
Lecture 16
Strategy synthesis for MDPs

Alessandro Abate

Department of Computer Science
University of Oxford

Probabilistic Model Checking

2

Overview

• Recall: MDPs, adversaries, properties and objectives

• The strategy synthesis problem
− (also known as adversary, scheduler, policy, controller)

• Strategy synthesis
− for probabilistic reachability
− for probabilistic/reward LTL properties
− for multi-objective LTL properties

About this lecture…

• So far have focused on verification
− probabilistic models
− quantitative temporal specifications
− model checking algorithms

• Some work to date on counterexamples
− but difficult to represent them compactly

• We consider the problem of strategy synthesis for MDPs
− can we find a strategy to guarantee that a given quantitative

property is satisfied?
− advantage: correct-by-construction procedure
− incidentally, can reuse verification algorithms…

• More generally, shifting emphasis
− from quantitative verification to quantitative synthesis

3

Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain, MDP

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [F≤t fail]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (model checking) of quantitative
properties of probabilistic models of system

4

Quantitative (probabilistic) verification

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

System
require-
ments

Automatic verification and strategy synthesis over
quantitative properties for probabilistic models

Probabilistic model
e.g. MDP

Result

Quantitative
results

System

Strategy

P<0.01 [F≤t fail]

Probabilistic
model checker

e.g. PRISM

0.5
0.1

0.4

5

Recall: Markov decision processes (MDPs)
• Model nondeterministic as well as probabilistic behaviour

− e.g. for concurrency, under-specification, abstraction…
− extension of discrete-time Markov chains
− nondeterministic choice between probability distributions

• Formally, an MDP is a tuple
− (S, sinit, Steps, L)

• where:
− S is a set of states
− sinit ∈ S is the initial state
− Steps : S → 2Act × Dist(S) is a transition probability function
− L : S → 2AP is a labelling function
− Act is a set of actions, Dist(S) is the set of probability

distributions over S, AP is a set of atomic propositions

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

6

Paths and strategies
• A (finite or infinite) path through an MDP

− is a sequence (s0...sn) of (connected)
states

− represents an execution of the system
− resolves both probabilistic and

nondeterministic choices

• A strategy σ (aka. “adversary” or “policy”) of an MDP
− is a resolution of nondeterminism only
− is (formally) a mapping from finite paths to distributions over

steps enabled in the last state of the path
− induces a fully probabilistic model
− i.e. an (infinite-state) Markov chain over finite paths
− on which we can define a probability space over infinite paths

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

7

Classification of strategies/adversaries

• Strategies are classified according to
− randomisation:

• σ is deterministic (pure) if σ(s0...sn) is a point distribution, and
randomised otherwise

− memory:
• σ is memoryless (simple) if σ(s0...sn) = σ(sn) for all s0...sn

• σ is finite memory if there are finitely many modes such that
σ(s0...sn) depends only on sn and current mode, which is updated
each time an action is performed

• otherwise, σ is infinite memory

• A strategy σ induces, for each state s in the MDP:
− a set of infinite paths Pathσ (s)
− a probability space Probσs over Pathσ (s)

8

Example strategy
• Fragment of induced Markov chain for strategy which picks

b then c in s1

finite-memory,
deterministic

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1
0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

9

10

Costs and rewards

• We can augment MDPs with rewards (or costs)
− real-valued quantities assigned to states and/or actions
− different from the DTMC case where transition rewards

assigned to individual transitions
• MDP (S,sinit,Steps,L), a reward/cost structure is a pair (ρ,ι)

− ρ : S → ℝ≥0 is the state reward function
− ι : S × Act → ℝ≥0 is transition reward function

• These can be used to compute:
− elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …
• Distinguish between types of rewards over paths

− Instantaneous (I=k)
− Cumulative and Bounded-cumulative (C, C≤k)
− Reachability (F φ)

Properties and objectives

• The syntax:

− φ ::= P~p [ψ] | R~r [ρ]
− ψ ::= true | a | ψ ∧ ψ | ¬ ψ | X ψ | ψ U≤k ψ | ψ U ψ

− ρ ::= F b | C | C≤k | I=k

− where b is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ,
and r ∈ ℝ≥0

• We refer to φ as property, ψ and ρ as objectives
− (linear-time: branching time more challenging for synthesis)

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

expected
reward is ~r

“reachability” “cumulative”

11

“instantaneous”

Properties and objectives

• Semantics of the probabilistic operator P
− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is

true for an outgoing path satisfies ~p for all strategies σ”
− formally s ⊨ P~p [ψ] ⇔ Prsσ(ψ) ~ p for all strategies σ
− where we use Prsσ(ψ) to denote Prsσ { ω ∈ Pathsσ | ω ⊨ ψ }

• R~r [ρ] means “the expected value of ρ satisfies ~r for all
strategies”

• Some examples:
− P≥0.4 [F “goal”] “probability of reaching goal is at least 0.4”
− R<5 [C≤60] “expected power consumption over one hour is

below 5”
− R≤10 [F “end”] “expected time to termination is at most 10”

12

Verification and strategy synthesis

• The verification problem is:
− Given an MDP M and a property φ, does M satisfy φ under any

possible strategy σ?

• The synthesis problem is dual:
− Given an MDP M and a property φ, find, if it exists, a strategy
σ such that M satisfies φ under σ

• Verification and strategy synthesis is achieved using the
same techniques, namely computing optimal values for
probability objectives:
− pmin(s,ψ) = infσ Probσ (s,ψ)
− pmax(s,ψ) = supσ Probσ (s,ψ)
− and similarly for expectations

13

Computing prob. reachability for MDPs

• Computation of pmax(s,F b) for all s ∈ S (for pmin analogous)
• Step 1: pre-compute all states where probability is 1 or 0

− graph-based algorithm, yielding sets Syes, Sno

• Step 2: compute probabilities for remaining states (S?)
− (i) approximate with value iteration
− (ii) solve linear programming problem
− (iii) solve with policy (strategy) iteration

• 1. Precomputation, e.g.:
− algorithm Prob1E computes Syes

• there exists a strategy for which the probability of "F b" is 1
− algorithm Prob0A computes Sno

• for all strategies, the probability of satisfying "F b" is 0

14

Running example

• Example MDP
− robot moving through terrain divided into 3 x 2 grid

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

States:
s0, s1, s2, s3, s4, s5

Actions:
north, east, south,

west, stuck

Labels
(atomic propositions):
hazard, goal1, goal2

15

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Example:
P≥0.4 [F goal1]

So compute:
pmax(s,F goal1)

Example - Reachability

16

Syes

Sno

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

Example:
P≥0.4 [F goal1]

So compute:
pmax(s,F goal1)

Example - Precomputation

17

Reachability for MDPs

• 2. Numerical computation
− compute probabilities pmax(s,F b)
− for remaining states in S? = S \ (Syes ∪ Sno)
− obtained as the unique solution of the linear programming

(LP) problem:

• This can be solved with standard techniques
− e.g. Simplex, ellipsoid method, branch-and-cut

18

minimize xs subject to the constraints :
sÎS?å

xs ³ µ(s')× xs' +
s'ÎS?

å µ(s')
s'ÎSyes

å

for all s Î S? and for all (a,µ) Î Steps (s)

Example – Reachability (LP)

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Let xi = pmax(si,F goal1)

Syes: x4=x5=1
Sno: x2=x3=0

For S? = {x0, x1} :
Minimise x0+x1 subject to:
● x0 ≥ 0.4·x0 + 0.6·x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)
● x1 ≥ 0.5 (south)

● x1 ≥ 0 (east)
Example:

P≥0.4 [F goal1]

So compute:
pmax(s,F goal1)

19

Example - Reachability (LP)

x0

x1

0
0

1

1

x0 ≥ x1

x1 ≥ 0.5

x0

x1

0
0

1

1
x0

x1

0
0

1

12/3

x0 ≥ 0.1·x1

+ 0.1

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

Let xi = pmax(si,F goal1)

Syes: x4=x5=1
Sno: x2=x3=0

For S? = {x0, x1} :
Minimise x0+x1 subject to:

● x0 ≥ x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)
● x1 ≥ 0.5 (south)

20

Example - Reachability (LP)

x1 Solution:
(x0, x1) = (0.5, 0.5)

i.e.
pmax(s0,F goal1) = 0.5

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

Let xi = pmax(si,F goal1)

Syes: x4=x5=1
Sno: x2=x3=0

For S? = {x0, x1} :
Minimise x0+x1 subject to:

● x0 ≥ x1

● x0 ≥ 0.1·x1 + 0.1
● x1 ≥ 0.5

x0
0

0

1

12/3

min

21

Reachability for MDPs

• 2. Numerical computation (alternative method)
− value iteration
− it can be shown that: pmax(s,F b) = limn→∞ xs(n) where:

• Approximate iterative solution technique
− iterations terminated when solution converges sufficiently

22

ï
ï
ï

î

ïï
ï

í

ì

>Î
þ
ý
ü

î
í
ì

Î×

=Î
Î
Î

=

å
Î

- 0nandSsif)s()µ(a,|x)'s(µmax

0nandSsif0
Ssif0
Ssif1

x
?

S s'

)1n(
's

?

no

yes

)n(
s

Steps

Example – Reachability (val. iter.)

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Compute: pmax(s,F goal1)

Syes: x4=x5=1
Sno: x2=x3=0
S? = {x0, x1}

[x0(n),x1(n),x2(n),x3(n),x4(n),x5(n)]
n=0: [0, 0, 0, 0, 1, 1]

n=1: [max(0.6·0+0.4·0, 0.1·0+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1]
= [0.1, 0.5, 0, 0, 1, 1]

n=2: [max(0.6·0.5+0.4·0.1, 0.1·0.5+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1]
= [0.34, 0.5, 0, 0, 1, 1]

23

Example – Reachability (val. iter.)

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

[x0
(n),x1

(n),x2
(n),x3

(n),x4
(n),x5

(n]
n=0: [0, 0, 0, 0, 1, 1]

n=1: [0.1, 0.5, 0, 0, 1, 1]
n=2: [0.34, 0.5, 0, 0, 1, 1]

n=3: [0.436, 0.5, 0, 0, 1, 1]
n=4: [0.4744, 0.5, 0, 0, 1, 1]

n=5: [0.48976, 0.5, 0, 0, 1, 1]
n=6: [0.495904, 0.5, 0, 0, 1, 1]

n=7: [0.4983616, 0.5, 0, 0, 1, 1]
n=8: [0.49934464, 0.5, 0, 0, 1, 1]

…
n=16: [0.49999957, 0.5, 0, 0, 1, 1]
n=17: [0.49999982, 0.5, 0, 0, 1, 1]

… ≈ [0.5 0.5, 0, 0, 1, 1]

x0

x1

0
0

1

1

min

24

Strategy synthesis

• Compute optimal probabilities pmax(s,F b) for all s ∈ S

• To compute the optimal strategy σ*, choose the locally
optimal action in each state
− must also guarantee reachability (graph-based)
− in general depends on the method used to compute the

optimal probabilities
− policy iteration computes the optimal strategy

• For reachability
− memoryless strategies suffice

• For step-bounded reachability
− need finite-memory strategies
− typically requires backward computation from the goal states

for a fixed number of steps
25

26

Memoryless strategies

• Memoryless strategies suffice for probabilistic reachability
− i.e. there exist memoryless strategies σmin & σmax such that:
− Probσmin(s, F a) = pmin(s, F a) for all states s ∈ S
− Probσmax(s, F a) = pmax(s, F a) for all states s ∈ S

• Construct strategies from optimal solution:

smin(s) = argmin µ(s') × pmin(s',Fa)
s'ÎS
å | (a,µ) Î Steps (s)
ì
í
ï

î ï

ü
ý
ï

þ ï

smax(s) = argmax µ(s') × pmax(s',Fa)
s'ÎS
å | (a,µ) Î Steps (s)
ì
í
ï

î ï

ü
ý
ï

þ ï

Example - Strategy

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

x1

0 12/3

x0 ≥ x1

(east)

x1 ≥ 0.5
(south)

Optimal strategy:
s0 : east

s1 : south
s2 : -
s3 : -

s4 : east
s5 : -

x00

1

min

27

Example - Strategy

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Optimal strategy:
s0 : east

s1 : south
s2 : -
s3 : -

s4 : east
s5 : -

pmax(F goal1)
= [0.5, 0.5, 0, 0, 1, 1]

= [max(0.6·0.5+0.4·0.5, 0.1·0.5+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1]

28

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Example:
Pmax=? [F≤3 goal2]

So compute:
pmax(s0,F≤3 goal2) = 0.99

Optimal strategy
is finite-memory:

s4 (after 1 step): east
s4 (after 2 steps): west

Example – Bounded reachability

29

30

Recall - end components in MDPs

• End components of MDPs
are the analogue of BSCCs in DTMCs

• An end component is a
strongly connected sub-MDP

• A sub-MDP comprises a subset
of states and a subset of the
actions/distributions available
in those states, which is closed
under probabilistic branching

s0

s1 s2

s5s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

Note:
● action labels omitted
● probabilities omitted where =1

32

Repeated reachability + persistence

• Maximum probabilities
− pmax(s, GF a) = pmax(s, F TGFa)

• where TGFa is the union of sets T for all end components
(T,Steps’) with T ∩ Sat(a) ≠ ∅

− pmax(s, FG a) = pmax(s, F TFGa)
• where TFGa is the union of sets T for all end components

(T,Steps’) with T ⊆ Sat(a)

• Minimum probabilities
− need to compute from maximum probabilities…
− pmin(s, GF a) = 1- pmax(s, FG¬a)
− pmin(s, FG a) = 1- pmax(s, GF¬a)

34

Automata-based properties for MDPs
• For an MDP M and automaton A over alphabet 2AP

− consider probability of “satisfying” language L(A) ⊆ (2AP)ω
− ProbM,σ(s, A) = PrsM,σ { ω ∈ PathM,σ(s) | trace(ω) ∈ L(A) }
− pmaxM(s, A) = supσ∈Adv ProbM,σ(s, A)
− pminM(s, A) = infσ∈Adv ProbM,σ(s, A)

• Verification might need minimum or maximum probabilities
− e.g. s ⊨ P≥0.99 [ψgood] ⇔ pminM (s, ψgood) ≥ 0.99
− e.g. s ⊨ P≤0.05 [ψbad] ⇔ pmaxM (s, ψbad) ≤ 0.05

• But, ω-regular properties are closed under negation
− as are the automata that represent them
− so can always consider maximum probabilities…
− pmaxM(s, ψbad) or 1 - pminM(s, ψgood)

35

Automata-based properties for MDPs
• For an MDP M and automaton A over alphabet 2AP

− consider probability of “satisfying” language L(A) ⊆ (2AP)ω
− ProbM,σ(s, A) = PrsM,σ { ω ∈ PathM,σ(s) | trace(ω) ∈ L(A) }
− pmaxM(s, A) = supσ∈Adv ProbM,σ(s, A)
− pminM(s, A) = infσ∈Adv ProbM,σ(s, A)

• Synthesis might need minimum or maximum probabilities
− Synth strat such that P≥0.99 [ψgood] ⇔ pmaxM (s, ψgood) ≥ 0.99
− Synth strat such that P≤0.05 [ψbad] ⇔ pminM (s, ψbad) ≤ 0.05

• But, ω-regular properties are closed under negation
− as are the automata that represent them
− so can always consider maximum probabilities…
− pmaxM(s, ψgood) or 1 - pminM(s, ψbad)

36

LTL strategy synthesis for MDPs (max)

• Synthesise strategy σ over MDP M such that ProbM,σ(s, ψ) =
pmaxM(s, ψ)

• 1. Generate a DRA for ψ
− build nondeterministic Büchi automaton (NBA) for ψ [VW94]
− convert the NBA to a DRA [Saf88] M

• 2. Construct product MDP M⊗A
• 3. Identify accepting end components (ECs) of M⊗A
• 4. Compute max probability of reaching accepting ECs

− from all states of the M⊗A
• 5. Check if probability for (s, qs) against p for each s

37

Product MDP for a DRA

• For an MDP M = (S, sinit, Steps, L)
• and a (total) DRA A = (Q, Σ, δ, q0, Acc)

− where Acc = { (Li, Ki) | 1≤i≤k }

• The product MDP M ⊗ A is:
− the MDP (S×Q, (sinit,qinit), Steps’, L’) where:

qinit = δ(q0,L(sinit))
Steps’((s,q)) = { µq | µ ∈ Step(s) }

li ∈ L’((s,q)) if q ∈ Li and ki ∈ L’((s,q)) if q ∈ Ki

(i.e. state sets of acceptance condition used as labels)

î
í
ì =

=
otherwise0

))s(L,q(δq' if)'s(µ)'q,'s(µq

38

Product MDP for a DRA

• For MDP M and DRA A

− where qs = δ(q0,L(s))

• Hence:

− where TAcc is the union of all sets T for accepting end
components (T,Steps’) in D⊗A

− an accepting end component is such that, for some 1≤i≤k:
• (s,q) ⊨ ¬li for all (s,q) ∈ T and (s,q) ⊨ ki for some (s,q) ∈ T
• i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

pmaxM(s, A) = pmaxM⊗A((s,qs), F TAcc)

pmaxM(s, A) = pmaxM⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki))

Strategy synthesis for LTL objectives

• Reduce to a reachability problem on the product of MDP M
and an ω-automaton representing ψ
− for example, deterministic Rabin automaton (DRA)

• Need only consider computation of maximum probabilities
pmax(s,ψ)
− since pmin(s,ψ) = 1 - pmax(s,¬ψ)

• To compute the optimal strategy σ*
− find memoryless strategy on the product MDP
− convert to finite-memory strategy with one mode for each

state of the DRA for ψ

43

Example - LTL

• P≥0.05 [(G ¬hazard) ∧ (GF goal1)]
− avoid hazard and visit goal1 infinitely often

• pmax(s0, (G ¬hazard) ∧ (GF goal1)) = 0.1

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Optimal strategy:
(in this instance,

memoryless)
s0 : south

s1 : -
s2 : -
s3 : -

s4 : east
s5 : west

44

Strategy synthesis for reward properties

45

See [FKNP11]
for details

• Cumulative: R~r [C≤k]
− similar to step-bounded probabilistic reachability
− optimal strategies are deterministic but may need finite

memory
− solution of recursive equations, with k iterations
− R~r [C] is the total expected reward, more complex…

• Reachability: R~r [F φ]
− similar to the case of probabilistic reachability
− precomputation to identify states that do not reach φ,

assigned infinite rewards
− solve a linear optimization problem (or value iteration)
− optimal strategies are memoryless deterministic

46

Summing up…

• The strategy synthesis problem
− solved using the same methods as the verification problem
− extract optimal strategy/policy/adversary
− correct-by-construction synthesis procedure

• Reward properties
− can be handled similarly

