METABOLIC CONTROL OF TRANSLATION IN ANGIOGENESIS

ENDOTHELIAL METABOLISM: an hallmark of physiological, pathological and therapeutic angiogenesis

Endothelial metabolic pathways

Decoding endothelial metabolism

Metabolic pathways in angiogenesis

During angiogenesis, endothelial cells undergo metabolic changes that facilitate the formation of a sprout by stalk cells, which is directed by the tip cell. Key regulators of endothelial cell metabolism, PFKFB3, CPT1A, and GLS1, might be new therapeutic targets for various conditions.

Endothelial growth factors and their receptors control metabolism and metabolic pathways

Rohelenova et al., 2018

Trends in Cell Biology

LETTER

doi:10.1038/nature22322

FGF-dependent metabolic control of vascular development

Pengchun Yu¹, Kerstin Wilhelm^{2*}, Alexandre Dubrac^{1*}, Joe K. Tung^{1*}, Tiago C. Alves³, Jennifer S. Fang¹, Yi Xie¹, Jie Zhu⁴, Zehua Chen⁵, Frederik De Smet^{6,7}, Jiasheng Zhang¹, Suk–Won Jin^{1,8}, Lele Sun⁹, Hongye Sun⁹, Richard G. Kibbey³, Karen K. Hirschi¹, Nissim Hay¹⁰, Peter Carmeliet^{11,12}, Thomas W. Chittenden⁵, Anne Eichmann^{1,13}, Michael Potente² & Michael Simons^{1,14}

Vascular endothelial growth factor B controls endothelial fatty acid uptake

Carolina E. Hagberg^{1,2}, Annelie Falkevall^{1,2}, Xun Wang^{1,2}, Erik Larsson³, Jenni Huusko⁴, Ingrid Nilsson¹, Laurens A. van Meeteren⁵, Erik Samen^{6,7}, Li Lu⁷, Maarten Vanwildemeersch^{1,2}, Joakim Klar^{2,5}, Guillem Genove⁸, Kristian Pietras^{1,2}, Sharon Stone-Elander^{6,7}, Lena Claesson-Welsh⁵, Seppo Ylä-Herttuala⁴, Per Lindahl^{3,9} & Ulf Eriksson^{1,2}

Open question:

Do metabolites and metabolic pathways regulate endothelial growth factor receptors ?

Key metabolic pathways in endothelial cells

Arterial concentrations of free amino acids in whole blood and plasma

	Whole blood	Plasma	
	(µM)	(μM)	P^*
Taurine	207.0 ± 26.4	39.4 ± 3.1	< 0.001
Aspartate	186.3 ± 16.0	<u> </u>	—
Threonine	138.7 ± 11.6	112.4 ± 9.1	< 0.01
Serine	166.9 ± 10.3	121.1 ± 7.9	< 0.001
Glutamine†	587.7 ± 34.3	565.0 ± 21.1	NS
Proline	192.1 ± 16.5	167.3 ± 8.4	NS
Citrulline	50.7 ± 3.5	35.9 ± 3.0	< 0.005
Glycine	337.4 ± 20.2	201.0 ± 15.1	< 0.001
Alanine	291.7 ± 21.8	225.4 ± 17.8	< 0.005
a-Amino-			
butyrate	25.9 ± 4.1	26.8 ± 4.1	\mathbf{NS}
Valine	251.6 ± 20.2	236.1 ± 15.1	NS
Cystine		111.3 ± 11.5	
Methionine	15.9 ± 1.6	18.9 ± 1.9	NS
Isoleucine	62.4 ± 5.1	58.9 ± 3.0	\mathbf{NS}
Leucine	130.1 ± 10.3	126.4 ± 6.0	\mathbf{NS}
Tyrosine	61.1 ± 4.6	53.9 ± 3.6	\mathbf{NS}
Phenylalanine	54.3 ± 3.8	53.4 ± 2.7	NS

*P = significance of difference between whole blood and plasma concentration (paired *t*-test).

Comparison of glucose and glutamine consumption and fate in ECs

Kim et al., 2017

Glutamine metabolism

Altam et al., 2017

Genetic and pharmacological inhibition of glutamine metabolism (e.g. glutaminolysis)

Altam et al., 2017

Is glutamine metabolism important during adult and pathological angiogenesis ?

Hindlimb ischaemia

Tumor xenografts

Endothelial glutaminolysis is required during tumor growth

Α

Endothelial glutaminolysis is required during ischemic angiogenesis

Endothelial glutaminolysis controls endothelial growth factor receptors synthesis

0.5

0.0

G/s^{fl/fl}

Vegfr2

Gls^{i∆EC}

Fgfr1

Endothelial glutaminolysis controls endothelial growth factor receptors synthesis

Transcription + Translation = Gene expression

Transcription and translation

mRNA translation: cooperation and integration of different signals

Truitt and Ruggero, 2016

Signaling pathways regulating mRNA translation

ISR pathway

Translation control of angiogenesis

The Journal of Biological Chemistry © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Vol. 280, No. 22, Issue of June 3, pp. 20945–20953, 2005 Printed in U.S.A.

Internal Translation Initiation Mediated by the Angiogenic Factor Tie2*

Received for publication, November 10, 2004, and in revised form, March 8, 2005 Published, JBC Papers in Press, March 31, 2005, DOI 10.1074/jbc.M412744200

Eun-Hee Park‡§, Joseph M. Lee‡, Jaime D. Blais¶, John C. Bell¶, and Jerry Pelletier‡||**

From the ‡Department of Biochemistry and ||McGill Cancer Center, McGill University, Montreal, Quebec H3G 1Y6, Canada and the ¶Ottawa Regional Cancer Centre Research Laboratories, Ottawa, Ontario K1H 8L6, Canada

mTORC as a master control of mRNA translation

mTORC1 activation by amino acids and growth factors

mTORC1-dependent controls of translation in ECs

mTORC1 regulates endothelial growth factor receptors synthesis via glutaminolysis

Glutaminolysis regulates endothelial growth factor receptors synthesis via mTORC

Endothelial-specific deletion of *GLS1* affects mTORC1 activation and VEGFR2 translation in tumor ECs

Rate of translation by polysome profiling analyses

mTORC1 blockade impairs VEGFR2 and FGFR1, but not VEGFR1 or CDH5 mRNA translation

Glutaminolysis blockade impairs VEGFR2 and FGFR1 mRNA translation

Transaminases (TAs) inhibition impairs VEGFR2 and FGFR1 translation

Endothelial cell

Aspartate (Asp) drops during both glutaminolysis and transamination blockade

Glutamine-derived aspartate drops during both glutaminolysis and transamination blockade

Β

Aspartate (Asp) rescues translation and mTORC1 activation upon TAs inhibition

Endothelial glutaminolysis drives mTORC activation in retina angiogenesis

Aspartate rescues glutaminolysis blockade in retinal angiogenesis

Glutamine metabolism is critical in tumor endothelial cells

Conclusions

- Endothelial glutaminolysis is required during tumor and ischemic angiogenesis.
- Transaminases couple glutamine-derived carbons to aspartate synthesis in EC.
- mTORC1 activation is driven by glutamate and aspartate metabolism in EC.
- mTORC1-activation leads to control of endothelial growth factor receptor translation.

Future perspectives

- 1. Dissect the translational control mechanisms in angiogenesis by translatome analyses.
- 2. Decode the metabolic role of GOT1 and GOT2 transaminases in ECs.
- 3. Evaluate a combined therapy consisting of glutaminolysis or transaminases blockade plus VEGF inhibitors that may provide a new avenue in anti-angiogenic resistance.

Take home message

Can we study mRNA translation during in vivo angiogenesis ?

Methods for Translation Measurement Based on Luminescent Labeling of Newly Produced Peptides

Active translation in retinal angiogenesis

unpublished

Active Translation during angiogenic sprouting

unpublished

MetRS

ANL Metabolic labeling \rightarrow FUNCAT

mTORC1 pathway controls translation during retinal angiogenesis

unpublished