

ICT for HEART MONITORING

Federico Mason federico.mason@unipd.it

PART 2 HEART RATE VARIABILITY

SINGLE LEAD ECG RECORDING

The recording of a single-lead ECG can be achieved via **minimal invasive** devices, such as wearables or subcutaneous patches

A single-lead ECG is sufficient to analyze the heartbeats and estimate both the heart rate and its variability

SINGLE LEAD ECG RECORDING

HEART RATE VARIABILITY ESTIMATION

To estimate the HRV, it is first necessary to compute the **Normal-to-Normal Intervals** (NNIs), i.e., the intervals between consecutive R peaks

To make the HRV estimation time-dependent, a common choice is to select a **time window** Δt , so that any feature HRV(t) is computed according to the NNIs measured between time *t* and time $t + \Delta t$

The selection of Δt trades off between **estimation accuracy** and **time sensitivity** \rightarrow A value of at least $\Delta t = 4 \min$ is usually recommended!

TIME DOMAIN (I)

The average of the NNI series (AVNN) represents the reciprocal of the heart rate, while the standard deviation of the NNI series (SDNN) represents a naïve HRV estimation

$$AVNN(t) = rac{\sum_{t}^{t+\Delta t} NNI_{i}}{N(t)}$$

$$SDNN(t) = \sqrt{\frac{\sum_{t}^{t+\Delta t} (NNI_{i} - AVNN(t))^{2}}{N(t)}}$$

TIME DOMAIN (II)

More advanced metrics can be derived from the series SD of subsequent NNI differences $SD_i = |NNI_{i+1} - NNI_i|$

$$AVSD(t) = \frac{\sum_{t=0}^{t+\Delta t} SD_i}{N(t) - 1}$$

$$SDSD(t) = \sqrt{\frac{\sum_{t=0}^{t+\Delta t} (SD_i - AVSD(t))^2}{N(t) - 1}}$$

$$RMSD(t) = \sqrt{\frac{\sum_{t=0}^{t+\Delta t} (SD_i)^2}{N(t) - 1}}$$

NNI DISTRIBUTION (I)

Another HRV metric is the **probability** (ppNN τ) **that two consecutive NNIs differ more than** τ **milliseconds**, where τ is usually set to 50 ms or 20 ms

$$ppNN\tau(t) = \frac{\sum_{t}^{t+\Delta t} \chi(SD_i > \tau)}{N(t) - 1}$$

$$\chi(SD_i > \tau) = \begin{cases} 1 & SD_i > \tau \\ 0 & otherwise \end{cases}$$

Both RMSD and $ppNN\tau$ are considered markers of the **vagal** (i.e., parasympathetic) **tone** of the nervous system

NNI DISTRIBUTION (II)

The **triangular index (TI)** is defined as the ratio between the total number of NNIs and the number of NNIs in the modal bin

 $TI(t) = \frac{N(t)}{\sum_{t}^{t+\Delta t} \chi(NNI_i = Mode[NNI(t)])}$

The **triangular interpolation (TINN)** of NNIs is defined as the baseline width of the NNI distribution

 $TINN(t) \cong max[NNI(t)] - min[NNI(t)]$

In the case of TI and TINN, we should consider $\Delta t \ge 20 \min$

FREQUENCY DOMAIN (I)

We can implement a **time-frequency transformation** (e.g., the Fourier transform) and analyze the NNI spectrum

Given the spectrum NNI(t, f) of NNI, we can compute the energy of significant frequency bands:

- the **low-frequency (LF) band** [0.06, 0.10] *Hz* reflects both the sympathetic and vagal tones
- the high-frequency (HF) band [0.15, 0.40] Hz reflects the vagal tone

FREQUENCY DOMAIN (II)

$$E_{LF}(t) = \int_{0.06}^{0.10} |NNI(t, f)|^2 df$$

$$E_{HF}(t) = \int_{0.15}^{0.40} |NNI(t, f)|^2 df$$

The **energy ratio** between the LF and HF bands is considered a marker of the sympathetic–vagal balance

$$ER(t) = \frac{E_{LF}(t)}{E_{HF}(t)}$$

<u>*Before implementing a time-frequency transformation, we need to interpolate the NNI series to operate with equidistant samples!!!</u>

POINCARÉ PLOT

The **Poincaré plot** represents subsequent NNI values in a two-dimensional coordinate system where each point is given by a couple (NNI_{i+1}, NNI_i)

We consider the **standard deviation** perpendicular to (*SD*1) and along (*SD*2) the **line-of-identity**

$$SD1^{2} = \frac{1}{2}SDSD^{2}$$
$$SD2^{2} = 2SDNN^{2} - \frac{1}{2}SDSD^{2}$$

POINCARÉ PLOT

The **Poincaré plot** represents subsequent NNI values in a two-dimensional coordinate system where each point is given by a couple (NNI_{i+1}, NNI_i)

From SD1 and SD2, we can compute the **Cardiac Sympathetic Index** and the **Cardiac Vagal Index**

$$CSI = \frac{SD1}{SD2}$$

 $CVI = \log(SD1 \times SD2)$

ACTIVITY: SEIZURE DETECTION

HRV has been recognized as a useful biomarker for **detecting** or even **predicting seizures** in people with epilepsy

This makes it possible to trigger alarms to caregivers by using a wearable device

On the other hand, scientific findings show that HRV is effective only in patients with **relevant autonomic changes** during the seizure events

ACTIVITY: SEIZURE DETECTION

You are provided with:

- 5 single-lead ECG recordings of approximately 1.5 hours, during which an epileptic seizure occurs
- a Python framework to extract the NN intervals from the single-lead ECG

You are asked to:

- compute at least two HRV metrics among those discussed during the lecture
- analyze the HRV metrics in time and try to determine when the epileptic seizure occurs

ACTIVITY: SEIZURE DETECTION

Recommendation:

- ECG data (like any kind of real-world data) is characterized by noise and artifacts
- we can assume that all the NN intervals larger than 1.5 s are associated with recording errors

 $NNI^* = [NNI_i \in NNI: NNI_i \le 1.5 s]$

It the time domain of time-based HRV features and frequencybased HRV features may be different since the second are obtained after the NNI series interpolation

PYTHON FRAMEWORK

<u>Basic usage:</u>

- You can decide which file to process and what part of the code to run by using the command line options
 - > to plot the ECG signal associated with ./epoch_0/, write:

:~/Desktop/hrv_lab_full\$ python main.py -epoch_folder ./epoch_0/ -plot_ecg

To compute and plot the NNI intervals associated with ./epoch_0/, write:

:~/Desktop/hrv_lab_full\$ python main.py -epoch_folder ./epoch_0/ -compute_nni -plot_nni

PYTHON FRAMEWORK

```
window_times = []
avg_nn_intervals = []
std_nn_intervals = []
```

```
last_time = nni_times[-1]
```

```
current_time = 0
next_time = window_duration
```

```
while next_time < last_time:</pre>
```

```
window_times.append(current_time)
```

```
current_time_index = np.argmin(np.abs(current_time-nni_times))
next_time_index = np.argmin(np.abs(next_time-nni_times))
```

window_nn_intervals = nn_intervals[current_time_index:next_time_index]

```
avg_nn_intervals.append(np.mean(window_nn_intervals))
std_nn_intervals.append(np.std(window_nn_intervals))
```

```
current_time += window_shift
next_time += window_shift
```

Thank you!

Federico Mason federico.mason@unipd.it