Signaling and metabolism

Signal transduction pathways regulate metabolism.

mTORC1 is a molecular switch between catabolic and anabolic processes.

mTOR characteristics

mammalian Target Of Rapamycin

- ✓ High conserved
- ✓ Serine/threonine kinase protein (289 kDa)
- ✓ Belonging to PIKK (phosphatidylinositol 3-kinase-related kinase)
- ✓ In mammalian cells \rightarrow 2 distinct complexes

The mechanistic target of rapamycin (mTOR) signaling pathway controls metabolism and cell survival.

mTORC1 stimulates multiple anabolic metabolic pathways (lipid and protein synthesis) in the presence of nutrients and growth factors. Conversely, limiting nutrient or growth factor availability promotes catabolic pathways (autophagy).

mTORC2 promotes cell survival through activation of AKT.

mTORC1/2 pathway downstream effectors

Nature Reviews | Rheumatology

The mTORC1 network senses cellular growth signals and relays their status to an array of downstream metabolic processes.

mTORC1 signaling stimulates de novo nucleotide synthesis through multiple downstream mechanisms

De Novo Pyrimidine Synthesis Is Regulated by mTORC1 Signaling via S6K1 Phosphorylation of CAD

The role of mTOR in the pentose phosphate pathway and nucleotide synthesis. mTOR modulates the expression of the enzymes involved in the pentose phosphate pathway, purine and pyrimidine synthesis.

mTOR in mammalian cells

RAPTOR (<u>Regulatory-associated protein of</u> m<u>TOR</u>)

- ✓ facilitates the association between mTORC1 and downstream substrates
- ✓ binds in a rapamycin-sensitive or nutrient-responsive manner
- ✓ mTOR activity could be modulated by RAPTOR phosphorylation

RICTOR (<u>Rapamycin-insensitive</u> <u>companion</u> of m<u>TOR</u>)

- ✓ Required for mTORC2 activation
- ✓ gains integrity of mTORC2

✓ exclusive of mTORC2

PROTOR (protein observed with rictor)

- ✓ non-essential subunits
- required for the phosphorylation of SGK1, but not of Akt and PKCα

DEPTOR (DEPDC6, DEP domain-containing protein 6)

✓ negative feedback loop

p70S6K1 promotes multi stage mRNA translation

Phosphorilation S6:

- ✓ binding SKAR → initiation/elongation through EJC (exon junction complex)
- ✓ phosphorylates the 40S ribosomal protein S6 (rpS6) → translation of mRNA with 5' terminal oligopyrimidine tract (TOP mRNAs)
- ✓ phosphorylates PDCD4 (programmed cell death 4), an inhibitor of RNA helicase eIF4A → enhances eIF4A helicase activity and facilitates 40S ribosomal subunit scanning to the initiation codon

p70S6K1 promotes multistage mRNA translation

Phosphorilation eIF4B:

✓ eIF4A and eIF-4B increasing levels → eIF3 complex (largest scaffolding initiation factor; controls the assembly of 40S ribosomal subunit on mRNA)

p70S6K1 regulates ribosome biogenesis at different levels

- ✓ biosynthesis of the translational machinery
- ✓ production of ribosomal proteins, pre-rRNA processing and rRNA synthesis
- ✓ coordinates nuclear RNA polymerases, Pol I, Pol II and Pol III
- ✓ interacts with rDNA (ribosomal DNA) promoters to promote Pol I and Pol III transcription

p70S6K1

- ✓ regulates the nuclear translocation of TIF1A, a transcription factor (essential for Pol I-associated transcription initiation)
- ✓ inhibits Maf1, a Pol III repressor, and so induces 5S rRNA and transfer RNA (tRNA) transcription

AUTOPHAGY

 recycling of damaged organelles and for the organismal and cellular adaptation to nutrient starvation

- ✓ phosphorylates and suppresses ULK1/Atg13/FIP200 (unc-51-like kinase 1/mammalian autophagy-related gene 13/focal adhesion kinase family-interacting protein of 200 kDa)
- ✓ «open» and «closed» conformations → regulate autophagosome activity

Protein kinase B (PKB)

- ✓ serine-threonine kinase
- ✓ three isoforms are encoded by distinct loci → functional redundancy among Akt isoforms → lethal to development
- ✓ activation by receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors, B and T cell receptors and integrins
- ✓ insulin metabolism and cancer progression
- ✓ drugs resistance

- ✓ promotes cytoplasmic localization of CKIs (p21^{WAF1/CIP1} and p27^{KIP1}) → inhibiting their function
- ✓ stabilizes cyclin D1 e D3 levels → progression through the G1 phase of the cell cycle
- ✓ facilitates MDM2 nuclear localization → inhibitory action on p53
- ✓ inhibits (phosphorylation) of pro-apoptotic signals (Bad and FoxO) → anti-apoptotic effets

FoxO functions

- ✓ tumor suppressors
- nuclear localization of FoxOs suspends cell cycle progression, promotes apoptosis and negatively regulates angiogenesis

Bad functions

Nature Reviews | Cancer

Bcl-2-associated death promoter

- ✓ member of BCL-2 family
- ✓ inhibits anti-apoptotic BCL-2-family members (BCL-x and Bcl-2)
- ✓ allows two pro-apoptotic proteins (BAK and BAX)
- ✓ induce release of cytochrome c → caspase activation → apoptosis

Akt functions

 ✓ Anti apoptotic effects and proliferation effects through inhibition of BAD and FoxO and activation of ciclins involved in cell cicle progression

Akt functions

✓ Anti apoptotic effects through activation of Mdm2

Protein kinase C

- ✓ involved in controlling of other proteins
- ✓ phosphorylation of hydroxyl groups of serine and threonine amino acid residues on proteins

Rac/Cdc2

- ✓ Rho family of small G proteins (21-25 kDa) belong to the Ras superfamily
- ✓ regulators of actin reorganization

✓ involved in chemoattractant gradient sensing

Rac

 ✓ induces membrane ruffling and extension of lamellipodia

Cdc42

✓ induces the extension of membrane protrusions

Serum/glucocorticoid regulated kinase 1

- ✓ serine/threonine kinases
- ✓ role in cellular stress response
- ✓ promoting cell survival by phosphorylating and inactivating FOXO3a → inhibits apoptosis

Proto-oncogenes linked to mTOR pathway

Proto-oncogenes	Alterations described
1 27	AKT is amplified in a subset of human cancers, such as breast and
AK1	ovarian cancers.
	4EBP1 expression was found to be associated with poor prognosis in
וחסקא	several human tumours, such as breast, colon, ovarian and prostate
4 L D F 1	cancers. The phosphorylation of 4EBP1 was also found to be
	associated with chemoresistance in ovarian cancer.
	Ectopic overexpression of eIF4E can transform cells ex vivo and
	in vivo. eIF4E is overexpressed in many human tumours, such as
elF4L	breast, colon, and head and neck cancers, non-Hodgkin's
	lymphomas, and chronic and acute myelogenous leukemias.
	High PI3K activity was implicated in cell transformation and tumour
PI3K	progression and described in several human cancers, such as ovarian,
	gastrointestinal, breast and prostate cancers.
	Rheb overexpression is described in many tumour cells, and Rheb
Rheb	upregulation is critical for squamous carcinoma and associates with
	poor prognosis in breast and head and neck cancers.
S6K1	S6K1 is overexpressed in in lung and ovary cancers and its
	expression correlates with poor prognosis in breast, kidney and
	hepatocellular carcinomas.

Tumor suppressor genes linked to mTOR pathway

Tumour suppressor genes

	Individuals with mutations in LKB1 develop Peutz-Jeghers
LKBl	syndrome, which includes the occurrence of gastrointestinal tract
	hamartomas.
	Loss of <i>PTEN</i> function has been described in a large proportion of
	advanced human cancers, such as melanoma, breast, prostate and
	renal cancers. Individuals with inherited mutations in PTEN
PTEN	develop hamartoma tumour syndromes (Cowden disease,
	Bannayan-Riley-Ruvalcaba syndrome, Proteus syndrome,
	Lhermitte-Duclos disease) and are at higher risk for developing
	several cancers.
TSC1/TSC2	Patients with mutations in TSC1 or TSC2 develop tuberous sclerosis
	complex (TSC), a syndrome that includes the development of
	hamartomas in many organs. Mutations in <i>TSC2</i> may also lead to the
	development of Lymphangioleiomyomatosis (LAM).

mTOR and melanoma

- ✓ Loss of PTEN in 30-50% of melanomas
- ✓ Akt amplification in 60%
- ✓ In association with BRAF and NRAS mutations

Increased pAKT, loss of PTEN, MAPK mutations correlates with **tumour progression**, **chemoresistance** and **shorter survival**

- ✓ Use of rapamycin increases apoptosis and chemosensitivity in melanoma cells
- ✓ anti-tumour effects enhanced in association with MAPK and PI3K inhibitor

mTOR and RCC

Iperactivation of mTOR pathway:

- ✓ overexpression or activation of growth factor receptors
- ✓ activation of mutations in PI3K/AKT
- ✓ decresed expression of tuberous sclerosis tumor suppressor genes TCS1/2 or Von Hippel-Lindau (VHL) tumor suppressore gene

mTOR and breast cancer

- ✓ Associated with overexpression or activation of HER2
- Involved in resistance to endocrine therapy, human epidermal growth factor receptor 2 (HER2)-directed therapy (trastuzumab) and cytotoxic therapy
- ✓ Preclinical studies indicate that inhibitors of the pathway can act synergically with trastuzumab in resistance cells

Everolimus (rapamycin analog) is currently the only compound approved for the treatment of hormone receptor (HR)-positive, HER2-negative metastatic or locally advanced breast cancer

Туре	Drug	IC ₅₀ mTORC1	IC ₅₀ PI3K
Rapalog	Rapamycin/sirolimus	0.4–0.9 nM	N/A
	Everolimus	1.8-2.6 nM	N/A
mTOR kinase inhibitors	Torin 1	0.29 nM	250 nM
	Torin 2	2.1 nM	4.68 nM
	PP30	80 nM	3 uM
	PP242	8 nM	1.96 μM
	OSI-027	22 nM	1.3 μM
	AZD8055	0.8 nM	3,590 nM
	KU-0063794	10 nM	>10 µM
	WYE-125132	0.19 nM	1,179 nM
Dual mTOR/PI3K	NVP-BEZ235	20.7 nM	4 nM
	NVP-BBD130	7.7 nM	72 nM
	XL765	157 nM	39 nM
	Wortmannin	~200 nM	~1 nM

Туре	Drug	IC ₅₀ mTORC1	IC ₅₀ PI3K
Rapalog	Rapamycin/sirolimus	0.4-0.9 nM	N/A
	Everolimus	1.8-2.6 nM	N/A
mTOR kinase inhibitors	Torin 1	0.29 nM	250 nM
	Torin 2	2.1 nM	4.68 nM
	PP30	80 nM	3 uM
	PP242	8 nM	1.96 μM
	OSI-027	22 nM	1.3 μM
	AZD8055	0.8 nM	3,590 nM
	KU-0063794	10 nM	>10 µM
	WYE-125132	0.19 nM	1,179 nM
Dual mTOR/PI3K	NVP-BEZ235	20.7 nM	4 nM
	NVP-BBD130	7.7 nM	72 nM
	XL765	157 nM	39 nM
	Wortmannin	~200 nM	~1 nM

Туре	Drug	IC ₅₀ mTORC1	IC ₅₀ PI3K
Rapalog	Rapamycin/sirolimus	0.4–0.9 nM	N/A
	Everolimus	1.8-2.6 nM	N/A
mTOR kinase inhibitors	Torin 1	0.29 nM	250 nM
	Torin 2	2.1 nM	4.68 nM
	PP30	80 nM	3 uM
	PP242	8 nM	1.96 μM
	OSI-027	22 nM	1.3 μM
	AZD8055	0.8 nM	3,590 nM
	KU-0063794	10 nM	>10 μM
	WYE-125132	0.19 nM	1,179 nM
Dual mTOR/PI3K	NVP-BEZ235	20.7 nM	4 nM
	NVP-BBD130	7.7 nM	72 nM
	XL765	157 nM	39 nM
	Wortmannin	~200 nM	~1 nM

Туре	Drug	IC ₅₀ mTORC1	IC ₅₀ PI3K
Rapalog	Rapamycin/sirolimus	0.4–0.9 nM	N/A
	Everolimus	1.8-2.6 nM	N/A
mTOR kinase inhibitors	Torin 1	0.29 nM	250 nM
	Torin 2	2.1 nM	4.68 nM
	PP30	80 nM	3 uM
	PP242	8 nM	1.96 μM
	OSI-027	22 nM	1.3 μM
	AZD8055	0.8 nM	3,590 nM
	KU-0063794	10 nM	>10 µM
	WYE-125132	0.19 nM	1.179 nM
Dual mTOR/PI3K	NVP-BEZ235	20.7 nM	4 nM
	NVP-BBD130	7.7 nM	72 nM
	XL765	157 nM	39 nM
	Wortmannin	~200 nM	~1 nM

Туре	Drug	IC ₅₀ mTORC1	IC ₅₀ PI3K
Rapalog	Rapamycin/sirolimus	0.4–0.9 nM	N/A
	Everolimus	1.8-2.6 nM	N/A
mTOR kinase inhibitors	Torin 1	0.29 nM	250 nM
	Torin 2	2.1 nM	4.68 nM
	PP30	80 nM	3 uM
	PP242	8 nM	1.96 μM
	OSI-027	22 nM	1.3 μM
	AZD8055	0.8 nM	3,590 nM
	KU-0063794	10 nM	>10 μM
	WYE-125132	0.19 nM	1,179 nM
Dual mTOR/PI3K	NVP-BEZ235	20.7 nM	4 nM
	NVP-BBD130	7.7 nM	72 nM
	XL765	157 nM	39 nM
l	Wortmannin	~200 nM	~1 nM

Туре	Drug	IC ₅₀ mTORC1	IC ₅₀ PI3K	
Rapalog	Rapamycin/sirolimus	0.4–0.9 nM	N/A	
	Everolimus	1.8-2.6 nM	N/A	
mTOR kinase inhibitors	Torin 1	0.29 nM	250 nM	
	Torin 2	2.1 nM	4.68 nM	
	PP30	80 nM	3 uM	
	PP242	8 nM	1.96 μM	
	OSI-027	22 nM	1.3 μM	
	AZD8055	0.8 nM	3,590 nM	
	KU-0063794	10 nM	>10 µM	
	WYE-125132	0.19 nM	1,179 nM	
Dual mTOR/PI3K	NVP-BEZ235	20.7 nM	4 nM	
	NVP-BBD130	7.7 nM	72 nM	
	XL765	157 nM	39 nM	
	Wortmannin	~200 nM	~1 nM	

mTOR inhibitors	Origination	Development status	Potential use for the tumor types	Action mechanism
First generation of mTOR in	hibitors			
Rapamycin	Wyeth, USA	FDA approved	(Renal transplantation)	Bind to the
Temsirolimus	Wyeth, USA	FDA	Renal cell carcinoma	intracellular receptor
(CCI-779)		approved		FKBP12, and the
Everolimus	Novartis,	FDA	Advanced kidney cancer and progressive or	rapamycin/FKBP12
(RAD001)	Switzerland	approved	metastatic pancreatic neuroendocrine tumors	complex then binds
Deforolimus (AP23573)	ARIAD, USA	FDA approved	Designated by the FDA as an orphan drug for	to the FKBP-
			treatment of soft-tissue and bone sarcomas	rapamycin binding
Nab-rapamycin	Abraxis	Phase I	Breast cancer, colon cancer	(FRB) domain of
(ABI 009)	BioScience, USA			mTOR kinase
Second generation of mTOR	inhibitors			
mTOR and PI3K dual-spe	cificity inhibitors			
PI-103	Merck,	Preclinical	Acute myeloid leukemia, glioblastoma,	Target the ATP
	Germany		melaloma	binding sites of
NVP-BEZ235	Novartis,	Phase I/II	Breast cancer, multiple myeloma,	mTOR and PI3K
	Switzerland		glioblastoma, sarcoma, pancreatic cancer	
WJD008	Chinese Academy	Preclinical	Breast cancer, colon cancer, prostate	
	of Sciences, China		cancer, glioblastoma, lung cancer	
XL765	Exelixis, USA	Phase I/II	Breast cancer, lung cancer, ovarian cancer,	
			prostate cancer, gliomas	
SF-1126	Semafore, USA	Phase I	Gastrointestinal stromal tumor, colorectal	
			cancer, ovarian cancer, breast cancer,	
			prostate cancer, haematological cancer	
Selective mTORC1/2 inhib	nitors			
Torin1	Gray Laboratory,	Preclinical	-	Target the active
	Harvard, USA			site of mTOR in
PP242	University of	Preclinical	Multiple myeloma, leukemia, breast cancer	both mTORC1 and
	California, USA			mTORC2
PP30	University of	Preclinical		
	California, USA			
Ku-0063794	Kudos, UK	Preclinical		
WYE-354	Wyeth, USA	Preclinical	Breast cancer, prostate cancer, glioblastoma,	
	8		colon cancer, renal cell carcinoma	
WAY-600	Wyeth, USA	Preclinical	Breast cancer, prostate cancer, glioblastoma,	
			colon cancer, renal cell carcinoma	
WYE-687	Wyeth, USA	Preclinical	Breast cancer, prostate cancer, glioblastoma,	
005.000000	1.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		colon cancer, renal cell carcinoma	
INK128	Intellikine, USA	Phase I	Multiple myeloma, breast cancer, prostate	
			cancer, non-Hodokin's lymphoma.	
AZD8055	AstraZeneca, UK	Phase I	Gliomas, breast cancer, renal cell	
			carcinoma	
OSI-027	OSI, USA	Phase I	Lymphoma, colorectal cancer, melanoma	
			neuroendocrine tumors, endometrial cancer.	
			renal cell carcinoma, cervical cancer	

AMP and calcium activate AMP-activated protein kinase (AMPK).

AMP-activated protein kinase (AMPK) regulates metabolism.

Overview of autophagy

There are three types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA).

Macroautophagy pathway can be broken down into several discrete phases:

Regulators of autophagy.

Oxygen levels control stabilization of HIFs. HIFs are a heterodimer, consisting of a constitutively stable HIF-1 β and an oxygen-sensitive HIF α subunit.

HIFs regulate adaptation to hypoxia.

Mondo transcription factors respond to glucose flux.

Metabolic pathways regulate signaling pathways.

Metabolism regulates acetylation and deacetylation.

A key metabolite that governs many of these PTMs is acetyl-CoA.

Metabolic pathways that generate NAD+ in mammals.

Metabolism regulates methylation.

Metabolism regulates demethylation.

