Probabilistic Model Checking

Lecture 15 LTL model checking for DTMCs and MDPs

Alessandro Abate

Department of Computer Science University of Oxford

Overview

- Limitations of PCTL, review of LTL
- Recall
 - deterministic $\omega\textsc{-}automata$ (DBA or DRA) and DTMCs
- LTL model checking for DTMCs
 - measurability
 - complexity
 - PCTL* model checking for DTMCs
- LTL model checking for MDPs

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time steps)
- Alternative logics can be used, for example:
 - LTL [Pnu77] non-probabilistic linear-time temporal logic
 - PCTL* [ASB+95,BdA95] subsumes both PCTL and LTL
- In PCTL, temporal operators always appear inside $P_{\sim p}$ [...] (in CTL, they always appear inside A or E)
 - in LTL (and PCTL*), temporal operators can be combined

Review - CTL, PCTL and LTL

• CTL

$$-\phi$$
 ::= true | a | $\phi \land \phi$ | $\neg \phi$ | A ψ | E ψ

$$-\psi$$
 ::= $X \varphi | \varphi U \varphi$

• PCTL

$$-\phi$$
 ::= true | a | $\phi \land \phi$ | $\neg \phi$ | $P_{\sim p}$ [ψ]

$$-\psi$$
 ::= X $\varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$

- LTL
 - path formulae only
 - $\psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$

LTL + probabilities

- Same idea as PCTL: probabilities over sets of paths satisfying (path) formulae
 - for a state s of a DTMC and an LTL formula $\psi :$
 - $\operatorname{Prob}(s, \psi) = \operatorname{Pr}_s \{ \omega \in \operatorname{Path}(s) \mid \omega \vDash \psi \}$
 - all such path sets are measurable (see later)
- For MDPs, we can again consider lower/upper bounds
 - $p_{min}(s, \psi) = inf_{\sigma \in Adv} \ Prob^{\sigma}(s, \psi)$
 - $p_{max}(s, \psi) = sup_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$
 - (over LTL formula ψ)
- For DTMCs and MDPs, an LTL specification often comprises an LTL (path) formula and a probability bound

- e.g. $P_{>0.99}$ [F (req \wedge X ack)]

Recall – DBA and DRA

- Deterministic Büchi automata (DBA)
 - $\; (Q, \, \Sigma, \, \delta, \, q_0, \, F)$
 - accepting run must visit some state in F infinitely often
 - less expressive than nondeterministic Büchi automata (NBA)
- Deterministic Rabin automata (DRA)
 - (Q, Σ , δ , q₀, Acc)
 - $\text{ Acc} = \{ (L_i, K_i) | 1 \le i \le k \}$
 - for some pair (L_i, K_i), the states in L_i must be visited finitely often and (some of) the states in K_i visited infinitely often
 - equally expressive as NBA
 - expresses all $\omega\text{-}\text{regular}$ properties; and hence all LTL formulae

Product DTMC for a DBA

For DTMC D and DBA A

 $Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), GF accept)$

- where
$$q_s = \delta(q_0, L(s))$$

• Hence:

 $Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), F T_{GFaccept})$

- where $T_{GFaccept}$ is the union of all BSCCs T in D \otimes A with $T \cap Sat(accept) \neq \emptyset$
- Reduces to computing BSCCs and reachability probabilities

Product DTMC for a DRA

For DTMC D and DRA A

 $Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), \ \forall_{1 \le i \le k} \ (FG \ \neg I_i \land GF \ k_i))$

- where $q_s = \delta(q_0, L(s))$
- Hence:

 $Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), F T_{Acc})$

- where T_{Acc} is the union of all accepting BSCCs in $D{\otimes}A$
- an accepting BSCC T of D \otimes A is such that, for some $1 \le i \le k$:
 - $\cdot \ q \vDash \neg I_i \text{ for all } (s,q) \in T \text{ and } q \vDash k_i \text{ for some } (s,q) \in T$
 - · i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$
- Reduces to computing BSCCs and reachability probabilities

LTL model checking for DTMCs

- Model check LTL specification $P_{\sim p}$ [ψ] against DTMC D
- + 1. Generate a deterministic Rabin automaton (DRA) for $\boldsymbol{\psi}$
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 2. Construct product DTMC $D \otimes A$
- 3. Identify accepting BSCCs of $D \otimes A$
- 4. Compute probability of reaching accepting BSCCs
 - from all states of the $\mathsf{D}{\otimes}\mathsf{A}$
- 5. Compare probability for (s, q_s) against p for each s
- Qualitative LTL model checking no probabilities needed

Measurability of ω -regular properties

- For any ω -regular property ψ
 - the set of ψ -satisfying paths in any DTMC D is measurable
- · Hence, the same applies to
 - any LTL formula
 - any regular safety property

Proof sketch

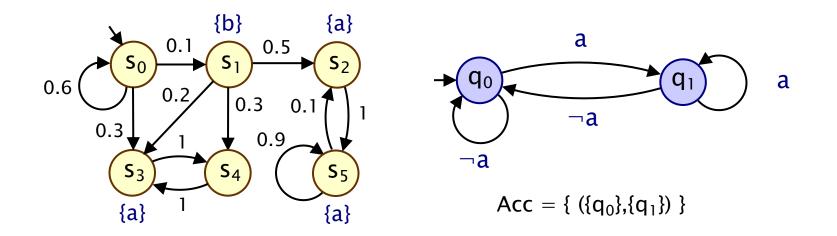
- any $\omega\text{-regular}$ property can be represented by a DRA A
- we can construct D \otimes A, in which there is a direct mapping from any path ω in D to a path ω' in D \otimes A
- $\omega \models \psi \text{ iff } \omega' \models \bigvee_{1 \leq i \leq k} (FG \neg I_i \land GF k_i)$
- GF Φ and FG Φ are measurable (see lecture 3)
- \wedge and $\vee =$ intersection/union (which preserve measurability)

Complexity

- + Complexity of model checking LTL formula ψ on DTMC D
 - is doubly exponential in $|\psi|$ and polynomial in |D|
 - (for the algorithm presented in these lectures)
- Converting LTL formula ψ to DRA A
 - for some LTL formulae of size n, size of smallest DRA is $2^{2"}$
- BSCC computation
 - Tarjan algorithm linear in model size (states/transitions)
- Probabilistic reachability
 - linear equations cubic in (product) model size
- In total: O(poly(|D|,|A|))
- In practice: $|\psi|$ is small and $|\mathsf{D}|$ is large
- Complexity can be reduced to single exponential in |ψ|
 see e.g. [CY88,CY95]

Example 3 (Lec 15) revisited

Model check P_{>0.2} [FG a]



- Result:
 - <u>Prob</u>(FG a) = [0.125, 0.5, 1, 0, 0, 1]
 - Sat($P_{>0.2}$ [FG a]) = { s_1, s_2, s_5 }

PCTL* model checking

• PCTL* syntax:

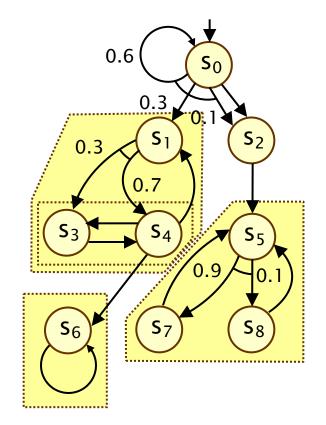
$$- \phi$$
 ::= true | a | $\phi \land \phi$ | $\neg \phi$ | $P_{\sim p}$ [ψ]

 $- \psi ::= \varphi \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$

- Example:
 - $P_{>p}$ [GF (send → $P_{>0}$ [F ack])]
- PCTL* model checking algorithm
 - bottom-up traversal of parse tree for formula (like PCTL)
 - to model check $P_{\sim p}$ [ψ]:
 - replace maximal state subformulae with atomic propositions
 - (state subformulae already model checked recursively)
 - $\cdot\,$ path specification ψ is now an LTL formula
 - $\cdot\,$ which can be model checked as for LTL

On to MDPs: Recall End Components

- End components of MDPs are the analogue of BSCCs in DTMCs
- An end component is a strongly connected sub-MDP
- A sub-MDP comprises a subset of states and a subset of the actions/distributions available in those states, which is closed under probabilistic branching

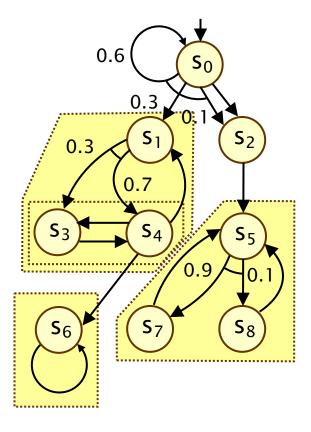


Note:

- action labels omitted
- probabilities omitted where =1

On to MDPs: Recall End Components

- End components of MDPs are the analogue of BSCCs in DTMCs
- For every end component, there
 is an adversary which, with
 probability 1, forces the MDP
 to remain in the end component,
 and visit all its states infinitely often
- Under every adversary σ, with probability 1 an end component will be reached and all of its states visited infinitely often

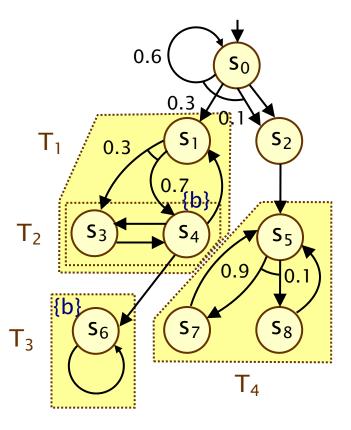


Repeated reachability and Persistence

- Maximum probabilities
 - $p_{max}(s, GF a) = p_{max}(s, F T_{GFa})$
 - where T_{GFa} is the union of sets T for all end components (T,Steps) with T \cap Sat(a) $\neq \emptyset$
 - $p_{max}(s, FG a) = p_{max}(s, F T_{FGa})$
 - where T_{FGa} is the union of sets T for all end components (T,Steps) with $T \subseteq Sat(a)$
- Minimum probabilities
 - need to compute from maximum probabilities...
 - $p_{min}(s, GF a) = 1 p_{max}(s, FG \neg a)$
 - $p_{min}(s, FG a) = 1 p_{max}(s, GF \neg a)$

Example

- Check: $P_{<0.8}$ [GF b] for s₀
- Compute p_{max}(GF b)
 - $p_{max}(GF b) = p_{max}(s, F T_{GFb})$
 - T_{GFb} is the union of sets T for all end components with T \cap Sat(b) $\neq \emptyset$
 - Sat(b) = { s₄, s₆ }
 - $\ T_{GFb} = T_1 \cup T_2 \cup T_3 = \{ \ s_1, \ s_3, \ s_4, \ s_6 \ \}$
 - $p_{max}(s, F T_{GFb}) = 0.75$
 - $p_{max}(GF b) = 0.75$
- Result: $s_0 \models P_{<0.8}$ [GF b]



Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet 2^{AP}
 - consider probability of "satisfying" language $L(A) \subseteq (2^{AP})^\omega$
 - $\ Prob^{M,\sigma}(s, A) = Pr_s^{M,\sigma} \{ \ \omega \in Path^{M,\sigma}(s) \ | \ trace(\omega) \in L(A) \ \}$
 - $p_{max}^{M}(s, A) = sup_{\sigma \in Adv} Prob^{M,\sigma}(s, A)$
 - $p_{min}^{M}(s, A) = inf_{\sigma \in Adv} \operatorname{Prob}^{M,\sigma}(s, A)$
- Might need minimum or maximum probabilities
 - $-\text{ e.g. } s \vDash P_{\geq 0.99} \left[\ \psi_{good} \ \right] \Leftrightarrow p_{min}{}^{M} \left(s, \ \psi_{good} \right) \geq 0.99$
 - $-\text{ e.g. } s \vDash P_{\leq 0.05} \left[\ \psi_{bad} \ \right] \Leftrightarrow p_{max}{}^{M} \left(s, \ \psi_{bad} \right) \leq 0.05$
- But, ω -regular properties are closed under negation
 - as are automata (under complementation) representing them
 - so can always consider (e.g.,) maximum probabilities...
 - $p_{max}^{M}(s, \psi_{bad}) \text{ or } 1 p_{min}^{M}(s, \psi_{good})$

LTL model checking for MDPs

- Model check LTL specification $P_{\sim p}$ [ψ] against MDP M
- 1. Convert problem to one needing maximum probabilities
 - e.g. convert $P_{>p}$ [ψ] to $P_{<1\text{-}p}$ [$\neg\psi$]
- 2. Generate a DRA for ψ (or $\neg \psi$)
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 3. Construct product MDP $M \otimes A$
- 4. Identify accepting end components (ECs) of $M \otimes A$
- 5. Compute max probability of reaching accepting ECs
 from all states of the D⊗A
- 6. Compare probability for (s, q_s) against p, for each s

Product MDP for a DRA

- For an MDP M = (S, s_{init}, Steps, L)
- and a (total) DRA A = (Q, Σ , δ , q_0 , Acc)

```
- where Acc = { (L<sub>i</sub>, K<sub>i</sub>) | 1 \le i \le k }
```

- The product MDP $M \otimes A$ is:
 - the MDP (S×Q, (s_{init},q_{init}), Steps', L') where:

$$\begin{split} & q_{init} = \delta(q_0, L(s_{init})) \\ & \textbf{Steps'}((s,q)) = \{ \ \mu^q \ | \ \mu \in \text{Step}(s) \ \} \\ & \mu^q(s',q') = \begin{cases} \mu(s') & \text{if } q' = \delta(q, L(s)) \\ 0 & \text{otherwise} \end{cases} \end{split}$$

 $I_i \in L'((s,q))$ if $q \in L_i$ and $k_i \in L'((s,q))$ if $q \in K_i$ (i.e. state sets of acceptance condition used as labels)

Product MDP for a DRA

For MDP M and DRA A

$$p_{max}^{M}(s, A) = p_{max}^{M \otimes A}((s,q_s), \ \forall_{1 \le i \le k} \ (FG \ \neg I_i \ \land \ GF \ k_i))$$

- where
$$q_s = \delta(q_0, L(s))$$

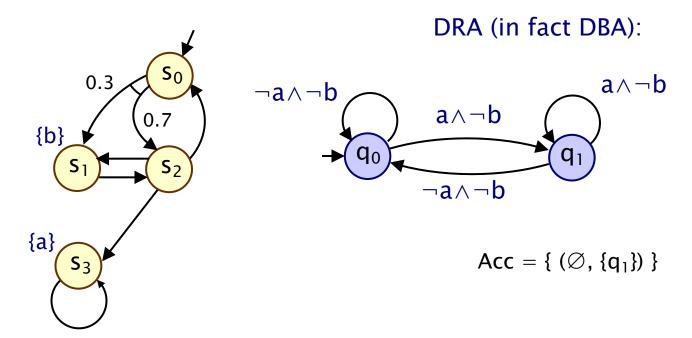
• Hence:

$$p_{max}^{M}(s, A) = p_{max}^{M \otimes A}((s,q_s), F T_{Acc})$$

- where T_{Acc} is the union of all sets T for accepting end components (T,Steps') in D \otimes A
- an accepting end component is such that, for some $1 \le i \le k$:
 - . (s,q) $\vDash \neg I_i \text{ for all } (s,q) \in T \text{ and } (s,q) \vDash k_i \text{ for some } (s,q) \in T$
 - · i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$

MDPs – Example 1

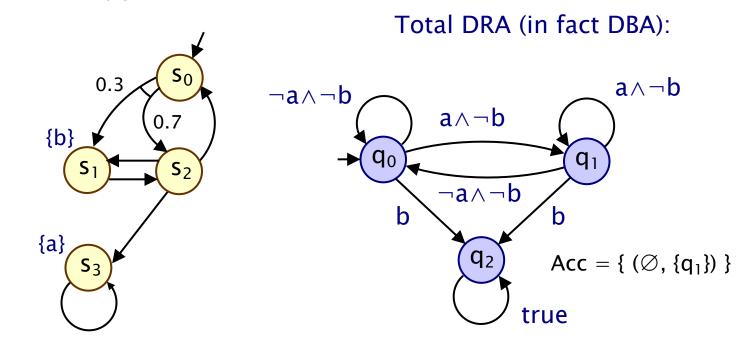
• Model check $P_{<0.8}$ [G $\neg b \land GF a$]



- Result:
 - $\underline{p}_{max}(G \neg b \land GF a) = [0.7, 0, 1, 1]$
 - Sat(P_{<0.8} [G $\neg b \land GF a]) = \{ s_0, s_1 \}$

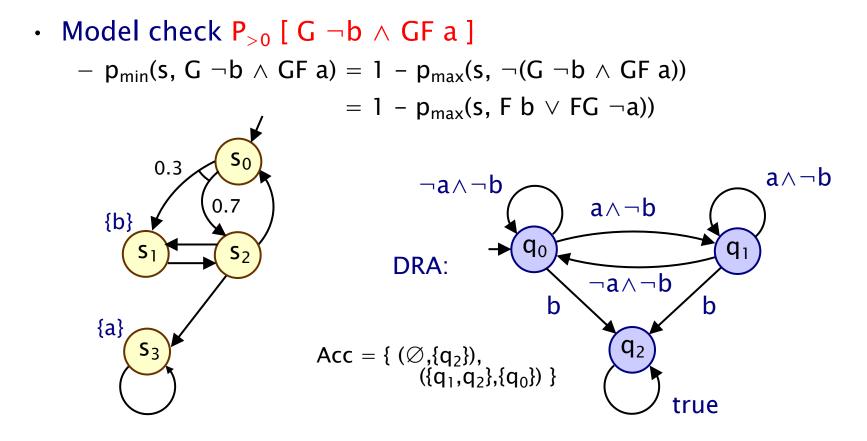
MDPs – Example 1

• Model check $P_{<0.8}$ [G $\neg b \land GF$ a]



- Result:
 - $\underline{p}_{max}(G \neg b \land GF a) = [0.7, 0, 1, 1]$
 - Sat(P_{<0.8} [G $\neg b \land GF a]) = \{ s_0, s_1 \}$

MDPs – Example 2



• Result: $\underline{p}_{min}(G \neg b \land GF a) = [0, 0, 0, 1]$ - Sat(P_{>0} [G $\neg b \land GF a$]) = {s₃}

LTL model checking for MDPs

Maximal end components

- can optimise LTL model checking using maximal end components (there may be exponentially many ECs)
- Qualitative LTL model checking
 - no numerical computation: use Prob1E, Prob0A algorithms
- + Complexity of model checking LTL formula ψ on MDP M
 - is doubly exponential in $|\psi|$ and polynomial in |M|
 - unlike DTMCs, this cannot be improved upon
- PCTL* model checking
 - LTL model checking can be adapted to PCTL*, as for DTMCs
- Optimal adversaries for LTL formulae
 - memoryless adversary always exists for $p_{max}(s, GF a)$ and for $p_{max}(s, FG a)$, but not for arbitrary LTL formulae

Summing up...

- Deterministic $\omega\text{-}automata$ (DBA or DRA) and DTMCs
 - probability of language acceptance reduces to probabilistic reachability of set of accepting BSCCs in product DTMC
- LTL model checking for DTMCs
 - via construction of DRA for LTL formula
 - complexity: (doubly) exponential in the size of the LTL formula and polynomial in the size of the DTMC
 - measurability of any $\omega\text{-regular}$ property on a DTMC
- PCTL* model checking for DTMCs
 - combination of PCTL and LTL model checking algorithm
- LTL model checking for MDPs
 - max. probabilities of reaching accepting end components
 - min. probabilities through negation of max. probabilities