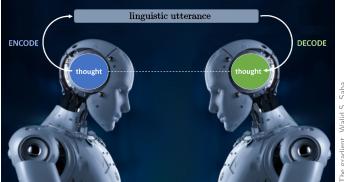
Natural Language Processing

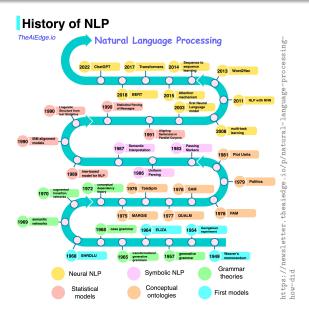
Lecture 15 : Discussion & Conclusions

Master Degree in Computer Engineering University of Padua Lecturer : Giorgio Satta

Natural Language Processing NLP: Discussion & Conclusions

Discussion & Conclusions





Natural Language Processing

NLP: Discussion & Conclusions

NLP is now moving on at an **unprecedented** pace.

Novel models that came out since the start of our 2023/24 class:

- GPT-4 Omni (OpenAI)
- Copilot (Microsoft)
- Gemini, Gemma (Google)
- LLaMA 3 (Meta AI)
- Claude 3 (Anthropic)

The dominant approach to the study of meaning is **denotational semantics**: the meaning of a word, phrase, or sentence is the set of objects or situations in the world that it describes.

The dominant approach to the representation of meaning in NLP is **distributional semantics**: the meaning of a word is the distribution of the contexts in which the word appears.

The two things

- are not entirely different
- yet, they are not the same

Missing text phenomenon: our linguistic communication is compressed, we leave out details that we can safely assume the listener/reader knows by virtue of common knowledge of the world.

Example :

Contrast 'eastern philosophy professor' with 'amazing philosophy professor'.

Example :

How many interpretations for 'the table with the book'?

The **Winograd schema challenge** (WSC) is a multiple-choice test that employs questions of a very specific structure.

https://en.wikipedia.org/wiki/Winograd_schema_challenge

Example :

The city councilmen refused the demonstrators a permit because **they** [feared/advocated] violence.

Does the pronoun 'they' refer to the city councilmen or to the demonstrators?

Adversarial testing: create adversarial examples by adding distracting sentences to the input paragraph.

Hallucination: confident response by an AI that cannot be grounded in any of its training data for the LM.

Overstability: the inability of a model to distinguish a correct answer from one that has words in common with it.

In order to move toward $\ensuremath{\textbf{better}}\xspace$ $\ensuremath{\textbf{NLP}}\xspace$ systems we need to obtain advancements on

- correlation between language and action (pragmatics)
- principles of communications
- discourse planning
- creative aspects of language
- world common knowledge

Model explainability refers to the concept of being able to understand the machine learning model and its decisions.

This is usually done through the technique of probing

- parametric probing based on multi-layer perceptron (MLP)
- non-parametric probing based on focus words and minimal pairs

Language is **grounded** in experience. Humans understand many basic words in terms of associations with sensory-motor experiences.

This is in contrast to dictionaries, which define words in terms of other words.

We need to train our models on **multi-modal data sets**, where words are linked to, for instances, image segments.

Theory often follows invention.

Invention	Theory
Telescope [1608]	Optics [1650–1700]
Steam engine [1595–1715]	Thermodynamics [1824]
Microscope (1590)	Cell Theory (1665)
Electromagnetism [1820]	Electrodynamics [1821]
Airplane [1885–1905]	Wing Theory [1907]
Compounds [???]	Chemistry [1760s]
Feedback amplifier [1927]	Electronics []
Computer [1941–1945]	Computer Science [1950–1960]
Teletype [1906]	Information Theory [1948]

Source: The Future of Computational Linguistics: On Beyond Alchemy, Kenneth Church and Mark Liberman, 2021

Growing research literature/activities on value sensitive design in NLP and allied AI fields.

Also called FAccT: Fairness, Accountability, and Transparency.

The main problems are not yet solved. We seek to answer the following questions

- What can go wrong when we use NLP systems, in terms of specific harms to people?
- How can we fix/prevent/mitigate those harms?
- What are our responsibilities as NLP researchers and developers in this regard?

Superhuman Conversational AI

Behshad Behzadi, VP Engineering Google

Al has reached superhuman levels in various areas such as playing complex strategic and video games, calculating protein folding, and visual recognition. Are we close to superhuman levels in conversational AI as well? In this talk, we address this question, sharing some of the recent developments from Google Cloud AI, Google Brain Research, Deepmind, and Duplex across speech recognition and generation, and natural language understanding.

Here, fixed it.

Superhuman Conversational Al Making Progress in NLP

high accuracy on benchmarks Go Atari AlphaPold Al has reached superiuman levels with various areas such as playing semiper strategic and video games, calculating protein folding, and visual receiption. Are we close to superimman levels in context and as well? In this talk, we address this question, sharing some of the recent developments from Google Cloud AI, Google Brain Research, Deepmind, and Duplex across speech recognition and generation, and natural language understanding. One concern with the end-to-end approach is that it encourages students to focus

- too much on network architecture and training methods
- not enough on methodology and content

Unfortunately, NLP courses are under increasing pressure to make room for currently popular methods at the expense of traditional topics.

NLP lecturers ought to provide a broad education, because we do not know what will be important next.

Source: The Future of Computational Linguistics: On Beyond Alchemy, Kenneth Church and Mark Liberman, 2021

General Language Understanding Evaluation (GLUE) benchmark is a collection of 9 datasets for evaluating natural language understanding (NLU) systems:

- Corpus of Linguistic Acceptability (CoLA)
- Stanford Sentiment Treebank (SST)
- Microsoft Research Paragraph Corpus (MRPC)
- Quora Question Pairs (QQP)
- Multi-Genre NLI (MNLI)
- Question NLI (QNLI)
- Recognizing Textual Entailment (RTE)
- Winograd NLI
- Diagnostics Main

https://gluebenchmark.com — superseeded by SuperGLUE

Massive Multitask Language Understanding (MMLU) is a test set to measure a model multitask accuracy.

The test covers 57 tasks, including among others

- science, technology, engineering and mathematics (STEM)
- social science and humanities
- finance, accounting, and marketing
- professional medicine

To attain high accuracy on this test, models must possess extensive world knowledge and problem solving ability.

https://paperswithcode.com/dataset/mmlu.

Holistic Evaluation of Language Models (HELM) aims to improve the transparency of models, and to offer guidance on which models perform well for specific tasks.

HELM takes a multimetric approach, measuring seven metrics: accuracy, calibration, robustness, fairness, bias, toxicity, efficiency.

The general schema for the lifecycle of a generative AI project.

\geq	Scope	Select	Adapt and	align model	Application	n integration
	Define the use case		Prompt engineering			
		Choose an existing model or pretrain	Fine-tuning Evaluate	Optimize and deploy model for inference	Augment model and build LLM- powered	
		your own	Align with human feedback		Interence	applications

Fine-tuned Language Net (FLAN) compiles several datasets into a mix of zero-shot, few-shot and chain-of-thought templates. It is a specific set of instructions used to fine-tune different models.

Consists of 473 datasets across 146 task categories.

Several LLM instruction tuned with FLAN: Flan-T5, Flan-PaLM, etc.

FLAN

		I.	Model Details			Data Collection & Training Details			
Release	Collection	Model	Base	Size	Public?	Prompt Types	Tasks in Flan	# Exs	Methods
•• 2020 05	UnifiedQA	UnifiedQA	RoBerta	110-340M	P	ZS	46/46	750k	
ቊ 2021 04	CrossFit	BART-CrossFit	BART	140M	NP	FS	115 / 159	71.M	
● ● 2021 04	Natural Inst v1.0	Gen. BART	BART	140M	NP	25/F 5	61 / 61	620k	+ Detailed k-shot Prompts
•• 2021 09	Flan 2021	Flan-LaMDA	LaMDA	137B	NP	ZS/FS	62/62	4.4M	+ Template Variety
● ● 2021 10	P3	TO, TO+, TO++	T5-LM	3-11B	P	ZS	62 / 62	12M	+ Template Variety + Input Inversion
ቊ 2021 10	MetalCL	MetalCL	GPT-2	770M	P	FS	100 / 142	3.5M	+ Input Inversion + Noisy Channel Opt
ቊ 2021 11	ExMix	ExT5	т5	220M-11B	NP	ZS	72/107	500k	+ With Pretraining
•• 2022 04	Super-Natural Inst.	Tk-Instruct	TS-LM, mT5	11-13B	P	ZS/FS	1556 / 1613	5M	+ Detailed k-shot Prompts + Multilingual
⊷ 2022 10	GLM	GLM-130B	GLM	130B	P	FS	65 / 77	12M	+ With Pretraining + Bilingual (en, zh-cn)
⊷ 2022 11	xP3	BLOOMz, mT0	BLOOM, mT5	13-176B	P	ZS	53 / 71	81M	+ Massively Multilingual
⊷ 2022 12	Unnatural Inst.†	T5-LM-Unnat. Inst.	T5-LM	11В	NP	25	~20 / 117	64k	+ Synthetic Data
🗛 2022 12	Self-Instruct [†]	GPT-3 Self Inst.	GPT-3	175B	NP	ZS	Unknown	82k	+ Synthetic Data + Knowledge Distillation
ng 2022 12	OPT-IML Bench [†]	OPT-IML	OPT	30-175B	P	25 + FS 01	~2067 / 2207	18M	Template Variety Input Inversion Multilingual
-0 2022 10	Flan 2022 (ours)	Flan-T5, Flan-PaLM	T5-LM, PaLM	10M-540B	PP	23+55	1836	15M	+ Template Variety + Input Inversion + Multilingual

The Flan Collection: Designing Data and Methods for Effective Instruction Tuning, Longpre et al. 2023

Chatbot Arena Leaderboard is a novel platform that leverages crowdsourced human evaluation to rank LLMs

- LLMs take on the role of "players" in head-to-head comparisons
- users are invited to vote on which LLM they find more engaging, informative, or helpful

The **Elo** system is used to dynamically adjusts the LLMs' scores, generating a ranking.

Rank★ (UB) ▲	📸 Model 🔺	☆ Arena Elo	📊 95% CI 🔺	🔹 Votes 🏾 ^	Organization 🔺	License 🔺	Knowledge Cutoff
1	GPT-4-Turbo-2024-04-09	1259	+4/-3	35931	OpenAI	Proprietary	2023/12
2	GPT-4-1106-preview	1253	+2/-3	73547	OpenAI	Proprietary	2023/4
2	Claude 3 Opus	1251	+3/-3	80997	Anthropic	Proprietary	2023/8
2	Gemini 1.5 Pro API-0409- Preview	1250	+3/-3	39482	Google	Proprietary	2023/11
2	GPT-4-0125-preview	1247	+3/-2	67354	OpenAI	Proprietary	2023/12
6	Llama-3-70b-Instruct	1210	+3/-4	53404	Meta	Llama 3 Community	2023/12
6	Bard (Gemini Pro)	1209	+5/-6	12387	Google	Proprietary	Online
7	Claude 3 Sonnet	1201	+2/-3	78956	Anthropic	Proprietary	2023/8
9	Command R+	1191	+3/-3	44988	Cohere	CC-BY-NC-4.0	2024/3
9	GPT-4-0314	1190	+3/-4	52079	OpenAI	Proprietary	2021/9
11	Claude 3 Haiku	1181	+2/-3	69660	Anthropic	Proprietary	2023/8
12	GPT-4-0613	1165	+3/-3	70726	OpenAI	Proprietary	2021/9