
Lecture 15
LTL model checking
for DTMCs and MDPs

Alessandro Abate

Department of Computer Science
University of Oxford

Probabilistic Model Checking

2

Overview

• Limitations of PCTL, review of LTL

• Recall
− deterministic ω-automata (DBA or DRA) and DTMCs

• LTL model checking for DTMCs
− measurability
− complexity
− PCTL* model checking for DTMCs

• LTL model checking for MDPs

3

Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity
− essentially: probability of reaching states in X, passing only

through states in Y (and within k time steps)

• Alternative logics can be used, for example:
− LTL [Pnu77] - non-probabilistic linear-time temporal logic
− PCTL* [ASB+95,BdA95] - subsumes both PCTL and LTL

• In PCTL, temporal operators always appear inside P~p […]
− (in CTL, they always appear inside A or E)
− in LTL (and PCTL*), temporal operators can be combined

4

Review – CTL, PCTL and LTL

• CTL
− φ ::= true | a | φ ∧ φ | ¬φ | A ψ | E ψ

− ψ ::= X φ | φ U φ

• PCTL
− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]
− ψ ::= X φ | φ U≤k φ | φ U φ

• LTL
− path formulae only
− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ

5

LTL + probabilities

• Same idea as PCTL: probabilities over sets of paths
satisfying (path) formulae
− for a state s of a DTMC and an LTL formula ψ:
− Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }
− all such path sets are measurable (see later)

• For MDPs, we can again consider lower/upper bounds
− pmin(s, ψ) = infσ∈Adv Probσ(s, ψ)
− pmax(s, ψ) = supσ∈Adv Probσ(s, ψ)
− (over LTL formula ψ)

• For DTMCs and MDPs, an LTL specification often comprises
an LTL (path) formula and a probability bound
− e.g. P>0.99 [F (req ∧ X ack)]

11

Recall - DBA and DRA

• Deterministic Büchi automata (DBA)
− (Q, Σ, δ, q0, F)
− accepting run must visit some state in F infinitely often
− less expressive than nondeterministic Büchi automata (NBA)

• Deterministic Rabin automata (DRA)
− (Q, Σ, δ, q0, Acc)
− Acc = { (Li, Ki) | 1≤i≤k }
− for some pair (Li, Ki), the states in Li must be visited finitely

often and (some of) the states in Ki visited infinitely often
− equally expressive as NBA
− expresses all ω-regular properties; and hence all LTL

formulae

12

Product DTMC for a DBA

• For DTMC D and DBA A

− where qs = δ(q0,L(s))
• Hence:

− where TGFaccept is the union of all BSCCs T in D⊗A with
T∩Sat(accept)≠∅

• Reduces to computing BSCCs and reachability probabilities

ProbD(s, A) = ProbD⊗A((s,qs), GF accept)

ProbD(s, A) = ProbD⊗A((s,qs), F TGFaccept)

13

Product DTMC for a DRA

• For DTMC D and DRA A

− where qs = δ(q0,L(s))
• Hence:

− where TAcc is the union of all accepting BSCCs in D⊗A
− an accepting BSCC T of D⊗A is such that, for some 1≤i≤k:

• q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T
• i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

• Reduces to computing BSCCs and reachability probabilities

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc)

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki))

14

LTL model checking for DTMCs

• Model check LTL specification P~p [ψ] against DTMC D

• 1. Generate a deterministic Rabin automaton (DRA) for ψ
− build nondeterministic Büchi automaton (NBA) for ψ [VW94]
− convert the NBA to a DRA [Saf88]

• 2. Construct product DTMC D⊗A
• 3. Identify accepting BSCCs of D⊗A
• 4. Compute probability of reaching accepting BSCCs

− from all states of the D⊗A
• 5. Compare probability for (s, qs) against p for each s

• Qualitative LTL model checking - no probabilities needed

15

Measurability of ω-regular properties

• For any ω-regular property ψ
− the set of ψ-satisfying paths in any DTMC D is measurable

• Hence, the same applies to
− any LTL formula
− any regular safety property

• Proof sketch
− any ω-regular property can be represented by a DRA A
− we can construct D⊗A, in which there is a direct mapping

from any path ω in D to a path ω’ in D⊗A
− ω ⊨ ψ iff ω’ ⊨
− GF Φ and FG Φ are measurable (see lecture 3)
− ∧ and ∨ = intersection/union (which preserve measurability)

)kGFlFG(iiki1
Ù¬

££
Ú

16

Complexity

• Complexity of model checking LTL formula ψ on DTMC D
− is doubly exponential in |ψ| and polynomial in |D|
− (for the algorithm presented in these lectures)

• Converting LTL formula ψ to DRA A
− for some LTL formulae of size n, size of smallest DRA is

• BSCC computation
− Tarjan algorithm - linear in model size (states/transitions)

• Probabilistic reachability
− linear equations - cubic in (product) model size

• In total: O(poly(|D|,|A|))
• In practice: |ψ| is small and |D| is large
• Complexity can be reduced to single exponential in |ψ|

− see e.g. [CY88,CY95]

n22

17

Example 3 (Lec 15) revisited

• Model check P>0.2 [FG a]

• Result:
− Prob(FG a) = [0.125, 0.5, 1, 0, 0, 1]
− Sat(P>0.2 [FG a]) = { s1, s2, s5 }

s1s0 s2
0.1

{b}

0.3

s4s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}

q0

¬a

a
a

¬a

q1

Acc = { ({q0},{q1}) }

18

PCTL* model checking

• PCTL* syntax:
− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]

− ψ ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
• Example:

− P>p [GF (send → P>0 [F ack])]

• PCTL* model checking algorithm
− bottom-up traversal of parse tree for formula (like PCTL)
− to model check P~p [ψ]:

• replace maximal state subformulae with atomic propositions
• (state subformulae already model checked recursively)
• path specification ψ is now an LTL formula
• which can be model checked as for LTL

19

On to MDPs: Recall End Components

• End components of MDPs
are the analogue of BSCCs in DTMCs

• An end component is a
strongly connected sub-MDP

• A sub-MDP comprises a subset
of states and a subset of the
actions/distributions available
in those states, which is closed
under probabilistic branching

s0

s1 s2

s5s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

Note:
● action labels omitted
● probabilities omitted where =1

20

On to MDPs: Recall End Components

• End components of MDPs
are the analogue of BSCCs in DTMCs

• For every end component, there
is an adversary which, with
probability 1, forces the MDP
to remain in the end component,
and visit all its states infinitely often

• Under every adversary σ, with
probability 1 an end component  
will be reached and all of its
states  visited infinitely often

s0

s1 s2

s5s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

21

Repeated reachability and Persistence

• Maximum probabilities
− pmax(s, GF a) = pmax(s, F TGFa)

• where TGFa is the union of sets T for all end components
(T,Steps) with T ∩ Sat(a) ≠ ∅

− pmax(s, FG a) = pmax(s, F TFGa)
• where TFGa is the union of sets T for all end components

(T,Steps) with T ⊆ Sat(a)

• Minimum probabilities
− need to compute from maximum probabilities…
− pmin(s, GF a) = 1- pmax(s, FG¬a)
− pmin(s, FG a) = 1- pmax(s, GF¬a)

22

Example

• Check: P<0.8 [GF b] for s0

• Compute pmax(GF b)
− pmax(GF b) = pmax(s, F TGFb)
− TGFb is the union of sets T

for all end components
with T ∩ Sat(b) ≠ ∅

− Sat(b) = { s4, s6 }
− TGFb = T1∪T2∪T3 = { s1, s3, s4, s6 }
− pmax(s, F TGFb) = 0.75
− pmax(GF b) = 0.75

• Result: s0 ⊨ P<0.8 [GF b]

s0

s1 s2

s5s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1
T1

T2

T3

T4

{b}

{b}

23

Automata-based properties for MDPs
• For an MDP M and automaton A over alphabet 2AP

− consider probability of “satisfying” language L(A) ⊆ (2AP)ω
− ProbM,σ(s, A) = PrsM,σ { ω ∈ PathM,σ(s) | trace(ω) ∈ L(A) }
− pmaxM(s, A) = supσ∈Adv ProbM,σ(s, A)
− pminM(s, A) = infσ∈Adv ProbM,σ(s, A)

• Might need minimum or maximum probabilities
− e.g. s ⊨ P≥0.99 [ψgood] ⇔ pminM (s, ψgood) ≥ 0.99
− e.g. s ⊨ P≤0.05 [ψbad] ⇔ pmaxM (s, ψbad) ≤ 0.05

• But, ω-regular properties are closed under negation
− as are automata (under complementation) representing them
− so can always consider (e.g.,) maximum probabilities…
− pmaxM(s, ψbad) or 1 - pminM(s, ψgood)

24

LTL model checking for MDPs

• Model check LTL specification P~p [ψ] against MDP M

• 1. Convert problem to one needing maximum probabilities
− e.g. convert P>p [ψ] to P<1-p [¬ψ]

• 2. Generate a DRA for ψ (or ¬ψ)
− build nondeterministic Büchi automaton (NBA) for ψ [VW94]
− convert the NBA to a DRA [Saf88]

• 3. Construct product MDP M⊗A
• 4. Identify accepting end components (ECs) of M⊗A
• 5. Compute max probability of reaching accepting ECs

− from all states of the D⊗A
• 6. Compare probability for (s, qs) against p, for each s

25

Product MDP for a DRA

• For an MDP M = (S, sinit, Steps, L)
• and a (total) DRA A = (Q, Σ, δ, q0, Acc)

− where Acc = { (Li, Ki) | 1≤i≤k }

• The product MDP M ⊗ A is:
− the MDP (S×Q, (sinit,qinit), Steps’, L’) where:

qinit = δ(q0,L(sinit))
Steps’((s,q)) = { µq | µ ∈ Step(s) }

li ∈ L’((s,q)) if q ∈ Li and ki ∈ L’((s,q)) if q ∈ Ki

(i.e. state sets of acceptance condition used as labels)

î
í
ì =

=
otherwise0

))s(L,q(δq' if)'s(µ)'q,'s(µq

26

Product MDP for a DRA

• For MDP M and DRA A

− where qs = δ(q0,L(s))

• Hence:

− where TAcc is the union of all sets T for accepting end
components (T,Steps’) in D⊗A

− an accepting end component is such that, for some 1≤i≤k:
• (s,q) ⊨ ¬li for all (s,q) ∈ T and (s,q) ⊨ ki for some (s,q) ∈ T
• i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

pmax
M(s, A) = pmax

M⊗A((s,qs), F TAcc)

pmax
M(s, A) = pmax

M⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki))

27

MDPs - Example 1

• Model check P<0.8 [G ¬b ∧ GF a]

• Result:
− pmax(G ¬b ∧ GF a) = [0.7, 0, 1, 1]
− Sat(P<0.8 [G ¬b ∧ GF a]) = { s0, s1 }

s0

s2s1

s3

0.3

0.7
{b}

{a}
Acc = { (∅, {q1}) }

DRA (in fact DBA):

q0

¬a∧¬b

a∧¬b
q1

¬a∧¬b a∧¬b

28

MDPs - Example 1

• Model check P<0.8 [G ¬b ∧ GF a]

• Result:
− pmax(G ¬b ∧ GF a) = [0.7, 0, 1, 1]
− Sat(P<0.8 [G ¬b ∧ GF a]) = { s0, s1 }

s0

s2s1

s3

0.3

0.7
{b}

{a}

Total DRA (in fact DBA):

q0

¬a∧¬b

q1

q2

bb

a∧¬b

¬a∧¬b

a∧¬b

true

Acc = { (∅, {q1}) }

29

MDPs - Example 2

• Model check P>0 [G ¬b ∧ GF a]
− pmin(s, G ¬b ∧ GF a) = 1 - pmax(s, ¬(G ¬b ∧ GF a))

= 1 - pmax(s, F b ∨ FG ¬a))

• Result: pmin(G ¬b ∧ GF a) = [0, 0, 0, 1]
− Sat(P>0 [G ¬b ∧ GF a]) = {s3}

s0

s2s1

s3

0.3

0.7
{b}

{a}

DRA:

Acc = { (∅,{q2}),
({q1,q2},{q0}) }

q0

¬a∧¬b

q1

q2

bb

a∧¬b

¬a∧¬b

a∧¬b

true

30

LTL model checking for MDPs

• Maximal end components
− can optimise LTL model checking using maximal end

components (there may be exponentially many ECs)
• Qualitative LTL model checking

− no numerical computation: use Prob1E, Prob0A algorithms
• Complexity of model checking LTL formula ψ on MDP M

− is doubly exponential in |ψ| and polynomial in |M|
− unlike DTMCs, this cannot be improved upon

• PCTL* model checking
− LTL model checking can be adapted to PCTL*, as for DTMCs

• Optimal adversaries for LTL formulae
− memoryless adversary always exists for pmax(s, GF a)

and for pmax(s, FG a), but not for arbitrary LTL formulae

31

Summing up…

• Deterministic ω-automata (DBA or DRA) and DTMCs
− probability of language acceptance reduces to probabilistic

reachability of set of accepting BSCCs in product DTMC
• LTL model checking for DTMCs

− via construction of DRA for LTL formula
− complexity: (doubly) exponential in the size of the LTL

formula and polynomial in the size of the DTMC
− measurability of any ω-regular property on a DTMC

• PCTL* model checking for DTMCs
− combination of PCTL and LTL model checking algorithm

• LTL model checking for MDPs
− max. probabilities of reaching accepting end components
− min. probabilities through negation of max. probabilities

