Probabilistic Model Checking

Lecture 16 Strategy synthesis for MDPs

Alessandro Abate

Department of Computer Science University of Oxford

Overview

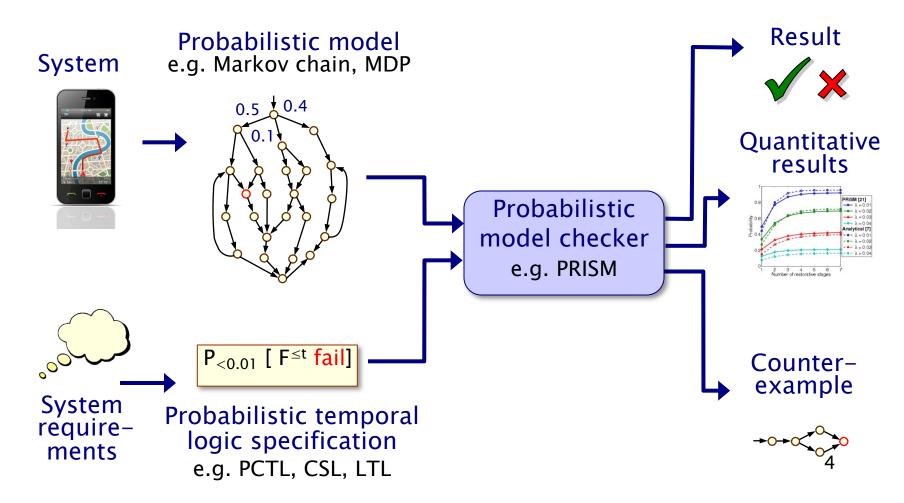
- Recall: MDPs, adversaries, properties and objectives
- The strategy synthesis problem
 - (also known as adversary, scheduler, policy, controller)
- Strategy synthesis
 - for probabilistic reachability
 - for probabilistic/reward LTL properties
 - for multi-objective LTL properties

About this lecture...

- So far have focused on verification
 - probabilistic models
 - quantitative temporal specifications
 - model checking algorithms
- Some work to date on counterexamples
 - but difficult to represent them compactly
- We consider the problem of strategy synthesis for MDPs
 - can we find a strategy to guarantee that a given quantitative property is satisfied?
 - advantage: correct-by-construction procedure
 - incidentally, can reuse verification algorithms...
- More generally, shifting emphasis
 - from quantitative verification to quantitative synthesis

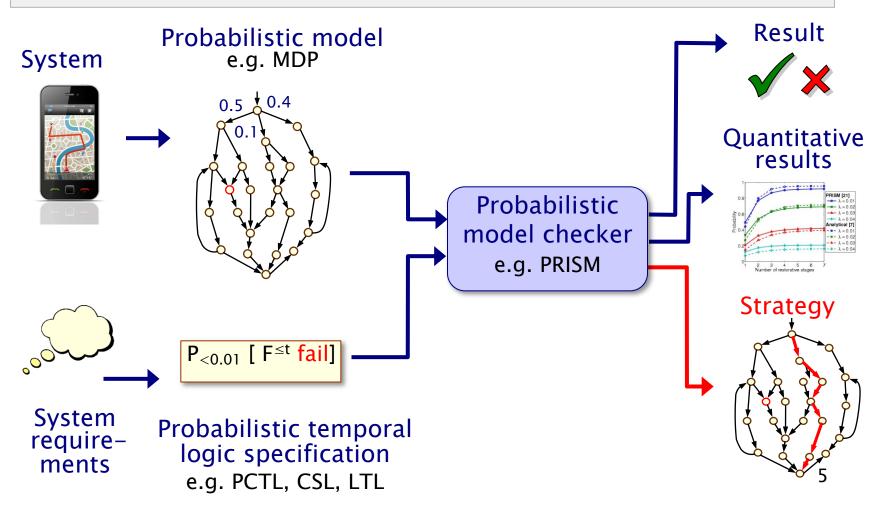
Quantitative (probabilistic) verification

Automatic verification (model checking) of quantitative properties of probabilistic models of system



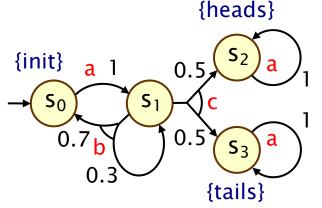
Quantitative (probabilistic) verification

Automatic verification and strategy synthesis over quantitative properties for probabilistic models



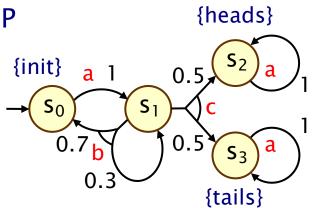
Recall: Markov decision processes (MDPs)

- Model nondeterministic as well as probabilistic behaviour
 - e.g. for concurrency, under-specification, abstraction...
 - extension of discrete-time Markov chains
 - nondeterministic choice between probability distributions
- Formally, an MDP is a tuple
 - (S, s_{init}, Steps, L)
- where:
 - **S** is a set of states
 - $s_{init} \in S$ is the initial state
 - **Steps :** $S \rightarrow 2^{Act \times Dist(S)}$ is a transition probability function
 - L : S \rightarrow 2^{AP} is a labelling function
 - Act is a set of actions, Dist(S) is the set of probability distributions over S, AP is a set of atomic propositions



Paths and strategies

- A (finite or infinite) path through an MDP
 - is a sequence (s₀...s_n) of (connected) states
 - represents an execution of the system
 - resolves both probabilistic and nondeterministic choices



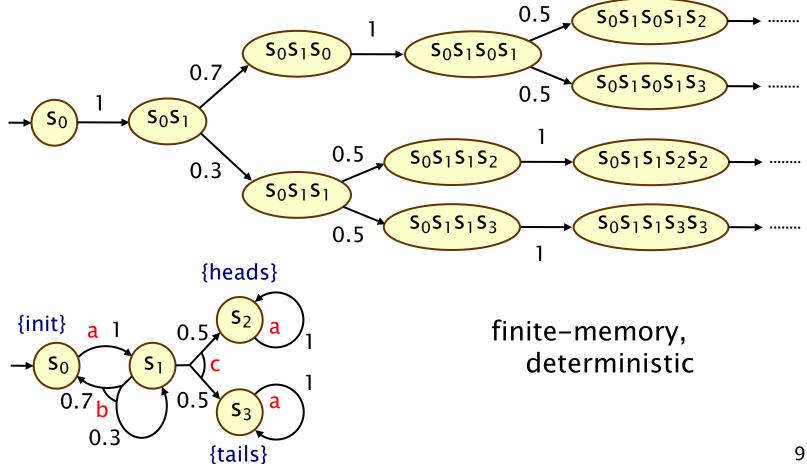
- A strategy σ (aka. "adversary" or "policy") of an MDP
 - is a resolution of nondeterminism only
 - is (formally) a mapping from finite paths to distributions over steps enabled in the last state of the path
 - induces a fully probabilistic model
 - i.e. an (infinite-state) Markov chain over finite paths
 - on which we can define a probability space over infinite paths

Classification of strategies/adversaries

- Strategies are classified according to
 - randomisation:
 - σ is deterministic (pure) if $\sigma(s_0...s_n)$ is a point distribution, and randomised otherwise
 - memory:
 - σ is memoryless (simple) if $\sigma(s_0...s_n) = \sigma(s_n)$ for all $s_0...s_n$
 - σ is finite memory if there are finitely many *modes* such that $\sigma(s_0...s_n)$ depends only on s_n and *current mode*, which is updated each time an action is performed
 - \cdot otherwise, σ is infinite memory
- A strategy σ induces, for each state s in the MDP:
 - a set of infinite paths $Path^{\sigma}(s)$
 - a probability space $Prob^{\sigma_s}$ over $Path^{\sigma}(s)$

Example strategy

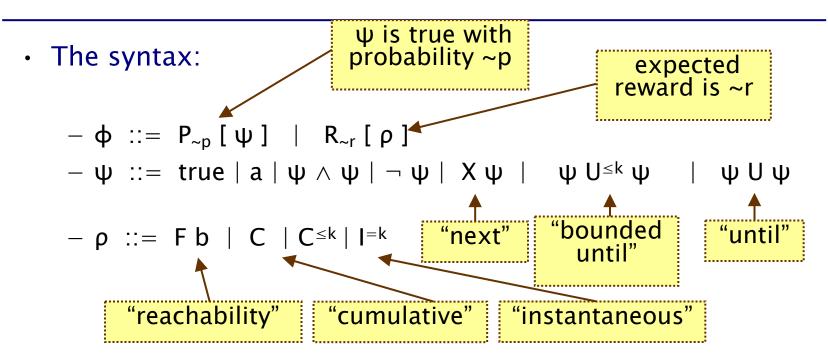
 Fragment of induced Markov chain for strategy which picks **b** then **c** in s₁



Costs and rewards

- We can augment MDPs with rewards (or costs)
 - real-valued quantities assigned to states and/or actions
 - different from the DTMC case where transition rewards assigned to individual transitions
- MDP (S, s_{init}, **Steps**, L), a reward/cost structure is a pair ($\underline{\rho}$, ι)
 - $\underline{\rho} : S \rightarrow \mathbb{R}_{\geq 0}$ is the state reward function
 - $-\iota: S \times Act \rightarrow \mathbb{R}_{\geq 0}$ is transition reward function
- These can be used to compute:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Distinguish between types of rewards over paths
 - Instantaneous ($I^{=k}$)
 - Cumulative and Bounded-cumulative (C, $C^{\leq k}$)
 - Reachability (F ϕ)

Properties and objectives



- where b is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$, and $r \in \mathbb{R}_{\geq 0}$
- We refer to φ as property, ψ and ρ as objectives
 - (linear-time: branching time more challenging for synthesis)

Properties and objectives

- Semantics of the probabilistic operator P
 - $s \models P_{\sim p} [\psi]$ means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all strategies σ "
 - formally $s \models P_{\sim p} [\psi] \iff Pr_s^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma} \{ \omega \in Path_s^{\sigma} \mid \omega \vDash \psi \}$
- R_{~r} [ρ] means "the expected value of ρ satisfies ~r for all strategies"
- Some examples:
 - $P_{\geq 0.4}$ [F "goal"] "probability of reaching goal is at least 0.4"
 - $R_{<5}$ [$C^{\leq 60}$] "expected power consumption over one hour is below 5"
 - $R_{\leq 10}$ [F "end"] "expected time to termination is at most 10"

Verification and strategy synthesis

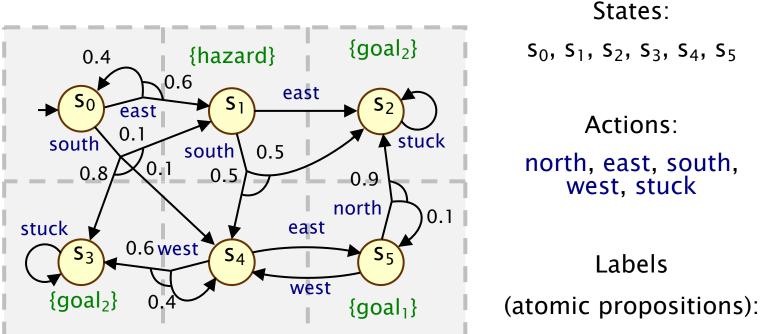
- The verification problem is:
 - Given an MDP M and a property $\varphi,$ does M satisfy φ under any possible strategy $\sigma?$
- The synthesis problem is dual:
 - Given an MDP M and a property $\varphi,$ find, if it exists, a strategy σ such that M satisfies φ under σ
- Verification and strategy synthesis is achieved using <u>the</u> <u>same techniques</u>, namely computing <u>optimal values</u> for probability objectives:
 - $p_{min}(s,\psi) = inf_{\sigma} Prob^{\sigma}(s,\psi)$
 - $p_{max}(s,\psi) = sup_{\sigma} Prob^{\sigma}(s,\psi)$
 - and similarly for expectations

Computing prob. reachability for MDPs

- Computation of $p_{max}(s, F b)$ for all $s \in S$ (for p_{min} analogous)
- Step 1: pre-compute all states where probability is 1 or 0
 - graph-based algorithm, yielding sets Syes, Sno
- Step 2: compute probabilities for remaining states (S?)
 - (i) approximate with value iteration
 - (ii) solve linear programming problem
 - (iii) solve with policy (strategy) iteration
- 1. Precomputation, e.g.:
 - algorithm Prob1E computes Syes
 - there exists a strategy for which the probability of "F b" is 1
 - algorithm Prob0A computes Sno
 - for all strategies, the probability of satisfying "F b" is 0

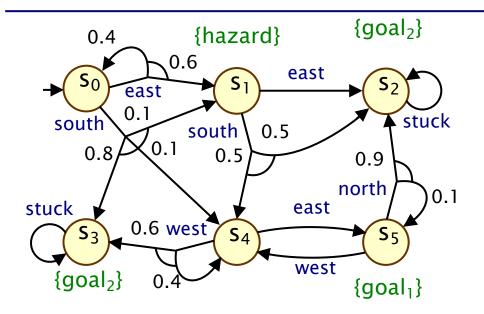
Running example

- Example MDP
 - robot moving through terrain divided into 3 x 2 grid



hazard, goal₁, goal₂

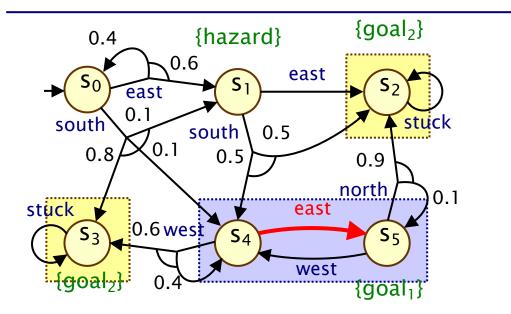
Example – Reachability



Example: $P_{\geq 0.4}$ [F goal₁]

So compute: p_{max}(s,F goal₁)

Example – Precomputation



S^{yes}

Sno

Example: $P_{\geq 0.4}$ [F goal₁]

So compute: p_{max}(s,F goal₁)

Reachability for MDPs

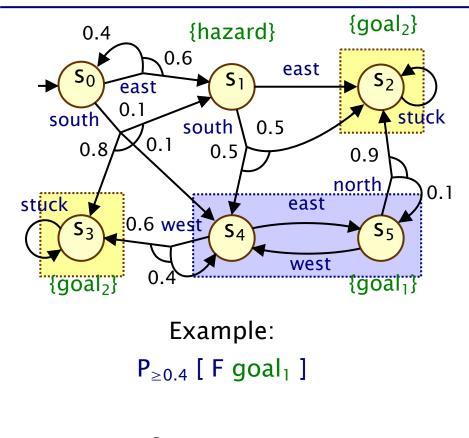
- 2. Numerical computation
 - compute probabilities p_{max}(s,F b)
 - for remaining states in $S^{?} = S \setminus (S^{yes} \cup S^{no})$
 - obtained as the unique solution of the linear programming (LP) problem:

minimize
$$\sum_{s \in S^?} x_s$$
 subject to the constraints :
 $x_s \ge \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$
for all $s \in S^?$ and for all $(a, \mu) \in$ Steps (s)

• This can be solved with standard techniques

- e.g. Simplex, ellipsoid method, branch-and-cut

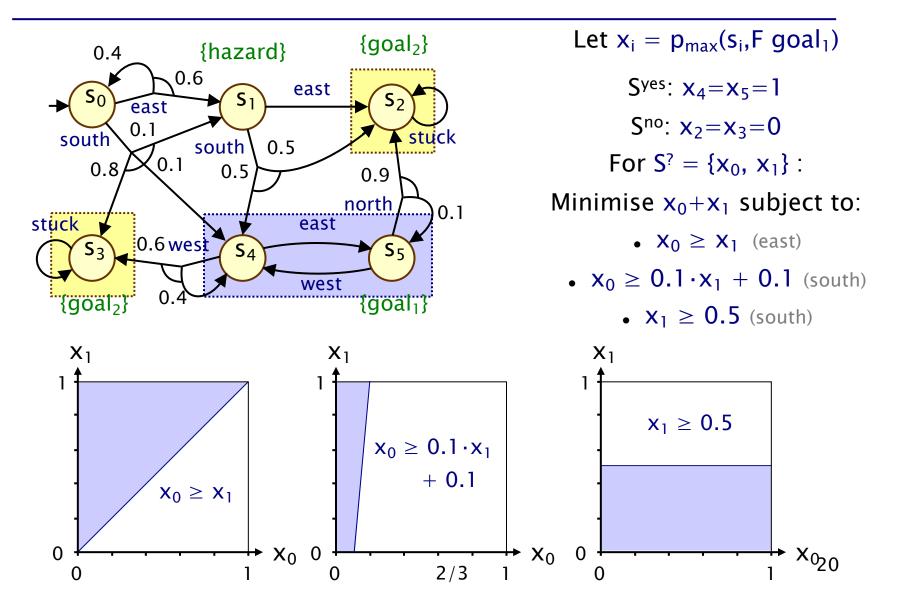
Example – Reachability (LP)



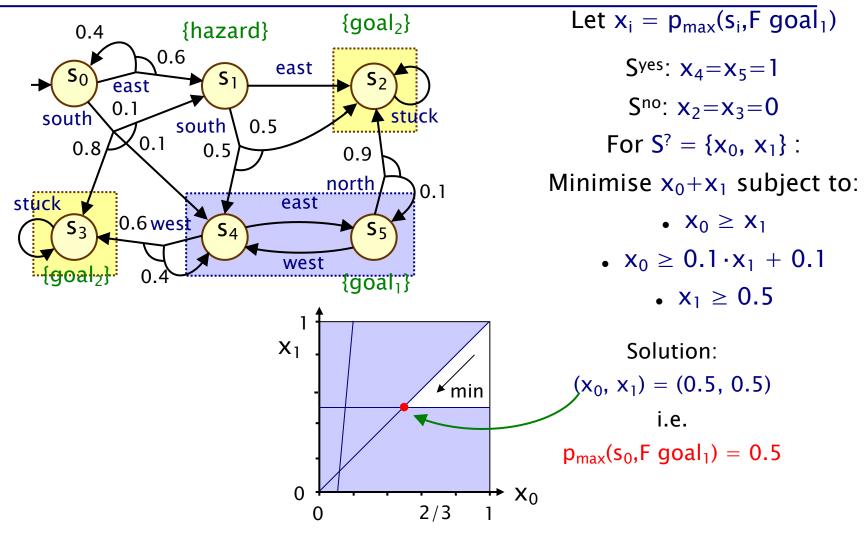
So compute: p_{max}(s,F goal₁) Let $x_i = p_{max}(s_i, F \text{ goal}_1)$ $S^{yes}: x_4 = x_5 = 1$ $S^{no}: x_2 = x_3 = 0$ For $S^? = \{x_0, x_1\}$: Minimise $x_0 + x_1$ subject to: • $x_0 \ge 0.4 \cdot x_0 + 0.6 \cdot x_1$ (east) • $x_0 \ge 0.1 \cdot x_1 + 0.1$ (south) • $x_1 \ge 0.5$ (south)

• $x_1 \ge 0$ (east)

Example – Reachability (LP)

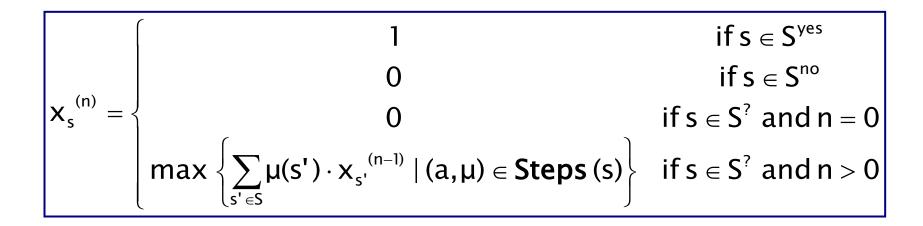


Example – Reachability (LP)



Reachability for MDPs

- 2. Numerical computation (alternative method)
 - value iteration
 - it can be shown that: $p_{max}(s,F b) = \lim_{n \to \infty} x_s^{(n)}$ where:



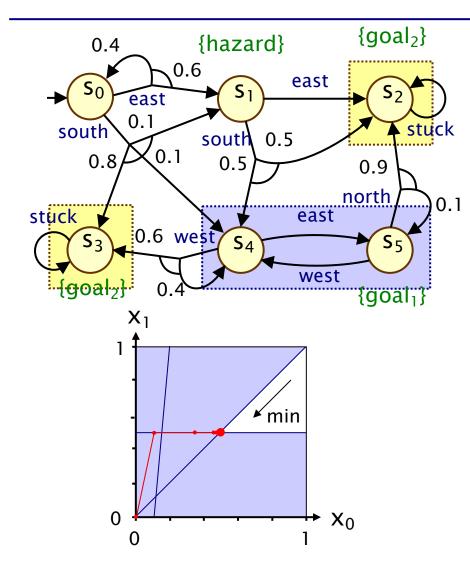
- Approximate iterative solution technique
 - iterations terminated when solution converges sufficiently

Example – Reachability (val. iter.)



= [0.34, 0.5, 0, 0, 1, 1]

Example - Reachability (val. iter.)



	$[X_0, X_1, X_2, X_3, X_3, X_4, X_5, X_5, X_5, X_5, X_5, X_5, X_5, X_5$
n=	=0: [0, 0, 0, 0, 1, 1]
n=1	: [0.1, 0.5, 0, 0, 1, 1]
n=2:	[0.34, 0.5, 0, 0, 1, 1]
n=3:	[0.436, 0.5, 0, 0, 1, 1]
n=4:	[0.4744, 0.5, 0, 0, 1, 1]
n=5:	[0.48976, 0.5, 0, 0, 1, 1]
n=6:	[0.495904, 0.5, 0, 0, 1, 1]
n=7:	[0.4983616, 0.5, 0, 0, 1, 1]
n=8:	[0.49934464, 0.5, 0, 0, 1, 1]

 $[\mathbf{v}_{2}(n) \mathbf{v}_{2}(n) \mathbf{v}_{2}(n) \mathbf{v}_{2}(n) \mathbf{v}_{3}(n) \mathbf{v}_{4}(n)]$

- n=16: [0.49999957, 0.5, 0, 0, 1, 1]
- n=17: [0.49999982, 0.5, 0, 0, 1, 1]

 \approx [0.5 0.5, 0, 0, 1, 1]

Strategy synthesis

- Compute optimal probabilities $p_{max}(s,F\ b)$ for all $s\in S$
- To compute the optimal strategy σ^* , choose the locally optimal action in each state
 - must also guarantee reachability (graph-based)
 - in general depends on the method used to compute the optimal probabilities
 - policy iteration computes the optimal strategy
- For reachability
 - memoryless strategies suffice
- For step-bounded reachability
 - need finite-memory strategies
 - typically requires backward computation from the goal states for a fixed number of steps

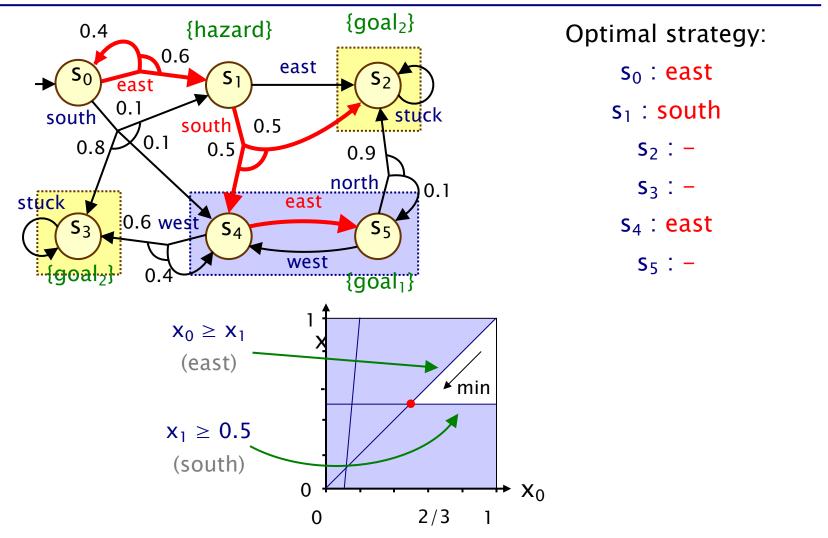
Memoryless strategies

- Memoryless strategies suffice for probabilistic reachability
 - i.e. there exist memoryless strategies σ_{min} & σ_{max} such that:
 - $Prob^{\sigma_{min}}(s,\,F\,a)$ = $p_{min}(s,\,F\,a)\,$ for all states $s\in S$
 - $Prob^{\sigma_{max}}(s, F a) = p_{max}(s, F a)$ for all states $s \in S$
- Construct strategies from optimal solution:

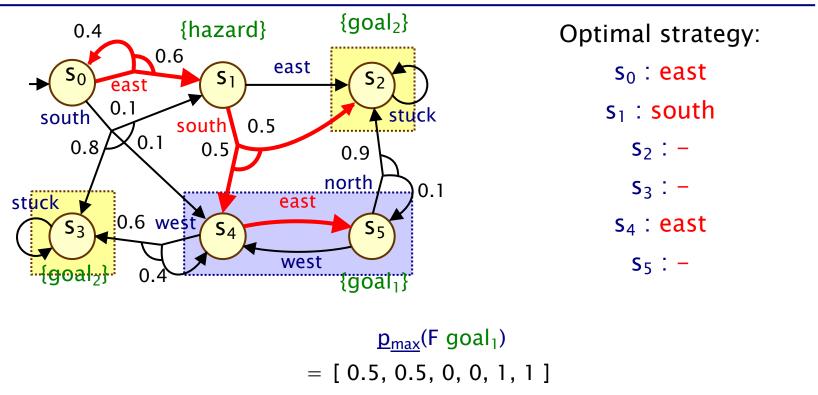
$$\sigma_{\min}(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\min}(s', Fa) \mid (a, \mu) \in \text{Steps}(s) \right\}$$

$$\sigma_{\max}(s) = \operatorname{argmax} \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\max}(s', Fa) \mid (a, \mu) \in \operatorname{Steps}(s) \right\}$$

Example – Strategy

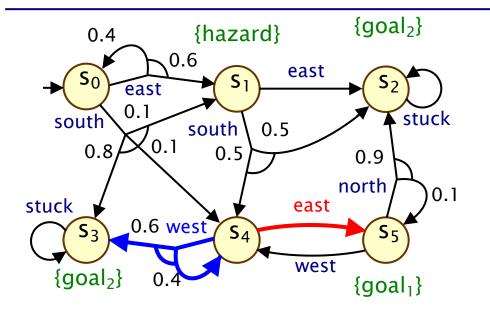


Example – Strategy



 $= [\max(0.6 \cdot 0.5 + 0.4 \cdot 0.5, 0.1 \cdot 0.5 + 0.1 \cdot 1 + 0.8 \cdot 0), \max(0, 0.5), 0, 0, 1, 1]$

Example - Bounded reachability



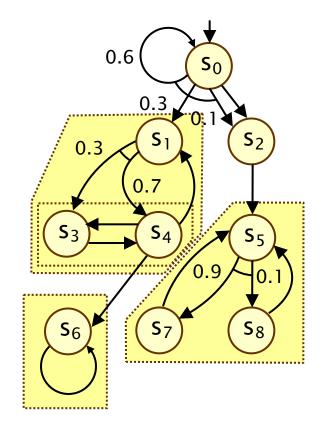
Example: $P_{max=?}$ [$F^{\leq 3}$ goal₂]

So compute: $p_{max}(s_0, F^{\leq 3} \text{ goal}_2) = 0.99$

Optimal strategy is finite-memory: s₄ (after 1 step): east s₄ (after 2 steps): west

Recall - end components in MDPs

- End components of MDPs are the analogue of BSCCs in DTMCs
- An end component is a strongly connected sub-MDP
- A sub-MDP comprises a subset of states and a subset of the actions/distributions available in those states, which is closed under probabilistic branching



Note:

- action labels omitted
- probabilities omitted where =1

Repeated reachability + persistence

- Maximum probabilities
 - $p_{max}(s, GF a) = p_{max}(s, F T_{GFa})$
 - where T_{GFa} is the union of sets T for all end components (T,Steps') with T \cap Sat(a) $\neq \emptyset$
 - $p_{max}(s, FG a) = p_{max}(s, F T_{FGa})$
 - where T_{FGa} is the union of sets T for all end components (T,Steps') with $T \subseteq Sat(a)$
- Minimum probabilities
 - need to compute from maximum probabilities...
 - $p_{min}(s, GF a) = 1 p_{max}(s, FG \neg a)$
 - $p_{min}(s, FG a) = 1 p_{max}(s, GF \neg a)$

Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet 2^{AP}
 - consider probability of "satisfying" language $L(A) \subseteq (2^{AP})^\omega$
 - $\ Prob^{M,\sigma}(s, A) = Pr_s^{M,\sigma} \{ \ \omega \in Path^{M,\sigma}(s) \ | \ trace(\omega) \in L(A) \ \}$
 - $p_{max}^{M}(s, A) = sup_{\sigma \in Adv} Prob^{M,\sigma}(s, A)$
 - $p_{min}^{M}(s, A) = inf_{\sigma \in Adv} \operatorname{Prob}^{M,\sigma}(s, A)$
- Verification might need minimum or maximum probabilities
 - $-\text{ e.g. } s \vDash P_{\geq 0.99} \left[\ \psi_{good} \ \right] \Leftrightarrow p_{min}{}^{M} \left(s, \ \psi_{good} \right) \geq 0.99$
 - $-\text{ e.g. } s \vDash P_{\leq 0.05} \left[\left. \psi_{bad} \right. \right] \Leftrightarrow p_{max}{}^{M} \left(s, \, \psi_{bad} \right) \leq 0.05$
- But, ω -regular properties are closed under negation
 - as are the automata that represent them
 - so can always consider maximum probabilities...
 - $p_{max}^{M}(s, \psi_{bad}) \text{ or } 1 p_{min}^{M}(s, \psi_{good})$

Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet 2^{AP}
 - consider probability of "satisfying" language $L(A) \subseteq (2^{AP})^\omega$
 - $\ Prob^{M,\sigma}(s, A) = Pr_s^{M,\sigma} \{ \ \omega \in Path^{M,\sigma}(s) \ | \ trace(\omega) \in L(A) \ \}$
 - $p_{max}^{M}(s, A) = sup_{\sigma \in Adv} Prob^{M,\sigma}(s, A)$
 - $p_{min}^{M}(s, A) = inf_{\sigma \in Adv} \operatorname{Prob}^{M,\sigma}(s, A)$
- Synthesis might need minimum or maximum probabilities
 - Synth strat such that $P_{\geq 0.99}$ [ψ_{good}] $\Leftrightarrow p_{max}^{M}$ (s, ψ_{good}) ≥ 0.99
 - Synth strat such that $P_{\leq 0.05}\left[~\psi_{bad} ~ \right] \Leftrightarrow p_{min}{}^{M}\left(s, ~\psi_{bad} \right) \leq 0.05$
- But, ω -regular properties are closed under negation
 - as are the automata that represent them
 - so can always consider maximum probabilities...
 - $p_{max}^{M}(s, \psi_{good})$ or 1 $p_{min}^{M}(s, \psi_{bad})$

LTL strategy synthesis for MDPs (max)

- Synthesise strategy σ over MDP M such that $Prob^{M,\sigma}(s,\,\psi) = p_{max}{}^{M}(s,\,\psi)$
- + 1. Generate a DRA for $\boldsymbol{\psi}$
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88] M
- 2. Construct product MDP $M \otimes A$
- + 3. Identify accepting end components (ECs) of $M{\otimes}A$
- 4. Compute max probability of reaching accepting ECs
 from all states of the M⊗A
- 5. Check if probability for (s, q_s) against p for each s

Product MDP for a DRA

- For an MDP M = (S, s_{init}, Steps, L)
- and a (total) DRA A = (Q, Σ , δ , q_0 , Acc)

```
- where Acc = { (L<sub>i</sub>, K<sub>i</sub>) | 1 \le i \le k }
```

- The product MDP $M \otimes A$ is:
 - the MDP (S×Q, (s_{init},q_{init}), Steps', L') where:

$$\begin{split} & q_{init} = \delta(q_0, L(s_{init})) \\ & \textbf{Steps'}((s,q)) = \{ \ \mu^q \ | \ \mu \in \text{Step}(s) \ \} \\ & \mu^q(s',q') = \begin{cases} \mu(s') & \text{if } q' = \delta(q, L(s)) \\ 0 & \text{otherwise} \end{cases} \end{split}$$

 $I_i \in L'((s,q))$ if $q \in L_i$ and $k_i \in L'((s,q))$ if $q \in K_i$ (i.e. state sets of acceptance condition used as labels)

Product MDP for a DRA

For MDP M and DRA A

$$p_{max}^{M}(s, A) = p_{max}^{M \otimes A}((s,q_s), \ \forall_{1 \le i \le k} \ (FG \ \neg I_i \ \land \ GF \ k_i))$$

- where
$$q_s = \delta(q_0, L(s))$$

• Hence:

$$p_{max}^{M}(s, A) = p_{max}^{M \otimes A}((s,q_s), F T_{Acc})$$

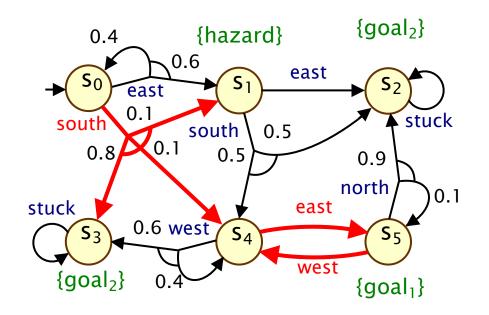
- where T_{Acc} is the union of all sets T for accepting end components (T,Steps') in D \otimes A
- an accepting end component is such that, for some $1 \le i \le k$:
 - . $(s,q) \vDash \neg I_i \text{ for all } (s,q) \in T \text{ and } (s,q) \vDash k_i \text{ for some } (s,q) \in T$
 - · i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$

Strategy synthesis for LTL objectives

- Reduce to a reachability problem on the product of MDP M and an $\omega\text{-automaton}$ representing ψ
 - for example, deterministic Rabin automaton (DRA)
- Need only consider computation of maximum probabilities $p_{max}(s,\psi)$
 - since $p_{min}(s,\psi) = 1 p_{max}(s,\neg\psi)$
- To compute the optimal strategy σ^*
 - find memoryless strategy on the product MDP
 - convert to finite-memory strategy with one mode for each state of the DRA for ψ

Example – LTL

- P_{≥0.05} [(G ¬hazard) ∧ (GF goal₁)]
 avoid hazard and visit goal₁ infinitely often
- $p_{max}(s_0, (G \neg hazard) \land (GF goal_1)) = 0.1$



Optimal strategy: (in this instance, memoryless) s_0 : south s_1 : s_2 : s_3 : s_4 : east s_5 : west

Strategy synthesis for reward properties

- Cumulative: R_{-r} [$C^{\leq k}$]
 - similar to step-bounded probabilistic reachability
 - optimal strategies are deterministic but may need finite memory
 - solution of recursive equations, with k iterations
 - R_{-r} [C] is the total expected reward, more complex...
- Reachability: R_{r} [F ϕ]
 - similar to the case of probabilistic reachability
 - precomputation to identify states that do not reach $\varphi,$ assigned infinite rewards
 - solve a linear optimization problem (or value iteration)
 - optimal strategies are memoryless deterministic

See [FKNP11] for details

Summing up...

- The strategy synthesis problem
 - solved using the same methods as the verification problem
 - extract optimal strategy/policy/adversary
 - correct-by-construction synthesis procedure
- Reward properties
 - can be handled similarly