Probabilistic Model Checking

Lecture 16
Strategy synthesis for MDPs

Alessandro Abate

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Overview

Recall: MDPs, adversaries, properties and objectives

- The strategy synthesis problem
— (also known as adversary, scheduler, policy, controller)

- Strategy synthesis

— for probabilistic reachability

— for probabilistic/reward LTL properties
— for multi-objective LTL properties

About this lecture...

So far have focused on verification
— probabilistic models
— quantitative temporal specifications
— model checking algorithms
Some work to date on counterexamples
— but difficult to represent them compactly
- We consider the problem of strategy synthesis for MDPs

— can we find a strategy to guarantee that a given quantitative
property is satisfied?

— advantage: correct-by-construction procedure
— incidentally, can reuse verification algorithms...
More generally, shifting emphasis
— from quantitative verification to quantitative synthesis

Quantitative (probabilistic) verification

Automatic verification (model checking) of quantitative
properties of probabilistic models of system

Probabilistic model
e.g. Markov chain, MDP

System

)
QO

>
rSeyc?ltjcierng_ Probabilistic temporal
ments logic specification

e.g. PCTL, CSL, LTL

Probabilistic)

) Result

v X

Quantitative
results

model checker

e.g. PRISM

P<0_0] [F=t fall] —

Counter-
) example

oo

4

Quantitative (probabilistic) verification

Automatic verification and strategy synthesis over
quantitative properties for probabilistic models

Probabilistic model — Result
e.g. MDP /x
— 0.5 0.4
? —> 0-1 Quantitative
results

Probabilistic) I' Ny
model checker

—) -
PRISM b
- - Number of restorative stages

Strategy
C)<:> P<0_0] [F=t fall] —

Q
0 —)
rSeyC?ltjtierng_ Probabilistic temporal

ments logic specification

e.g. PCTL, CSL, LTL >

Recall: Markov decision processes (MDPs)

Model nondeterministic as well as probabilistic behaviour
— e.g. for concurrency, under-specification, abstraction...
— extension of discrete-time Markov chains
— nondeterministic choice between probability distributions

Formally, an MDP is a tuple
- (S’ Sinits StepS, L)

- where:
— Sis a set of states
— Sinit € Sis the initial state
— Steps : S — 2AtxDist®) js 3 transition probability function
— L:S — 2APis a labelling function

— Act is a set of actions, Dist(S) is the set of probability
distributions over S, AP is a set of atomic propositions

Paths and strategies

- A (finite or infinite) path through an MDP {heads}

— is a sequence (s,...s,) of (connected)
states

— represents an execution of the system

— resolves both probabilistic and
nondeterministic choices

- A strategy o (aka. “adversary” or “policy”) of an MDP
— is a resolution of nondeterminism only

— is (formally) a mapping from finite paths to distributions over
steps enabled in the last state of the path

— induces a fully probabilistic model
— i.e. an (infinite-state) Markov chain over finite paths
— on which we can define a probability space over infinite paths

7

Classification of strategies/adversaries

- Strategies are classified according to

— randomisation:

. 0 is deterministic (pure) if o(s,...s,) is a point distribution, and
randomised otherwise

— memory:
. 0 is memoryless (simple) if o(s,...s,) = o(s,) for all s,...s,

. o is finite memory if there are finitely many modes such that
0(Sy-..S,) depends only on s, and current mode, which is updated
each time an action is performed

. otherwise, o is infinite memory

- A strategy o induces, for each state s in the MDP:
— a set of infinite paths Patho (s)
— a probability space Probc; over Patho (s)

Example strategy

- Fragment of induced Markov chain for strategy which picks
b then cin s,

finite—-memory,
deterministic

Costs and rewards

- We can augment MDPs with rewards (or costs)
— real-valued quantities assigned to states and/or actions

— different from the DTMC case where transition rewards
assigned to individual transitions

MDP (S,si.i;,Steps,L), a reward/cost structure is a pair (p,L)
— p:S — R.gis the state reward function
— 1S X Act — R, is transition reward function

- These can be used to compute:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

Distinguish between types of rewards over paths
— Instantaneous (I=%)
— Cumulative and Bounded-cumulative (C, C=k)
— Reachability (F ¢)
10

Properties and objectives

. is true with

o The Syntax: é probability ~p g g --------- é‘i‘a‘é‘e{é"d"""""g

_d): PNp[LI)] | RNr[p] ..
— P =truelalYAY| Y| XY | YwUskypy | pUyY

.......................... S, S,
—p u=Fb | C|Csk[I=k | “next’ | "bounded ! :“until”
; i until R S i

— where b is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=2}, k € N,
andr € R,

- We refer to ¢ as property, P and p as objectives
— (linear-time: branching time more challenging for synthesis)

11

Properties and objectives

- Semantics of the probabilistic operator P

— s &= P, [Y] means “the probability, from state s, that @ is
true for an outgoing path satisfies ~p for all strategies o’

— formally s=P., [] < Pro) ~ p for all strategies o
— where we use Pro(yp) to denote Pr{ w € Pathy | w = Y }

R.; [p] means “the expected value of p satisfies ~r for all
strategies”

- Some examples:

— P.o4 [F “goal”’] “probability of reaching goal is at least 0.4”

— R_5 [C=60] “expected power consumption over one hour is
below 5"

— R0 [F “end”] “expected time to termination is at most 10”

12

Verification and strategy synthesis

- The verification problem is:

— Given an MDP M and a property ¢, does M satisfy & under any
possible strategy o?

- The synthesis problem is dual:

— Given an MDP M and a property ¢, find, if it exists, a strategy
o such that M satisfies ¢ under o

- Verification and strategy synthesis is achieved using the
same techniques, namely computing optimal values for
probability objectives:

— Pmin(s,P) = inf; Prob (s,p)

— Pmax(s,P) = sup, Prob (s,p)

— and similarly for expectations

13

Computing prob. reachability for MDPs

- Computation of p,,.«(s,F b) for all s € S (for p,,;, analogous)
- Step 1: pre-compute all states where probability is 1 or O
— graph-based algorithm, yielding sets Sves, Sno

- Step 2: compute probabilities for remaining states (57)

— (i) approximate with value iteration

— (ii) solve linear programming problem
— (iii) solve with policy (strategy) iteration

1. Precomputation, e.g.:

— algorithm Prob1E computes Sves

. there exists a strategy for which the probability of "F b" is 1
— algorithm ProbOA computes Sno

. for all strategies, the probability of satisfying "F b" is O

14

Running example

Example MDP
— robot moving through terrain divided into 3 x 2 grid

States:
SO! S1, S, 531 S4, S5

Actions:

north, east, south,
west, stuck

Labels

(atomic propositions):

hazard, goal;, goal,

15

Example - Reachability

Example:
P-o4 [Fgoal]

So compute:
Pmax(s,F goaly)

16

Example - Precomputation

Example:
P-o4 [Fgoal]

So compute:
Pmax(s,F goaly)

17

Reachability for MDPs

2. Numerical computation
— compute probabilities pmax(s,F b)
— for remaining states in S? = S\ (Sves U Sno)

— obtained as the unique solution of the linear programming
(LP) problem:

minimize > x, subject to the constraints:

X, > D us") X, + D u(s")
s'eS’ s'eSYes

for all s € S” and for all (a,p) € Steps (s)

- This can be solved with standard techniques

— e.g. Simplex, ellipsoid method, branch-and-cut

18

Example - Reachability (LP)

Let X; = pmax(Si,F goal;)

Sves: X4=Xs5=1
Sno: x,=x3=0
For S? = {xo, X1} :
Minimise xo+X; subject to:
e Xg = 0.4:-Xg + 0.6-X; (east)
e Xo=0.1T-x; + 0.1 (south)
e X7 = 0.5 (south)

Example:
P-o4 [Fgoal;]

e X1 = O (east)

So compute:
Pmax(s,F goaly)

19

Example - Reachability (LP)

Let X; = pmax(si,F goal;)

Syes: X4=Xs5=1
Sno: x,=%x3=0
For S? = {Xo, X;}:
Minimise Xo+X; subject to:
e Xg = Xj (east)
e Xo=0.1-X7; + 0.1 (south)
e X7 = 0.5 (south)

Xo = 0.1-%;
+ 0.1

0 1 0 2/3 1 0 1

Example - Reachability (LP)

Let X; = pmax(si,F goal;)

Syes: X4=Xs5=1
Sno: x,=%x3=0
For S? = {Xo, X3} :
Minimise xo+X; subject to:
. Xo = X
e« Xo0=0.1T-x; + 0.1
« X7 = 0.5

X1 | Solution:

4n /xo, x;) = (0.5, 0.5)
— | i.e.

Pmax(So,F goaly) = 0.5

0 F——— X

21

Reachability for MDPs

- 2. Numerical computation (alternative method)

— value iteration
— it can be shown that: pyax(s,F b) = lim,_ . X, where:

] ifs e SY®
0 ifs e S"°
= 3 0 ifseS andn=0
max {Z M(s') - xs.(”‘” | (a, M) € Steps (s)} ifseS’andn>0
L s'eS

- Approximate iterative solution technique

— iterations terminated when solution converges sufficiently

22

Example - Reachability (val. iter.)

Compute: pmax(s,F goal;)
Syes: X4=X5=1
Sno: x5,=x3=0
§* = {Xo, X1}

[XO(”),X1(”),Xz(”),Xg(”),X4(”),X5(”)]
n=0: [0,0,0,0,1,1]
n=1: [max(0.6-0+0.4-0, 0.1-:0+0.1-1+0.8-0), max(0, 0.5), 0,0, 1, 1]
=[0.1,0.5,0,0,1, 1]
n=2: [max(0.6-0.5+0.4-0.1, 0.1-0.5+0.1-1+0.8-0), max(0, 0.5), 0,0, 1, 1]
= [0.34,0.5,0,0, 1, 1]

23

Example - Reachability (val. iter.)

[Xo(”),X](”),Xz(”),xg(”),x4(”),x5(”]
n=0: [0,0,0,0,1, 1]
n=1: [0.1,0.5,0,0, 1, 1]
n=2: [0.34,0.5,0,0, 1, 1]
n=3: [0.436, 0.5, 0,0, 1, 1]
n=4: [0.4744,0.5,0,0, 1, 1]
n=>5: [0.48976, 0.5, 0,0, 1, 1]
n=06: [0.495904, 0.5, 0, 0, 1, 1]
n=7: [0.4983616, 0.5, 0,0, 1, 1]
11 n=_§: [0.49934464, 0.5,0,0, 1, 1]

4n n=16: [0.49999957,0.5,0,0, 1, 1]
n=17: [0.49999982,0.5,0,0, 1, 1]
~[0.50.5,0,0,1, 1]

24

Strategy synthesis

- Compute optimal probabilities p,.«(s,F b) forall s € S

- To compute the optimal strategy o*, choose the locally
optimal action in each state

— must also guarantee reachability (graph-based)

— in general depends on the method used to compute the
optimal probabilities

— policy iteration computes the optimal strategy
For reachability

— memoryless strategies suffice
For step-bounded reachability

— need finite-memory strategies

— typically requires backward computation from the goal states
for a fixed number of steps

25

Memoryless strategies

- Memoryless strategies suffice for probabilistic reachability
— i.e. there exist memoryless strategies Omnin & Omax Such that:
— Probomin(s, F a) = pmin(s, F a) for all states s € S

— Probomax(s, F a) = pmax(s, F @) for all states s € S

- Construct strategies from optimal solution:

Gmin(S) = argmin {Z n(s') - pmin(s',Fa)| (a,n) € Steps (s)}

s'eS

G (S) = @argmax {Zp(s') cPrax (8, FA) | (@,1) € Steps (s)}

s'eS

26

Example - Strategy

{hazard} _{90""'2}5 Optimal strategy:
: So © east
S; : south

27

Example - Strategy

0.4 {hazard} tgoaly} Optimal strategy:

So . east
S; : south

.{.g.ea{z.} 04 {.goah.}.-
Pmax(F goaly)

=[0.5,0.5,0,0,1, 1]
= [max(0.6-0.5+0.4-0.5, 0.1-0.54+0.1-1+0.8-0), max(0, 0.5), 0,0, 1, 1]

28

Example - Bounded reachability

Example:
Pmax:? [F=3 goaIZ]

So compute:
pmax(SOaFS3 90a|z) = 0.99

Optimal strategy
is finite—memory:

s4 (after 1 step): east
s, (after 2 steps): west

29

Recall - end components in MDPs

End components of MDPs
are the analogue of BSCCs in DTMCs

- An end component is a
strongly connected sub-MDP

- A sub-MDP comprises a subset
of states and a subset of the
actions/distributions available
in those states, which is closed
under probabilistic branching

Note:
. action labels omitted
. probabilities omitted where =1

30

Repeated reachability + persistence

Maximum probabilities

- pmax(sa GF a) = pmax(S, F TGFa)

- where Tgr, is the union of sets T for all end components
(T,Steps’) with T n Sat(a) + &

- pmax(sa FG a) = pmax(S, F TFGa)

. where T, is the union of sets T for all end components
(T,Steps’) with T < Sat(a)

Minimum probabilities
— need to compute from maximum probabilities...
— Pmin(s, GF @) = T- pmax(s, FG—a)
— Pmin(s, FG a) = 1- pmax(s, GF—a)

32

Automata-based properties for MDPs

For an MDP M and automaton A over alphabet 24P
— consider probability of “satisfying” language L(A) c (2AP)w
— ProbM.o(s, A) = PrMo{ w € PathM.9(s) | trace(w) € L(A) }
— PmaxM(s, A) = sUpgeadv ProbMo(s, A)
— PminM(s, A) = infscagy ProbM.o(s, A)

- Verification might need minimum or maximum probabilities
— €.9.5 F P-099[Wgood] © Pmin™ (S, Wgood) = 0.99

— e.9.5S F P_gos5[Whad] © PmaxM (S, Wpag) < 0.05

- But, w-regular properties are closed under negation

— as are the automata that represent them

— s0 can always consider maximum probabilities...

T pmaxM(S’ lPbad) or 1 - pminM(Ss ll-’good)

34

Automata-based properties for MDPs

For an MDP M and automaton A over alphabet 24P
— consider probability of “satisfying” language L(A) c (2AP)w
— ProbM.o(s, A) = PrMo{ w € PathM.9(s) | trace(w) € L(A) }
— PmaxM(s, A) = sUpgeadv ProbMo(s, A)
— PminM(s, A) = infscagy ProbM.o(s, A)

- Synthesis might need minimum or maximum probabilities
— Synth strat such that P.p.99 [Wgo0d] < Pmax™ (S, Wgood) = 0.99
— Synth strat such that P_g o5 [Wpag] < Pmin™M (S, Wpag) < 0.05

- But, w-regular properties are closed under negation

— as are the automata that represent them

— s0 can always consider maximum probabilities...

o pmaxM(S’ lI)good) or 1 - pminM(S, L|-’bad)

35

LTL strategy synthesis for MDPs (max)

- Synthesise strategy o over MDP M such that ProbM.o(s, @) =
pmaxM(Sy LI))

- 1. Generate a DRA for
— build nondeterministic Buchi automaton (NBA) for ¢ [VW94]
— convert the NBA to a DRA [Saf88] M

- 2. Construct product MDP M®A

- 3. ldentify accepting end components (ECs) of M®A

- 4. Compute max probability of reaching accepting ECs
— from all states of the M®A

- 5. Check if probability for (s, q.) against p for each s

36

Product MDP for a DRA

- Foran MDP M = (S, s;,;;, Steps, L)
- and a (total) DRA A = (Q, 2, 9, qy, AcC)
— where Acc = { (L, K)) | T<i<k}

- The product MDP M ® A is:

— the MDP (SxQ, (Sinit,dinit), Steps’, L) where:
Qinit = 0(do,L(Sinit))
Steps’((s,q)) = { w9 | u € Step(s) }
arer -y | M) if q'=0(q,L(s))
M)_{ 0 otherwise

I € L’((s,q)) if g € Liand k; € L'((s,q)) if g € K;
(i.e. state sets of acceptance condition used as labels)

37

Product MDP for a DRA

- For MDP M and DRA A

Pmax"(S; A) = Pmax" *2((s,ds), Viick (FG =li A GF k)

— where g. = 8(qo,L(s))

- Hence:

pmaxM(S’ A) — pmaxM®A((S1qs)! F TAcc)

— where Tacc is the union of all sets T for accepting end
components (T,Steps’) in D®A

— an accepting end component is such that, for some 1<i<k:
. (s,q) = —l, for all (s,q) € T and (s,q) = k;for some (s,q) € T
e, TN(SXL)=@and TN (S XK)+O

38

Strategy synthesis for LTL objectives

- Reduce to a reachability problem on the product of MDP M
and an w-automaton representing g

— for example, deterministic Rabin automaton (DRA)

- Need only consider computation of maximum probabilities

pmax(Sst)
— since pmin(s,l-p) =1 - pmax(s,_'q))

- To compute the optimal strategy o*
— find memoryless strategy on the product MDP

— convert to finite—-memory strategy with one mode for each
state of the DRA for Y

43

Example - LTL

P.oos [(G —hazard) A (GF goal,)]
— avoid hazard and visit goal; infinitely often

Pmax(So, (G —hazard) A (GF goal;)) = 0.1

Optimal strategy:
(in this instance,
memoryless)
So . south

44

Strategy synthesis for reward properties

- Cumulative: R_, [C=k]
— similar to step-bounded probabilistic reachability

— optimal strategies are deterministic but may need finite
memory

— solution of recursive equations, with k iterations
— R., [C]is the total expected reward, more complex...

—_ . See [FKNP11]
Reachability: R, [F ¢] - “Yor details |
_ Slmllar to the case of pI‘ObabI|IStIC reaChab|||ty S H

— precomputation to identify states that do not reach ¢,
assigned infinite rewards

— solve a linear optimization problem (or value iteration)
— optimal strategies are memoryless deterministic

45

Summing up...

- The strategy synthesis problem
— solved using the same methods as the verification problem
— extract optimal strategy/policy/adversary
— correct-by-construction synthesis procedure
Reward properties
— can be handled similarly

46

