restrictive environment
(e.g. inflamed tissue, tumor, or infection)

Lymphoid Metabolic
tissue reprogramming
to cope with
environmental
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Immunometabolism or metabolic immunology

» Pathogenic defense is necessary for survival
» The body’s immune response involves key changes to metabolic processes
» Immune mediators, such as cytokines, also dictate changes in metabolism

____________________________________________
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Early observations that inflammatory cytokines are induced in obese adipose tissue
and that these cytokines contribute to metabolic disease

Makovski et al, Immunol Rev, 2020



Immunometabolism or metabolic immunology

» Pathogenic defense is necessary for survival
» The body’s immune response involves key changes to metabolic processes
» Immune mediators, such as cytokines, also dictate changes in metabolism
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Early observations that inflammatory cytokines are induced in obese adipose tissue
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In addition to metabolic tissues regulating immune cells,
the metabolism of immune cells themselves is highly
regulated. Signaling pathways are activated to promote
aerobic glycolysis in stimulated immune cells and play
key roles to reprogram metabolism from catabolic
oxidative pathways to anabolic pathways.
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Activation stimulates proliferation

Immune cell activation
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Immune cells Activator cocktail Immunecell Proliferation
T & Custering

Antigens
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Vaccines
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Drugs

During an immune response, activated cells of the immune system, such as T
lymphocytes, undergo rapid expansion in order to fight infection or disease. Many
interactions also occur between activated immune cells (e.g., T cell interactions with
antigen-presenting cells and interactions between T cells themselves).



Activation stimulates proliferation

Immune cell activation
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During an immune response, activated cells of the immune system, such as T
lymphocytes, undergo rapid expansion in order to fight infection or disease. Many
interactions also occur between activated immune cells (e.g., T cell interactions with
antigen-presenting cells and interactions between T cells themselves).



Activation stimulates glycolysis
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Increased glycolysis can be considered a hallmark metabolic change in most immune cells undergoing
rapid activation, for instance, in response to stimulation of PRRs, cytokine receptors or antigen
receptors. Enhanced glycolysis enables the immune cell to generate sufficient ATP and biosynthetic
intermediates to proliferate.

Makovski et al, Immunol Rev, 2020



There is abundant evidence that metabolic pathways are closely tied
to cell signaling and differentiation which leads different subsets of
immune cells to adopt unique metabolic programs specific to their
state and environment. In this way, metabolic signaling drives cell
fate.

It is also apparent that microenvironment greatly influences cell
metabolism. Immune cells adopt programs specific for the tissues
where they infiltrate and reside. In this way, nutrient availability
impacts effector function.



Metabolism in macrophage function

Enhanced glycolysis enables macrophages to generate sufficient ATP and biosynthetic
iIntermediates to carry out its particular effector functions. For macrophages this includes
phagocytosis and inflammatory cytokine production.
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Metabolism in macrophage function

The NLRP3 inflammasome is a crucial regulator of caspase 1, which generates mature IL-13, as
well as active IL-18, and induces a type of cell death called pyroptosis.

The inflammasome is activated in response to mitochondrial (and glycolytic) activity.
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Macrophages adapt their redox status in
response to infection

NADPH has multiple functions in immune cells.

It is used by the NADPH oxidase to generate reactive oxygen species (ROS)
during the respiratory burst, but as a counter-balance it is also used to generate
glutathione and other antioxidants.

During an infection, macrophages and neutrophils probably require both of these
NADPH-dependent functions — rapid ROS production to clear the infectious agent
followed by induction of antioxidants to prevent excessive tissue damage.
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Macrophages adapt their redox status in
response to infection

LPS-activated macrophages induce PPP to elevate NADPH availability
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Hypercholesterolemia impairs macrophage redox
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Hypercholesterolemia impairs macrophage redox
status
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Metabolism in macrophage polarization
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TNF and/or IFNy J L ILl-4 and/or IL-13

§\5 —{\/"\,

¢

Mitochondrion

N
M1 macrophage M2 macrophage

Antimicrobial properties Tissue repair properties
T Glycolysis T Mitochondrial respiration
Blocked TCA cycle Intact TCA cycle
L OXPHOS activity T Fatty acid utilization
T Production of inflammatory T Production of anti-inflammatory

intermediates cytokines
T Antimicrobial responses T Tissue remodelling responses

« T NADPH oxidase activity « | Production of inflammatory lipids

« Use of arginine to generate NO » Promotion of angiogenesis

« T Antigen presentation « ECM remodelling

« T Production of itaconate




Metabolism in macrophage polarization

M1:

Glycolytic, broken TCA,
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Metabolism in macrophage polarization
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Metabolism in macrophage polarization

M1:

Glycolytic, broken TCA,
elevated PPP
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including FAO
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PKM switch dictates
macrophage polarization



PKM2 promotes M2 skewing
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TCA intermediates in macrophage polarization

M2 macrophage
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In M2 macrophages, there is an intact TCA cycle that is coupled to oxidative phosphorylation. This
allows the generation of UDP-GIcNAc intermediates that are necessary for the glycosylation of
M2-associated receptors, such as the mannose receptor.

However, in M1 macrophages the TCA cycle has been shown to be broken in two places — after

citrate (owing to a decreasein expression of isocitrate lyase) and after succinate.
O’Neill et al, Nat Rev Immunol, 2016



Different acetyl-CoA utilization in M1 vs M2

The citrate that accumulates in M1 macrophages has been shown to be
exported from the mitochondria via the citrate transporter. It is then utilized for
the production of fatty acids, which in turn are used for membrane biogenesis.

Excess citrate can also feed into pathways that generate nitric oxide and prostaglandins, which
are key effector molecules made by macrophages.
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Different acetyl-CoA utilization in M1 vs M2
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A third metabolite generated from citrate is itaconic acid, which has been shown
to have direct bactericidal effects on species such as Salmonella enterica and
Mycobacterium tuberculosis. This particular example shows how a metabolic
rewiring event can generate metabolites with direct antimicrobial activity.
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ltaconate Is a competitive inhibitor
(endogenous)
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Itaconate is an endogenous SDH inhibitor

Inhibiting SDH, Itaconate promotes reverse electron flow along the ETC and ROS
generation (to support phagocytosis)
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Complex Il is the site of reverse electron transport (RET) in inflammatory macrophages (ROS, hence
NRF2 activation) and is also responsible for regulating fumarate levels linking to epigenetic changes.

In trained immunity, fumarate-induced epigenetic changes (i.e., H3K27Ac and H3K4me3) can restore
the inflammatory response to LPS, rescuing immune paralysis.
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[taconate is an endogenous PDH inhibitor
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Log10 P-value

[taconate is an endogenous PDH inhibitor
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Succcinate that accumulates in M1 macrophages as a consequence of a broken TCA
cycle has a direct impact on macrophage cytokine production. One mechanism
involved is inhibition of prolyl-hydroxylases by succinate, leading to the stabilization of

HIF1a and the sustained production of IL-13. This pathway will operate under
normoxia as well as in hypoxia, and is therefore a mechanism for HIF1a activation under

aerobic conditions.

Lampropoulou et al, Cell Metab, 2016



[taconate is an endogenous PDH inhibitor
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Itaconate prevents abdominal aortic aneurysm formation through
inhibiting inflammation via activation of Nrf2

Haoyu Song®", Tong Xu?, Xiaofei Feng?, Yanxian Lai?, Yang Yang? Hao Zheng?, Xiang He?,
Guoquan Wei?, Wangjun Liao¢, Yulin Liao? Lintao Zhong*“*, Jianping Bin®>*

Abdominal aortic aneurysm (AAA) is a chronic inflammatory
disease.

An AAA is a swelling in the aorta, the artery that carries blood
from the heart to the tummy (abdomen). Most aneurysms do
not cause any problems, but they can be serious because
there's a risk they could burst (rupture).
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Song et al, EBioMedicine, 2020
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Exogenous addition of the itaconate analogue 4-octyl itaconate (Ol) attenuates

Ang ll-induced AAA formation in ApoE-/- mice.

Song et al, EBioMedicine, 2020



B-Glucan Reverses the Epigenetic State

of LPS-Induced Immunological Tolerance

Boris Novakovic,'-” Ehsan Habibi,'-” Shuang-Yin Wang,'-” Rob J.W. Arts,?> Robab Davar,’ Wout Megchelenbrink,’
Bowon Kim,' Tatyana Kuznetsova,’ Matthijs Kox,* Jelle Zwaag,® Filomena Matarese,’ Simon J. van Heeringen,*
Eva M. Janssen-Megens, Nilofar Sharifi,' Cheng Wang,! Farid Keramati,' Vivien Schoonenberg,' Paul Flicek,®
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Amino acid (AA) metabolism supports
macrophage functions

Macrophages GryptOpharD
* [nflammatory cytokine e Nitric oxide Catabolism by
production production (M1) macrophages inhibits
 Nitric oxide production * Arginase pathway pathogen and T cell
e TCA cycle anapleurosis flux (M2) proliferation

O’Neill et al, Nat Rev Immunol, 2016



Arginine metabolism for M1 and M2

Arginine metabolism has been found to have a key role in the inflammatory function of
macrophages. Macrophages use arginine in two distinct metabolic pathways, the
nitric oxide synthesis pathway and the arginase pathway.
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The pathway used for arginine metabolism in macrophages has profound effects on the
immune function of the cell.



Arginine metabolism for M1 and M2

Macrophage flux of arginine into the nitric oxide synthesis pathway is associated with an
inflammatory M1 phenotype. When macrophages direct arginine into this pathway, arginine
(via citrulline) is converted into nitric oxide, a process mediated by inducible nitric oxide
synthase (INOS). It has been known for some time that INOS expression is itself required
for inflammatory macrophage function.

In contrast to the inflammatory involvement of arginine metabolism in the nitric oxide
synthesis pathway, arginine flux through the arginase pathway is associated with a more
tolerant immune response, often associated with wound healing.
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Arginine metabolism for M1 and M2

Nitric oxide
(Cytotoxicity;
immune regulation)

Superoxide >
(other sources)
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Pro-inflammatory signals
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/
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Note: forcing one pathway (ex: NOS2 KO) dictates macrophage polarization

(Palmieri et al, Nat Comm, 2020)
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Immunometabolism across the immune system
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Variety of cell types

- multiple phenotypes

- local microenvironments
- different functions

Common denominators
- actionable

- highly plastic

- Interactive

- migrate and adapt
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Lymphocytes face major metabolic challenges upon activation. They must meet the
bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to
changing environmental conditions, in which nutrients and oxygen may be limiting.

Why T cells adopt specific metabolic programs and the impact that these programs have
on T cell function and, ultimately, immunological outcome remain unclear.

Improve response to infections (lower morbidity)
Tune subtype differentiation

Improve efficiency of vaccination

Ameliorate (cure or prevent) auto-immune diseases

Curtail exhaustion (i.e.: immune evasion by cancer)

®©@ ® ®© ® ® ®

Improve immunotherapy (adaptive: CAR T cells)



Lymphocytes face major metabolic challenges upon activation. They must meet the
bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to
changing environmental conditions, in which nutrients and oxygen may be limiting.

Why T cells adopt specific metabolic programs and the impact that these programs have
on T cell function and, ultimately, immunological outcome remain unclear.

Improve response to infections (lower morbidity)
Tune subtype differentiation

Improve efficiency of vaccination

Ameliorate (cure or prevent) auto-immune diseases

Curtail exhaustion (i.e.: immune evasion by cancer)

®©@ ® ®© ® ® ®

Improve immunotherapy (adaptive: CAR T cells)

...hinge on the ability to activate immunogenic programs (gene expression) and
generate effector/memory cells (epigenetic rearrangements).



Metabolic rewiring of activated T cells

Metabolic activation
| SRC

4 Nutrient uptake

4 Glycolytic rate

| 4 Protein, lipid and
nucleic acid synthesis
¢ Cell growth

e Cell proliferation

Metabolic quiesence
e Basal nutrient uptake
e Basal glycolytic rate

¢ Minimal biosythesis Metabolically primed

* Basal nutrient uptake
} SRC
4 Mitocondrial mass

— 4 Autophagy?

* No net growth

L Steady state

Steady
state

Immune challenge

Time >

Bioenergetic profiling of T cells has revealed that T cell metabolism changes dynamically with
activation state. Upon antigen encounter, T cells become activated, undergo extensive proliferation,
and differentiate into effector T cells (Tgrr); upon pathogen clearance, most Tggr cells die, leaving
behind a small population of long-lived antigen-specific memory T cells (Ty). Resting naive T cells
maintain low rates of glycolysis and predominantly oxidize glucose-derived pyruvate. Upon activation,
T cells switch to a program of anabolic growth and biomass accumulation to generate daughter cells,
which by definition dictates increased demand for ATP and metabolic resources. In this state, T cells

are considered to be metabolically activated. T cell receptor (TCR) signaling directs the metabolic
reprogramming of naive T cells.



Entry of glucose- and glutamine-derived carbons
into the citric acid cycle supports early steps of
HIV-1 infection in CD4 T cells

Isabelle Clerc'¢, Daouda Abba Moussa'¢, Zoi Vahlas'¢, Saverio Tardito®23, Leal Oburoglu’,
Thomas J. Hope*, Marc Sitbon®?, Valérie Dardalhon', Cédric Mongellaz®'"* and Naomi Taylor®57*
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Mitochondria Are Required
for Antigen-Specific T Cell Activation
through Reactive Oxygen Species Signaling

Laura A. Sena,’ Sha Li,> Amit Jairaman,® Murali Prakriya,® Teresa Ezponda,’ David A. Hildeman,® Chyung-Ru Wang,?
Paul T. Schumacker,* Jonathan D. Licht,! Harris Perliman,! Paul J. Bryce,! and Navdeep S. Chandel'-*
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Metabolic rewiring of activated T cells

Metabolic activation
| SRC

4 Nutrient uptake

4 Glycolytic rate

| 4 Protein, lipid and
nucleic acid synthesis
¢ Cell growth

e Cell proliferation

Metabolic quiesence
e Basal nutrient uptake
e Basal glycolytic rate

¢ Minimal biosythesis Metabolically primed
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l NS @ 4 SRC
— ' : 4 Mitocondrial mass

— 4 Autophagy?

= Steady state

Steady
state

* No net growth

Immune challenge

Time >

As a quiescent T cell population, Tu cells adopt a metabolic profile similar to that of naive T cells — a
catabolic metabolism characterized by increased reliance on OXPHOS and lower rates of nutrient
uptake and biosynthesis relative to Terr cells. However, Twu cells also display a characteristic
Increase in mitochondrial mass, which translates into greater mitochondrial spare respiratory
capacity (SRC) relative to naive or TEFF populations. SRC can be viewed as the maximal
respiratory capacity available to a cell, much like the maximum speed that can be achieved by a car

engine. Under increased workload, stress, or nutrient limitation, cells en- gage this reserve capacity
to generate more energy and promote cell viability



CD8 memory T cells have a bioenergetic advantage
that underlies their rapid recall ability

Gerritje J. W. van der Windt?, David O’Sullivan?, Bart Everts®, Stanley Ching-Cheng Huang®, Michael D. Buck?,
Jonathan D. Curtis?, Chih-Hao Chang®, Amber M. Smith?, Teresa Ai?, Brandon Faubert®, Russell G. Jones®,
Edward J. Pearce?, and Erika L. Pearce®'
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Aerobic glycolysis promotes T helper 1
cell differentiation through an
epigenetic mechanism

Min Peng,'* Na Yin,'* Sagar Chhangawala,>® Ke Xu,"*
Christina S. Leslie,? Ming O. Li't
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LDHA dictates aerobic glycolysis and supports INFg expression in activated CD4% T cells.
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LDHA promotes INFg expression through acetyl-CoA dependent histone acetylation.

Peng et al, Science, 2016



Aerobic glycolysis promotes T helper 1
cell differentiation through an
epigenetic mechanism
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Distinct modes of mitochondrial metabolism
uncouple T cell differentiation and function

Will Bailisb?!2, Justin A. Shyer!!?, Jun Zhao'*#, Juan Carlos Garcia Canaveras>®’, Fatimah J. Al Khazal®, Rihao Quh>4,
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Distinct modes of mitochondrial metabolism
uncouple T cell differentiation and function

Will Bailisb?!2, Justin A. Shyer!!?, Jun Zhao'*#, Juan Carlos Garcia Canaveras>®’, Fatimah J. Al Khazal®, Rihao Quh>4,
Holly R. Steach!, Piotr Bielecki', Omair Khan!, Ruaidhri Jackson!, Yuval Kluger®>*?, Louis J. Maher III8, Joshua Rabinowitz>®7,
Joe Crafth!%* & Richard A. Flavell-!1*

a a |
~ 18- * N
S ).
g L)_(/ o0 lGOIQ g
£ L 12- ° : S
5 LED .~ Cs ‘\I Mdh2 s
E o Slc25a1 Sic25a11 M Sic1a3 r]:D:
_S <F 6- 5 \
- 5> ©0o °d
§ S lN Mah1 2
() ™ ] )
D' T 4- T T Treey I O T T /\ GOt1 g(/)_)
-10 0 104 10° WT Sdhc Acetylation FAS 3
H3K9Ac-APC cKO :
5,000 @ Individual sgRNA
N 16- *kkk - 4,000_1%' ....... ** ............................. ‘IV .............
° s *k *k
— 33,0004 ] |, *
E coo > % o ******
S Y; 12 - L. 2,000
E % Z
x TR = 1,000
g = 8- ﬂ ﬂ
— Lu 0 I I I I 1 I I 1
o o QA ANDD AL N D
o Lot Ve p S S P e
S = 4 % PR Sy
O LL
E —P'P'Jn
D- T I Liniinh | T 1 0 1 1
-108 0 10° 10% 10° WT Sdhc Citrate export (malate shuttle) supports
IFNy-PE cKO histone acetylation and synthesis of

effector genes
Complex Il uncouples differentiation and
effector function of Th1 cells Bailis et al. Nature. 2019



Distinct modes of mitochondrial metabolism
uncouple T cell differentiation and function
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T cells need acetyl-CoA to mature

Anabolic substrate for macromolecule synthesis (proliferation)
Histone acetylation substrate for gene expression (effector function)



How is this impaired in disease??
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Immunometabolism across the immune system
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B cell maturation and Germinal Center (GC) reaction

Antigen-independent Antigen-dependent

Calciolari et al, Open Biol, 2022
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B cell maturation and Germinal Center (GC) reaction

Antigen-independent Antigen-dependent

Role of metabolism not

Calciolari et al, Open Biol, 2022
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In vitro-activated B cells enhance acetyl-CoA metabolism
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In vitro-activated B cells enhance acetyl-CoA metabolism
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In vitro-activated B cells show increased histone acetylation
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In vitro-activated B cells show increased histone acetylation
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GCs are hyperacetylated
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Bromodomain inhibition suppresses GC maturation in vitro
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ACLY ablation suppresses GC maturation in vitro
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ACLY ablation hampers GC histone hyperacetylation in vitro

H3K27ac




Working model:

B cell maturation is promoted by metabolic-dependent
histone acetylation
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Diet and immune function

Is cell metabolism involved??

Adequate and appropriate nutrition is required for all cells to

function optimally and this includes the cells in the immune system.
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Diet and immune function

Is cell metabolism involved??

Adequate and appropriate nutrition is required for all cells to
function optimally and this includes the cells in the immune system.
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An “activated” immune system further increases the demand for energy during periods of infection, with
greater basal energy expenditure during fever for example. Thus, optimal nutrition for the best
immunological outcomes would be nutrition, which supports the functions of immune cells allowing them
to initiate effective responses against pathogens but also to resolve the response rapidly when
necessary and to avoid any underlying chronic inflammation.

The immune system’s demands for energy and nutrients can be met from exogenous
sources i.e., the diet, or if dietary sources are inadequate, from endogenous sources such
as body stores. Some micronutrients and dietary components have very specific roles in
the development and maintenance of an effective immune system throughout the life
course or in reducing chronic inflammation.

For example, the amino acid arginine is essential for the generation of nitric oxide by macrophages, and
the micronutrients vitamin A and zinc requlate cell division and so are essential for a successful
proliferative response within the immune system.
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As well as nutrition having the potential to effectively treat immune deficiencies
related to poor intake, there is a great deal of research interest in whether specific
nutrient interventions can further enhance immune function in sub-clinical situations,
and so prevent the onset of infections or chronic inflammatory diseases.
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Humans evolved with larger and intensive energetic demands for brain function. Host survival thus
required mechanisms that balance the energetic costs of essential functions such as successful immune
response against infections and tissue repair. Accordingly, humans have developed an integrated
immunometabolic response (IIMR) that involves sensing of nutrient balance by neuronal (sympathetic
and sensory innervation) and humoral signals (e.g., hormones like insulin, FGF21, GDF15, ghrelin...)
between the hypothalamus and peripheral tissues to allow the host to prioritize storage and/or utilize
substrates for tissue growth, maintenance, and immune responses.

Hence, severe reduction in nutrient and energy intake might cause tradeoffs in non-essential functions.

Lee & Dixit, Immunity, 2020
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In an event of low glucose availability, such as food restriction, the limited glycogen
reserves in the liver and muscle cannot sustain non-essential metabolic demand. Instead,
triglycerides undergo fatty acid oxidation, ketogenesis, and ketolysis to support ATP

production.

Calorie restriction (CR) has typically beneficial effects on the immune system (and
longevity)

Lee & Dixit, Immunity, 2020


https://www.sciencedirect.com/topics/medicine-and-dentistry/fatty-acid-oxidation
https://www.sciencedirect.com/topics/immunology-and-microbiology/ketogenesis

Modern diets are rich in saturated
fats and processed carbohydrates,
such as high fructose corn syrup,
and are deficient in fiber, vitamins,
and minerals, while containing high
levels of salt. These diets are a
leading cause of the emergence of
obesity-associated chronic diseases,
the majority of which are linked to
chronic inflammation.




Adipose is an immunologic tissue
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Modern diets are rich in saturated
fats and processed carbohydrates,
such as high fructose corn syrup,
and are deficient in fiber, vitamins,
and minerals, while containing high
levels of salt. These diets are a
leading cause of the emergence of
obesity-associated chronic diseases,
the majority of which are linked to
chronic inflammation.

Obesity promotes hyperglycemia and hyperlipidemia
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Dietary components can affect immunity
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Exogenous cholesterol promotes immunosuppression
(highly heterogeneous effects)
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Cholesterol Induces CD8* T Cell
Exhaustion in the Tumor Microenvironment
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Cholesterol supports signaling

Structural component
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Cholesterol supports signaling
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® Cholesterol
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Cholesterol and metabolite regulate T cell receptor clustering. Cholesterol can directly bind to
the transmembrane domain of TCR-f3 chain to mediate TCR clustering on T cell surface,
which can increase the avidity of TCR to foreign antigens and therefore augment TCR

signaling.

Bietz et al, Front Immunol, 2017



Intake of carbohydrates is elevated in WD

Diet Composition

Ancestors Western Diet

Fat—75% -~ * Fat - 16% (low fat)
Protein — 20% Protein — 19%
Carbs 5% =g Carbs 65%

Novel nutritional concepts promote a restriction of carbohydrates in favor of fat to ameliorate
detrimental low-grade inflammation (Paoli et al, 2015; Bosco et al, 2018; Myette-Coté et al, 2018)



Very-low-carbohydrate diet enhances human
T-cell immunity through immunometabolic
reprogramming
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Very-low-carbohydrate diet enhances human

T-cell immunity through immunometabolic

reprogramming
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T-cell immunity through immunometabolic
reprogramming
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Article https://doi.org/10.1038/s41591-023-02761-2

Differential peripheralimmunesignatures

elicited by vegan versus ketogenicdietsin
humans
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Link et al, Nat Med, 2024



Article https://doi.org/10.1038/s41591-023-02761-2

Differential peripheralimmunesignatures
elicited by vegan versus ketogenicdietsin
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A ketogenic diet was associated with a significant upregulation of pathways and
enrichment in cells associated with the adaptive immune system.

In contrast, a vegan diet had a significant impact on the innate immune system, including

upregulation of pathways associated with antiviral immunity. Link ot al. Nat Med. 2024



Fructose utilization has increased dramatically

USA Sweetener Consumption Per Capita, 2009
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Fructose metabolism alters nucleotide, UA and
lipid abundance

| Fructose-6P

A

6-bisP

Y J 2 .
Vg ™\
[ Fructose-1 1

! (PKLA

lf Pyruvate \']

—< |

TKFG  (ADH )
.:"-GPD{.") (:/GlyceroI\)
[ GK)

( " Glycerol-3-
phosphate

(PDH)  —
SRRy S — 5 SR
1 Acetyl CoA ;----->| Fatty acids PEEEE > | Tnglycendes

( Glucose | ::""Fructoseﬂ}
" % ChREBP, SREBP1c | ——
(Glut2/5 ) . :
. Glycogen | e - § Protein synthesis
ATP | "ATP depletion |
D s =
- ' KHK ADP;.__> (AMP) Mitochondrial
: : ‘ dysfunction
_GY82 2 pYGL.. | | Fl’uCt?S&-t‘ P j-—»c\.AMPDS/:l
s ( GoPase ) > s ",,.,IMP._\V
. ‘.‘-. o g / AGEs Bt 3 Methylglyoxal ) ::’\ ALDOB :, e
Yeeenenae. ( Glucose-6P | . :
L Inflammation
A Unc ac-d <
(" Dihydroxyacetone-P (" D-glyceraldehyde
¥ 2 y & o

Steatosis, NAFLD

Note: only in cells that express SLC25A2 (GLUTS) and KHK-C (hepatocytes and colonocytes)

Kroemer et al, Cell, 2018
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UA release impacts pro-inflammatory phenotypes
In macrophages

Dysbalanced Parabacteroides
microbiota

Cheng et al, Hum Immunol, 2022



Fructose is sensed by mTORC1 in adipocytes
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Zhou & Chi, Cell Metab, 2023
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Excessive fructose is converted into acetate

Fructose
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An acetate-yielding diet imprints an immune and
anti-microbial programme against enteric infection

Yu Anne Yap''

, Keiran H McLeod'", Craig | McKenzie'", Patrick G Gavin?, Mercedes Davalos-

Salas', James L Richards’, Robert J Moore3#, Trevor J Lockett®, Julie M Clarke®, Vik Ven Eng®’,
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Restored concentrations
of SCFA acetate by
HAMSA diet is associated
with reduced susceptibility
to C. rodentium infection
(colitis).

Increased regulatory
intraepithelial
lymphocytes (IELs)
induced by HAMSA are
associated with
protection against C.
rodentium.

Yap et al, Clin Transl Immunol, 2021



Calorie restriction is beneficial for health

Lifespan

Senescence
markers

Ma et al, Cell, 2020



Calorie restriction is beneficial for health

Although the mechanisms of CR are not completely understood, protein quality and
amino acid composition of diet have been more strongly associated with metabolic

and age-associated health.

Protein Restriction
EAA Restriction

Transsulfuration Pathway
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One of the pathways that are induced with protein
and amino acid restriction, is the transsulfuration
pathway (TSP). The TSP involves the catabolism
of methionine to generate intermediates such as
the methyl donor S-adenosylmethionine (SAM),
S-adenosylhomocysteine (SAH), homocysteine,
and cystathionine. The TSP also allows for the
generation of cysteine through the action of
cystathionine-y lyase (CSE), which can further
provide important metabolites and byproducts
such as glutathione, pyruvate, and hydrogen
sulfide (H2S).

Some TSP metabolites such as SAM and
homocysteine are increased with obesity and
aging and have been implicated with
inflammation and disease risk.

Lee & Dixit, Immunity, 2020
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