Superconductive Materials

Part 13 Materials for SRF - Thin films

Outline

- Motivation for thin films in SRF cavities
- How to realize a thin film coating?
- State of the art in Nb thin films (accelerators using thin film technology)
- Characteristics of Nb thin films
- R&D on Nb thin films

Motivation for thin films in SRF cavities

- How to realize a thin film coating?
- State of the art in Nb thin films (accelerators using thin film technology)
- Characteristics of Nb thin films
- R&D on Nb thin films

Why thin films for SRF?

- 1. Reduce material cost
- 2. Change the surface properties (bulk properties \neq surface properties)
- 3. Use materials with poor mechanical properties (but excellent SRF properties)
- 4. Realize complex structures

Why thin films for SRF?

1. Reduce material cost

- 2. Change the surface properties (bulk properties \neq surface properties)
- 3. Use materials with poor mechanical properties (but excellent SRF properties)
- 4. Realize complex structures

Reduce material cost

RF penetration in Nb is **limited by** λ_L (less than 100 nm)

Not necessary more than 1 micron of Nb at the surface

Cu is almost **100 times cheaper** than high pure Nb

It is possible to **increase the mechanical stability** of the cavities increasing wall thickness

Why thin films for SRF?

1. Reduce material cost

2. Change the surface properties (bulk properties \neq surface properties)

- 3. Use materials with poor mechanical properties (but excellent SRF properties)
- 4. Realize complex structures

Cristian Pira

Temperature distribution in Nb-Cu

B= 154 GAUSS, T.B=2.5 K SUBC. FRED 500. MHZ RAD(DEF).010000 CM RS(DEF) .30000E-01 OHM

Temperature distribution simulation for an iron based defect imbedded in Nb or Cu

Copper prevent Quench

due to thermo-magnetic breakdown

Change the surface properties

Cu presents high thermal conductivity \rightarrow resistance to quench **Nb surface resistance could be modulated**

BCS resistance depends on mean free path

 $\begin{array}{l} R_{BCS} @ 4.2 \ \text{K} \\ \text{Nb bulk: ~900 } n\Omega \\ \text{Nb films: ~400 } n\Omega \end{array}$

 R_{BCS} @ 1.7 K Nb bulk: ~2.5 n Ω Nb films: ~1.5 n Ω

Benvenuti C et al 1999 Physica C 316 153

Change the surface properties

Cu presents high thermal conductivity \rightarrow resistance to quench Nb surface resistance could be modulated Safer handling for the chemical surface treatments

Cu polishing VS Nb polishing

Nb Chemical Polishing

BCP composition (1:1:1 or 1:1:2)

- HF Hydrofluoric acid (49%)
- HNO₃ Nitric acid (70%)
- H₃PO₄- Phosphoric acid (85%)

Cu Chemical Polishing

SUBU5 composition

- sulfamic acid (5g/l)
- hydrogen peroxide 32%(50ml/l)
- n-butanol 99%(50ml/l)
- ammonium citrate (1g/l)

Nb Electrochemical Polishing

EP bath composition (1:9)

- HF Hydrofluoric acid (49%)
- H_2SO_4 Sulphoric acid (96%)

Cu Electrochemical Polishing

EP bath composition (3:2)

- H₃PO₄- Phosphoric acid (85%)
- N-buthanol (99%)

No HF for Cu polishing No chemical post treatment on Nb film necessary

Superconductive Materials

Why thin films for SRF?

- I. Reduce material cost
- 2. Change the surface properties (bulk properties \neq surface properties)
- **3. Use materials with poor mechanical properties** (but excellent SRF properties)
- 4. Realize complex structures

Use materials with poor mechanical properties (but excellent SRF properties)

A15 materials (Nb₃Sn, V₃Si, Nb₃Ge, etc.) present high T_c and High H_{c1} but are very brittle: can not be used as bulk materials for SRF cavities

(WAIT THE NEXT LECTURE)

Material	T _C (K)	ρ _n (μΩcm)	μ ₀ Η _{C1} (mT)*	μ ₀ Η _{C2} (mT)*	μ ₀ Η _C (mT)*	µ₀H _{SH} (mT)*	λ (nm)*	ξ (nm)*	∆ (meV)	Туре
Pb	7,1		n.a.	n.a.	80		48			I
Nb	9,22	2	170	400	200	219	40	28	1.5	Ш
NbN	17,1	70	20	15 000	230	214	200-350	<5	2.6	Ш
NbTi			4-13	>11 000	100-200	80-160	210-420	5,4		
NbTiN	17,3	35	30				150-200	<5	2.8	П
Nb ₃ Sn	18,3	20	50	30 000	540	425	80-100	<5	<5	Ш
Mo ₃ Re	15	10-30	30	3 500	430	170	140			П
MgB ₂	39	0.1-10	30	3 500	430	170	140	5	2.3/7.2	II- 2gaps**
2H-NbSe ₂	7,1	68	13	2680- 15000	120	95	100-160	8-10		II- 2gaps**
YBCO/Cuprates	93		10	100 000	1400	1050	150	0,03/2		d-wave**
Pnictides Ba _{0.6} K _{0.4} Fe ₂ As ₂	38		30	>50000	900	756	200	2	10-20	s/d wave**
							C. Antoine (CFA Saclay), SRF Tutorials 2019			

*@ 0K

** 2D => orientation problems ?

Why thin films for SRF?

- l. Reduce material cost
- 2. Change the surface properties (bulk properties \neq surface properties)
- 3. Use materials with poor mechanical properties (but excellent SRF properties)

4. Realize complex structures

Realize complex structures

SIS Multilayer

(WAIT THE NEXT LECTURE)

Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)

Outline

• Motivation for thin films in SRF cavities

How to realize a thin film coating?

- State of the art in Nb thin films (accelerators with thin film technology)
- Characteristics of Nb thin films
- R&D on Nb thin films

Thin film applications

Some of the most utilized applications of thin film deposition processes include:

- Single and multilayer films and coatings ٠
- Nanolayered materials
- Optical films for transmission and reflection ٠
- Decorative films ٠
- Decorative and wear-resistant (decorative/functional) coatings ٠
- Permeation barriers for moisture and gases ٠
- Corrosion-resistant films ٠
- Electrically insulating layers for microelectronics ٠
- Coating of engine turbine blades ٠
- Coating of high strength steels to avoid hydrogen embrittlement ٠
- Diffusion barrier layers for semiconductor metallization
- Magnetic films for recording media
- Transparent electrical conductors and antistatic coatings
- Wear and erosion-resistant (hard) coatings (tool coatings)
- Dry film lubricants ٠
- Composite and phase-dispersed films and coatings
- Nanocomposite materials
- Thin-walled freestanding structures and foils

Cristian Pira

Superconductive Materials

AR lave

n-ZnSe

n-ZnSe

Metal

13 Materials for SRF - Thin films

Thin film deposition techniques

Chemical Deposition

- Plating/Electroplating
- Dip/Spin coating
- Chemical Vapour Deposition
 - Thermal CVD
 - Plasma Enhanced CVD
 - Atomic Layer Deposition (ALD)

Phisical Deposition

Physical Vapour Deposition

- Evaporation
- Laser Ablation
- Plasma Spray
- Sputtering
- Cathodic Arc

Thin film deposition techniques

Chemical Deposition

- Plating/Electroplating
- Dip/Spin coating
- Chemical Vapour Deposition
 - Thermal CVD
 - Plasma Enhanced CVD
 - Atomic Layer Deposition (ALD)

Phisical Deposition

- Physical Vapour Deposition
 - Evaporation
 - Laser Ablation
 - Plasma Sprav
 - Sputtering
 - Cathodic Arc

PVD deposition techniques

Physical vapor deposition processes (often just called thin film processes) are atomistic deposition processes in which material is vaporized from a solid or liquid source in the form of atoms or molecules and transported in the form of a vapor through a vacuum or low pressure gaseous (or plasma) environment to the substrate, where it condenses

Donald M. Mattox, Handbook of Physical Vapor Deposition PVD) Processing

Figure 1.1: PVD Processing Techniques: (a) Vacuum Evaporation, (b) and (c) Sputter Deposition in a Plasma Environment, (d) Sputter Deposition in a Vacuum, (e) Ion Plating in a Plasma Environment with a Thermal Evaporation Source, (f) Ion Plating with a Sputtering Source, (g) Ion Plating with an Arc Vaporization Source, and (h) Ion Beam-Assisted Deposition (IBAD) with a Thermal Evaporation Source and Ion Bombardment from an Ion Gun

Superconductive Materials

Anode water cooled

Plansee High Performance Materials, Youtube

The depositing film material may diffuse and react with the substrate to form a "interfacial region"

Weak chemical reaction between atoms and substrate

Low deposition temperature

Surface contamination

Low nucleation density

By diffusion (solubility, temperature, time, contaminations)

Chemical reaction (oxygen-active metals on oxide substrates)

By co-deposition or implantation of energetic ions of the material

Nucleation stages

Cristian Pira

Superconductive Materials

Phases of film growth: Nuclei growth

Nuclei grow by collecting adatoms which either impinge on the nuclei or migrate over the surface

binding energy atom-atom < binding energy atom-surface Layer by layer growth (Frank-van der Merwe)

binding energy atom-atom = binding energy atom-surface
Layer by layer + island growth (Stranski-Krastanov)

Phases of film growth: Film growth

Is the evolution of the nucleation, where arriving atoms are deposited on the previously deposited material Usually exhibits a columnar morphology

TiN on glass from Macleod's book

On growth and adhesion

Superconductive Materials

Stress on thin films

Donald M. Mattox, Handbook of Physical Vapor Deposition PVD) Processing

How to reduce film stress? Temperature effect

J. A. Thornton and D. W. Hoffman, "Stress-related effects in thin films," Thin Solid Films, 1989

Temperature effect and Structure Zone Diagram (SZD)

- Based on the compilation of the experimental results, is a guideline for "predicting" the structure of deposited thin films
- 1st proposed in 1969 by Movchan & Demchishin for films deposited by thermal evaporation.

 $T_h = \frac{T}{T_m}$

How to reduce film stress? Pressure effect

ZERO STRESS PRESSURE

J. A. Thornton and D. W. Hoffman, "Stress-related effects in thin films," Thin Solid Films, 1989

How to reduce film stress? Pressure effect

ZERO STRESS PRESSURE

J. A. Thornton and D. W. Hoffman, "Stress-related effects in thin films," Thin Solid Films, 1989

Thorton Structure Zone Diagram

- ZONE 1: characterized by a fine-grained structure of textured and fibrous grains, pointing in the direction of the arriving vapor flux. The morphology is caused by the low mobility of the adatoms that produce a continued nucleation of grain.
- ZONE T: a dense fibrous structure with a smooth, highly reflective surface. Diffusion is "remarkable" but grain boundary diffusion is strongly limited. lonic bombardment of the growing film can move the morphology from zone 1 to zone T.
- ZONE 2: surface diffusion sets in, leading to uniform columnar grains.
- ZONE 3: dense films with large grains, drive by bulk diffusion and recrystallization.

J.A. Thornton and D.W. Hoffman, Thin Solid Films, vol. 171, no. 1, pp. 5–31, 1989

Superconductive Materials

Outline

- Motivation for thin films in SRF cavities
- How to realize a thin film coating?

• State of the art in Nb thin films (accelerators with thin film technology)

- Characteristics of Nb thin films
- R&D on Nb thin films

Nb film is a well known technology

- 288 Nb/Cu cavities installed in LEP @ CERN
- 56 Nb/Cu cavities installed in ALPI @LNL INFN
- 16 Nb/Cu cavities installed in LHC @ CERN
- 20 Nb/Cu cavities installed in HIE-ISOLDE @CERN

• R&D in many different labs: CERN, INFN, JLAB, STFC, Cornell, IMP, ...

90's LEP2: 350MHz 4-cells

2000's LHC: 400MHz 1-cell

1998-2004 ALPI: 160 MHz QWR

2010's HIE-ISOLDE: 100MHz QWR

Elliptical cavities @CERN - LEP2, LHC and 1,5 GHz R&D

SPUTTERING PARAMETERS (1,5 GHz)

- Sputter gas pressure of 1.5x10⁻³ mbar (Ar or Kr)
- Plasma current stabilized at 3A DC
- Sputter potential ~-360 V
- Coating temperature is 150 °C
- Thickness: 1.5 μ m

SPUTTERING PARAMETERS (1,5 GHz)

- RRR: 11.5 ± 0.1
- Argon content: 435 ± 70 ppm
- Grain size: 110 ± 20 nm
- Tc: $9.51 \pm 0.01 \text{ K}$

Courtesy of S. Calatroni (CERN)

Cristian Pira

Cristian Pira

Cristian Pira

Cristian Pira

Cristian Pira

Cristian Pira

LEP2 Performances

Eight pre-series 4 cell cavities for LEP were built at CERN, the remaining 264 were **made by three European industrial suppliers**

No thermal quench (contrary to bulk Nb)

Higher performances compare to bulk Nb

Nb bulk cavities performance in the eighties were limited by the poor Nb thermal conductivity (RRR of 40)

Unexpected advantage

G. Arnolds-Mayer et al. 1988 Proc. of the 3rd Workshop on RF Superconductivity

Almost insensitive to the Earth's magnetic field

- Bulk Nb: 100 $n\Omega$ /Gauss
- Nb films: $1 n\Omega$ /Gauss

cheaper cryostats Not necessary complex magnetic shielding of the cavities

C. Benvenuti et al. I Physica B 197 (1994)

INFN 🔞

Cristian Pira

Superconductive Materials

10

Almost insensitive to the Earth's magnetic field

- Bulk Nb: 100 n Ω /Gauss
- Nb films: $1 n\Omega$ /Gauss

cheaper cryostats Not necessary complex magnetic shielding of the cavities

 $\mathbf{R}_{\rm fl} = (\mathbf{R}_{\rm fl}^{0} + \mathbf{R}_{\rm fl}^{1} \mathbf{H}_{\rm RF}) \mathbf{H}_{\rm ext}$

C. Benvenuti et al., Physica C 316 (1999) 153–188

(b)

LHC cavities: from substrate fabrication to installation in the tunnel

LHC Point 4, ~ 100 m deep shaft \rightarrow LHC tunnel

Courtesy of A. Sublet (CERN)

Cristian Pira

Distribution of cavity quality Q0 at a gradient of Eacc = 5 MV/m and a bath temperature of 4.5 K

21 cavities 400 MHz cavities produced at ACCEL

Highest gradients Eacc and quality factors Q0 at the highest gradients achieved at bath temperatures of 4.5 K and 2.5 K

S. Bauer et al., "Production of Nb/Cu sputtered superconducting cavities for LHC," 1999

LHC cavities coating setup

LHC cavity coating setup

- **Cavity as UHV chamber** (10⁻¹⁰ mbar base vacuum)
- Cavity = anode, grounded
- Nb cylindrical cathodes tubes
- movable electromagnet inside, liquid cooled
- \rightarrow DC-magnetron sputtering, 6 kW, 1.10⁻³ mbar Kr
- \rightarrow Cavity bake-out (bake-out tent) to 180°C
- \rightarrow Coating 7 steps for the 7 different electromagnet positions
- \rightarrow Duration = 1h 20' at low temperature (150°C)
- \rightarrow Nb layer thickness ~ 2 mm

Before and after coating views from cavity main aperture

A. Sublet, Thinfilms Workshop 2018

8 spare cavities produced

Cristian Pira

R&D on 1,5 GHz - State of the art for Nb-Cu cavities

INFN 🐠

Cristian Pira

Increasing complexity: Quarter Wave Resonator

Cristian Pira

ALPI @ LNL - 160 MHz QWR

- 1988: development of Pb/Cu QWRs (established technology at the time)
- 1994: a U-shaped linac with Pb/Cu mid- β QWRs; R&D of low- β full Nb and high- β Nb/Cu
- 1998: first high- β and 3 lower- β cryostats installed
- 1998-2004: mid-β QWRs with Nb/Cu technology (same Cu-base); 2nd high-β QWR, 4th full-Nb QWR; development and construction of PIAVE full Nb QWRs and SRFQs;
- 2006-2008: liquid-N cooled coupler improve stability of lower- β full Nb QWRs; Nb/Cu on new Cu-bases in test cryostat CR15
- 2016-2018: upgrades of PIAVE SRFQs to improve field and phase stability
- **2019-2021**: 2 additional high-β Nb/Cu resonators

G. Bisoffi – Long-term SRF Experience at INFN-Legnaro, TTC Meeting – Vancouver 2019

Bu,

The early ALPI with mid- β Pb/Cu QWRs

Reliable operation

Cheaper than full Nb, **mechanically stable**, **not** susceptible to **quench**, ideal for complicated geometries

Limited performance, and some degradation of Ea

Cristian Pira

First 80 MHz low- β full Nb cavity in 1993 (double wall thin Nb outer conductor, equipped with original mechanical dampers)

Off-line Q-curves: 6+8 MV/m at 7 W

R&D on full-Nb and Nb/Cu QWRs

OWF

Cathode

Ground

(geometry optimized for sputtering, capacitive coupler far from the shorting plate)

G. Bisoffi – Long-term SRF Experience at INFN-Legnaro, TTC Meeting – Vancouver 2019

Cristian Pira

56

Cristian Pira

ALPI QWR - Effect of the substrate

High β QWRs (β =0.13, 160 MHz)

Drilled by a billet of OFHC Cu, 99.95% grade

No brazed joints, beam ports jointed by indium gaskets

Rounded shorting plate

Medium β QWRs (β =0.13, 160 MHz)

Brazed joints (especially the ones in the outer resonator surface) Flat shorting plate

Beam ports shape

A. Porcellato, Nb Sputtered Cu QWR, Thin Films Workshop LNL 2006

13 Materials for SRF - Thin films

Nb/Cu sputtering advantages

Mechanical stability (mechanical vibrations are not an issue) **Frequency not affected** by changes He bath Dp (<0.01Hz/mbar) **Reduced over-coupling** (smaller amplifier, coupler do not need cooling, rf lines have reduced size and limited rf dissipation) High thermal stability (less prone to hot spots, conditioning easier) **Stiffness** (in case of loss of isolation vacuum leak) **Absence of Q-disease** (less demand on cryogenic system cooling velocity and reliability) **Insensitivity to small magnetic fields** (no magnetic shielding) **High Q of the N.C. cavity** (easier coupling in N.C state) Absence of In vacuum joints (vacuum leaks less probable) **Price** (both material and construction)

The lower performance of Nb/Cu cavities at high fields, due to the more pronounced Q-slope of Nb/Cu resonators, is not an issue in QWRs as it is in b>0.5 cavities, because beam dynamic constraints require to limit the accelerating gradient in the low b section of linacs to values well reachable by Nb sputtered resonators

ÍNFN 🖉

A. Porcellato, Nb Sputtered Cu QWR, Thin Films Workshop LNL 2006

ALPI QWR - Substrate preparation

- Electropolishing (20 μ m, 2 hours)
- Rinsing (water, ultrasonic water, HPR)
- Chemical polishing (10 μ m, 4 min, SUBU5)
- Passivation (sulphamic acid)
- Rinsing (water, ultrasonic water, HPR)
- Drying (ethanol, nitrogen)

A. Porcellato, Nb Sputtered Cu QWR, Thin Films Workshop LNL 2006

ALPI QWR - Sputtering process

A. Porcellato, Nb Sputtered Cu QWR, Thin Films Workshop LNL 2006

Cristian Pira

Superconductive Materials

13 Materials for SRF - Thin films

HIE-ISOLDE @ CERN

Superconducting linear accelerator for energy upgrade of ISOLDE radioactive ion beam facility

Cryomodule clean room assembly

4 cryomodules in HIE-ISODLE Linac

Courtesy of A. Sublet (CERN)

Cristian Pira

Superconductive Materials

13 Materials for SRF - Thin films

HIE-ISOLDE @ CERN

Same sputtering **configuration** as in **ALPI Clean room assembly** improvement

Cavity in UHV chamber (10^{-8} mbar base vacuum) 3D-forged Cu cavity substrate, biased at -80 V Nb cylindrical cathode used on both sides, not cooled DC-bias diode sputtering, 8 kW, Ar 0.2 mbar Coating at high temperature ($300 \rightarrow 620^{\circ}$ C) Done in 15 run/cool-down cycles (4 days) Nb layer thickness ranging from 1.5 mm to 12 mm

Courtesy of A. Sublet (CERN)

Cristian Pira

HIE-ISOLDE film characteristics

→ Influence of "multilayered" Nb film/dislocations/morphology on the RF performances?

A. Sublet (CERN), Thinfilms Workshop, LNL 2018

HIE ISOLDE R&D @LNL

Helicoidal magnetic configuration

State of the art in Nb thin films

Cristian Pira

HIE ISOLDE R&D @LNL

Helicoidal magnetic configuration

Good thickness uniformity

R&D stopped due to difficulties in the handling of the chemical polishing

(HIE ISOLDE QWR larger than ALPI QWR)

State of the art in Nb thin films

Cristian Pira

HIE-ISOLDE QWR Performances

Courtesy of W. Venturini (CERN)

State of the art of Nb-Cu films around 2 K

Courtesy of W. Venturini (CERN)

HIE-ISOLDE QWR Seamless Design

INFN

Cristian Pira

Motivation through the seamless design

 \rightarrow longitudinal fracture along the weld

- \rightarrow Source of chemicals trap/release
- \rightarrow oxidation/contamination \rightarrow peel-off

Courtesy of A. Sublet (CERN)

QWR Main Lesson learned: the substrate is important!

Cristian Pira

Outline

- Motivation for thin films in SRF cavities
- How to realize a thin film coating?
- State of the art in Nb thin films (accelerators using thin film technology)

Characteristics of Nb films

• R&D on Nb films

Q-slope problem

Unsolved problem since 1990s

Several theory proposed

Depinning of trapped flux

Low HC1

Early vortex penetration due to roughness

Grain boundaries

Bad thermal contact at the interface

Not intrinsic problem of the films Substrate is important

Effect of Polishing

Cu substrate plays a fundamental role in SRF performances

Roughness and defects reduction by **surface treatments are mandatory** for a good and uniform SRF coating

Characteristics of Nb films

L. Vega Cid, TTC meeting 2022 (elaborated)

Effect of Polishing

PVD film mimate the surface morphology

Pira et al., SRF 2018

Cu

Cristian Pira

Cristian Pira On behalf of SRF LNL Group

Plasma Electrolytic Polishing

TTC meeting 2023 Fermilab, 5 December 2023

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

	EP	PEP
Bath	Concentrated acid solutions	Diluted water- salt solutions
Area chatode: anode	1:1	10:1
Working voltage	2-25 V	260 – 340 V
Current density	0,03 A/cm ²	0,2-0,8 A/cm ²
Temperature	4-60 C° (lower is better)	60-90 C°

Pira C. et. Al, SRF Proceeding 2021

	EP	PEP
Bath	Concentrated acid solutions	Diluted water- salt solutions
Area _{chatode: anode}	1:1	10:1
Working voltage	2-25 V	260 – 340 V
Current density	0,03 A/cm ²	0,2-0,8 A/cm ²
Temperature	4-60 C° (lower is better)	60-90 C°

13 Materials for SRF - Thin films

h L

2\$

INFN

Vapor Gas Envelope

Electrolyte (-)

PEP Advantages

PEP is Green

Lower chemicals cost

Roughly 5x cheaper per 1 L

- ► Easier storage
- Easier and cheaper wastes proceeding
- ► Less security risks

No Acids in the chemical bath! **No HF** for Nb!

INFN PEP Patented Bath

Ammonium Fluoride NH₄F 2-6 % Sodium Fluoride NaF 0,5 – 2 %

PEP is Faster

PEP is at least

6x times **faster** than EP!

In cavity mass production it would be huge advantage!

100 µm removed

PEP is Efficient

Removal of equal quantity of materials leads to lower roughness comparing to other treatments

PEP is Efficient

Removal of equal quantity of materials leads to lower roughness comparing to other treatments

PEP is Efficient Comparision with EP and BCP

Nb, Magnification **1000x**; 100 µm Removal

Both micro and macro roughness is improved significantly

Cristian Pira

PEP is Efficient Comparision with EP and BCP

Superconductive Materials

Cristian Pira

13 Materials for SRF - Thin films

Plasma Electrolytic

PEP is Efficient

Real Example: Photocathode

In collaboration with (DESY.)

Initial

After 4 min PEP

Ra ~ 8 nm!!!

All 137.790um 0.042um 0.029um 0.071um 0.071um 0.063um 0.008um 0.010um

Profile1

Line type : Set 2pt. Ave: None Correction : Smooth intensity None, DCL/BCL None, Smooth height None, Correct tilt None JIS B0601:2001(ISO 4287:1997) Cutoff : Roughness As None, Ac 0.08mm Stylus mode : OFF

Item	Description	
File name	Copper Catode INFN polished PEP 100X 1X.rpt	
Measurement date	6/6/2023	
Measurement time	2:16:42 PM	
Objective lens	Standard lens 100.0x	
NA	0.950	
Size	Super fine	
Mode	Surface profile	
RPD	ON	
Quality	High accuracy	
Pitch	0.08 um	
Z measurement distance	2.635 um	
Double scan	ON	
Brightness1	6500	
ND filter	Intensity3%, Intensity100%	
Fine mode	ON	
Head type	VK-X110	

PEP is Versatile Scaling to large area

Current/Voltage curve Cu;

ÍNFN 🖉

Plasma Electrolytic

Polishing

PEP is Versatile Scaling Nb is a challenge

Plasma **Electrolytic** Polishing

In collaboration with

Second run

Cristian Pira

PEP is Versatile Scaling Nb is a challenge

Time, min

Temperature Gradients must be avoided

PEP is Versatile

Cu has no scaling problem

The solution used for Cu PEP is **SUBU5**

Double effect: PEP+Chemical Polishing

Cristian Pira

PEP is Versatile

Cu 6 GHz cavity succesfully polished

 $70 \,\mu m$ removed in 10 minutes $30 \text{ A} (100 \text{ cm}^2 \rightarrow 1.3 \text{ GHz} \sim 300 \text{ A})$

► PEP is a promising **alternative** polishing technique **for SRF**

► Greener, Faster, More Efficient and versatile than EP and BCP

 Scaling Nb PEP to large area is challenging (Temperature gradients must be avoided)

► PEP on elliptical cavity geometry proved on Cu

Effect of the Cu substrate forming process

Cu substrate plays a fundamental role in SRF performances

L. Vega Cid, TTC meeting 2022 (elaborated)

Different possibilities: Welding/seamless Spinning, hydroforming, electroforming...

Different proofs of **seamless** RF performances **superiority**

(Hie-ISOLDE, ALPI-INFN, CERN studies, ...)

Cooling channels

> SWEEL cavity Simpler coating procedure

Cristian Pira

Superconductive Materials

cavity fabrication

Effect of the Cu substrate forming process

Coatings on oxide-free **hydroformed** cavities consistently **Worse than** for **spun cavities**? Why?

Possible answer: a larger quantity of **hydrogen** was migrating into the film from the hydroformed cavity

S. Calatroni (CERN), SRF 2001

Effect of the gas

S. Calatroni (CERN), SRF 2001

Superconducting properties of niobium films depends on deposition angle between target and substrate

Angle of incidence of coating

D. Tonini et al, Morphology of niobium films sputtered at different target-substrate angle, SRF99, THP11

coating morphology

Cristian Pira

Superconductive Materials

13 Materials for SRF - Thin films

Angle of incidence of coating

C. Benvenuti et al, Production and test of 352 MHz Niobium Sputtered Reduced Beta cavities, 1997, SRF97D25

13 Materials for SRF - Thin films

Next generation Nb films

Careful characterization of the attained composition and microstructure (RHEED, STM, XRD, EBSD, AFM, optical profilometry, XPS, SIMS, TEM, FIB).

Close association with resulting RF surface impedance & superconducting properties (λ , Δ , T_c, H_c, RRR)

Energetic Condensation

Additional energy provided by fast particles arriving at a surface:

- residual gases desorbed from the substrate surface
- chemical bonds may be broken and defects created thus affecting nucleation processes & film adhesion
- enhanced mobility of surface atoms

Changes & control in:

- Film density
- morphology
- microstructure
- Stress
- low-temperature epitaxy

A-M Valente, SRF2017 Tutorials

Energetic Condensation

Generalized Structure Zone Diagram

A variety of techniques with distinct technologies

- Vacuum Arc Plasma & Coaxial Energetic Deposition (CED)
- Electron cyclotron Resonance (ECR)
- High Impulse Power Magnetron sputtering (HiPIMS)

R&D on Nb films

CERN (G. Rosaz et al.) Jefferson Lab (A-.M. Valente et al.) STFC ASTeC (R. Valizadeh et al.) Siegen University (M. Vogel et al.)

Lawrence Berkeley National Laboratories (A. Anders et al.)

Cristian Pira

HiPIMS

- **Pulsed sputtering** where the peak power exceeds the average power by typically two orders of magnitude
- The target material is **partially ionized**
- Large concentration of ions producing highquality homogeneous films
- Possibility to self sustain discharge

Very high purity Excellent adhesion better (normal) conductivity, Large crystal grains, low defect density Suppression of fiber structure Superior density Decreased roughness Homogeneous coating even on complex-shaped surfaces Phase composition tailoring Interface engineering

Lower coating rate : ions captured at the cathode Very sensitive to cathode surface state (roughness), induced arcing

INFN

R&D on Nb films

Superconductive Materials

13 Materials for SRF - Thin films

J. Böhlmark et al., J. Vac. Sci. Technol. A 23 (2005) 18

Conformal Coating

Inclination of columns is reduced at high target current densities due to high ion to-neutral ratio

CrN Glancing Angle Deposition

G. Greczynski, et al., Thin Solid Films 519 (2011) 6354.

R&D on Nb films

Cristian Pira

Conformal HiPIMS @CERN

Rosaz, SRF 2017, Lanzhou (China)

Cristian Pira

Superconductive Materials

13 Materials for SRF - Thin films

CERN HiPIMS Setup

HiPIMS discharge

- Same hardware as for DCMS
- Pulsed Power supply
 - 1% duty cycle
 - Short pulses: 200 μs
 - High peak current (200 A vs 3 A for DCMS)
 - High peak power (80 kW peak for 1kW avg)
- Ionization of sputtered species
- Lower coating rate than DCMS

Courtesy of G. Rosaz (CERN)

HiPIMS Results @ CERN

- High Bias does not give good results (gas implantation , stress)
 - Lower pressure tends to better performances (contamination, stress)
- Q-slope looks mitigated vs DCMS coating

Bulk Nb ($R_{res} = 20 \text{ n}\Omega$)

Courtesy of G. Rosaz (CERN)

HiPIMS Results @ CERN

- High Bias does not give good results (gas implantation , stress)
- Lower pressure tends to better performances (contamination, stress)
- Q-slope looks mitigated vs DCMS coating

HiPIMS @ JLAB

Courtesy of A.-M. Valente

- Movable cylindrical Nb cathode
- Background pressure in 10⁻⁹-10⁻¹⁰ Torr
- Coating temperatures up top 400 °C under external nitrogen flow
- Kr atmosphere

Courtesy of A-M. Valente (JLAB)

HiPIMS Results @JLAB

Some HiPIMS Nb/Cu cavities show **mitigation** of the characteristic **Q-slope**

Substrates are a possible **cause** of performance **limitation**

Courtesy of A-M. Valente (JLAB)

HiPIMS configuration @ LBNL

HiPIMS Dual Magnetron Configuration

- Most effective for Biasing & influencing Ion Energies & Trajectories
- High power mode (above runaway threshold)
- Dominated by Nb emission
- No cavity RF tested

INFN 🕡

Cristian Pira

Superconductive Materials

13 Materials for SRF - Thin films

Anders, Thinfilms Workshop 2016, JLab

The WOW cavity coating challenge

Wide-Open Waveguide (WOW) crab cavity (Nb/Cu), 1st prototype completed in 2018

INFN

densify the film

13 Materials for SRF - Thin films

F. Avino (CERN), TTC Meeting, CERN 2020

Jefferson Lab (A-.M. Valente et al.)

Cristian Pira

Energetic Condensation with ECR @JLAB

ECR DEPOSITION PROCESS

- 1. Nb is evaporated by e-beam in a separate vacuum chamber
- 2. Nb vapours are ionized by an ECR process
 - RF power (@2.45GHz)
 - Static $B \perp E_{RF}$ with ECR condition
- 3. Nb ion are accelerate to the substrate (cavity) by a bias voltage

No working gas Singly charged ions (64eV) produced in vacuum Controllable deposition energy with Bias voltage Excellent bonding , No macro particles Good conformality

ECR film properties

S	ubstrate	RRR max		
	a-Al ₂ O ₃	591		
Insulating	r-Al ₂ O ₃	725		
	c-Al ₂ O ₃	247		
	MgO (100)	188		
	MgO (110)	424		
	MgO (111)	270		
	Al ₂ O ₃ ceramic	135		
	AIN ceramic	110		
	Fused Silica	84		
Metallic	Cu (100)	181		
	Cu (110)	275		
	Cu (111)	245		
	Cu fine grains	193		
	Cu large grains	305		

Courtesy of A-M. Valente (JLAB)

SEQUENTIAL PHASE FOR FILM GROWTH

- Interface
- Film nucleation (184 eV)
- Growth of appropriate template for subsequent deposition (64 eV)
- Deposition of final surface optimized for minimum defect density Bulk like properties
 Opportunity for film engineering

Hetero-epitaxial growth

Growth on amorphous interface

Fiber growth ECR Nb/Cu films perform better than hetero-epitaxial ones

R&D on Nb films

Cristian Pira

ECR Results

Mitigation of Rs slope possible

Energetic Condensation Nb/Cu films show similar RF behavior compare to bulk Nb in QPR measurements

Courtesy of A-M. Valente (JLAB)

Cristian Pira

13 Materials for SRF - Thin films

Chemical Vapour Deposition

Fundamental sequential steps in every CVD process

- . Convective and diffusive transport of reactants from the gas inlets to the reaction zone
- 2. Chemical reactions in the gas phase to produce new reactive species and byproducts
- 3. Transport of the initial reactants and their products to the substrate surface
- 4. Adsorption (chemical and physical) and diffusion of these species on the substrate surface
- 5. Heterogeneous reactions catalyzed by the surface leading to film formation
- 6. Desorption of the volatile by-products of surface reactions
- 7. Convective and diffusive transport of the reaction by-products away from the reaction zone

Figure 6-2 Sequence of gas transport and reaction processes contributing to CVD film growth. (From *Chemical Vapor Deposition*, edited by M. L. Hitchman and K. F. Jensen. Reprinted with the permission of Academic Press, Ltd., and Professor K. F. Jensen, MIT.)

CVD @ Cornell University and Ultramet

Fundamental sequential steps in every CVD process

- . Convective and diffusive transport of reactants from the gas inlets to the reaction zone
- Chemical reactions in the gas phase to produce new reactive species and by-products
- 3. Transport of the initial reactants and their products to the substrate surface
- 4. Adsorption (chemical and physical) and diffusion of these species on the substrate surface
- 5. Heterogeneous reactions catalyzed by the surface leading to film formation
- 6. Desorption of the volatile by-products of surface reactions
- 7. Convective and diffusive transport of the reaction by-products away from the reaction zone

Reactor diagram showing use of $\mathsf{NbCl}_{\mathsf{5}}$ to produce CVD niobium

CVD @ Cornell University and Ultramet

Film optimization & process scale-up High purity (high RRR) Excellent adhesion Full size cavity

Zeming Sun Mingqi (Cornell), TTC Meeting, CERN 2020

CVD @ Cornell University and Ultramet

122

Cristian Pira

Superconductive Materials

13 Materials for SRF - Thin films

Supe

Conclusions

Nb thin films are the optimum choice for low gradient/4.2 K applications

- Cost reduction
- $R_{BCS\,film} < R_{BCS\,bulk} \rightarrow Q_{0\,film} > Q_{0\,bulk}$
- Thermal stability
- Mechanical stability
- Less sensitivity to magnetic field trapping

Mitigation of Q-slope for high gradient applications seems possible We need to understand the reason of the Q-slope

- Establish adequate process controls
- Mandatory have better substrates and chemical processes
- Need more RF measurements statistics

Other materials for SRF?

Superconductors for SRF?

Material	T _C (K)	ρ _n (μΩcm)	µ ₀ H _{C1} (mT)*	μ ₀ Η _{C2} (mT)*	µ₀H _C (mT)*	µ ₀ H _{SH} (mT)*	λ (nm)*	ξ (nm)*	∆ (meV)	Туре
Pb	7,1		n.a.	n.a.	80		48			I
Nb	9,22	2	170	400	200	219	40	28	1.5	Ш
NbN	17,1	70	20	15 000	230	214	200-350	<5	2.6	Ш
NbTi			4-13	>11 000	100-200	80-160	210-420	5,4		
NbTiN	17,3	35	30				150-200	<5	2.8	Ш
Nb ₃ Sn	18,3	20	50	30 000	540	425	80-100	<5	<5	Ш
Mo ₃ Re	15	10-30	30	3 500	430	170	140			Ш
MgB ₂	39	0.1-10	30	3 500	430	170	140	5	2.3/7.2	II- 2gaps**
2H-NbSe ₂	7,1	68	13	2680- 15000	120	95	100-160	8-10		II- 2gaps**
YBCO/Cuprates	93		10	100 000	1400	1050	150	0,03/2		d-wave**
Pnictides Ba _{0.6} K _{0.4} Fe ₂ As ₂	38		30	>50000	900	756	200	2	10-20	s/d wave**

* @ 0K ** 2D => orientation problems ?

C. Antoine, CEA Saclay

Nb₃Sn - in principle a great choice

Higher critical temperature
→ Operation at 4.2 K
Higher superheating field
→ Double the limit of niobium

Blue: tin Red: niobium

Parameter	Niobium	Nb₃Sn
Transition temperature	9.2 K	18 K 🗲
Superheating field	219 mT	425 mT 🗲
Energy gap $\Delta/k_{b}T_{c}$	1.8	2.2
λ at T = 0 K	50 nm	111 nm
ξ at T = 0 K	22 nm	4.2 nm
GL parameter κ	2.3	26

- Lower losses

– Higher gradients

Nb₃Sn motivation

Energy saving is mandatory for **FCC-ee** and the **next generation accelerators**...

... cryogenics is one of the larger energy cost in modern SRF accelerators

Move from bulk Nb @2K to Nb₃Sn @4.5 K reduces cryogenic power by a factor of 3

Nb₃Sn motivation

Energy saving is mandatory for **FCC-ee** and the **next generation accelerators**...

... cryogenics is one of the larger energy cost in modern SRF accelerators

Move from thin film Nb @4.5 K to Nb₃Sn @4.5 K Reduce $T_{op}/T_c \rightarrow$ Suppress $R_{BCS} \rightarrow$ Increase Q

Cristian Pira

Effect of High Tc

Niobium \rightarrow 45 MV/m Nb₃Sn \rightarrow 90 MV/m

Nb₃Sn on Cu: Multiple challenges

- ► A15 are Brittle materials
- Complicated Phase Diagram
- Low melting point substrate
- Interface diffusion
- Coating Parameters
- Substrate preparation
- Target Production/Magnetron Design
- ► Trapped Flux
- ► Tuning

Nb₃Sn in magnets

Nb₃Sn is well known in the magnet community, where it has been used to generate fields above 10 Tesla

However, this material is designed to operate in the **mixed state**, and uses **copper** in the fabrication

Cristian Pira

Nb₃Sn phase diagram

ÍNFN

Cristian Pira

Tin-depleted Nb₃Sn

Tin-depletion of Nb₃Sn lowers T_c !

Changing lattice parameter

Tin depletion changes the lattice parameter

Cristian Pira

T_c suppression

A tin depletion of only 3% reduces H_{sh} by 75%

Flux entry could occur at tin-depleted surface defects

Moral of the story

Make stoichiometric Nb₃Sn! 25 atomic-% Sn No exceptions!

Cristian Pira

Making Nb₃Sn a challenge!

Nb₃Sn presents two major challenges:

≻It is **brittle**

– We cannot form it

It has low thermal conductivity

Too thick, and we get thermal feedback

The answer: grow a **thin film** on a niobium substrate using the **vapour diffusion technique**

The vapour diffusion process

Coating furnace with separate source hot-zone

The vapour diffusion process

First Nb₃Sn Samples via Vapor Diffusion at FNAL

Sample measurements by Yulia Trenikhina (FNAL), Jae-Yel Lee (Northwestern), and Zuhawn Sung (FNAL)

Cristian Pira

Cornell coating profile

Cristian Pira

Comparision to Nb

Nb₃Sn State of the art

How far can Nb₃Sn go?

T. Proslier, Correlations between Tunneling Spectroscopy and SRF cavity performances, TTC2020 https://indico.cern.ch/event/817780/contributions/3715517/attachments/1982513/3302032/TTC-Proslier.pdf

Different coating techniques for Nb₃Sn

Diffusion	 Technique proved successful for magnet conductor application Simple equipment compared to sputtering and CVD 	
Sputtering	 To sputter from a single target of correct stoichiometry (prepared by powder sintering) Stoichiometry, Substrate Temperature, Deposition Rate, Deposition Thickness Can be varied independently 	
Co- sputtering	 Successful in synthesizing difficult materials like Nb₃Ge (highest Tc~23k),r V₃Si Constituents are sputtered simultaneously onto a temperature controlled substrate Stoichiometry dependent on relative positions of target & substrate (manipulated to get perfect stoichiometry) Stoichiometry control difficult over large areas and if narrow stoichiometry range for A-15 phase 	
CVD	 MOCVD (<i>Metal Organic Chemical Vapour Deposition</i>)= CVD with metallorganic compound precursor Precursor(s) in vapor phase chemically react on an heated substrate to grow a solid film Deposition rate & structure of the film depend upon temperature & reagent concentration Uniformity of temperature and flow of gaseous may be difficult with complex geometry 	

Nb₃Sn on Cu Coatings @LNL

Cristian Pira

Superconductive Materials

13 Materials for SRF - Thin films

Nb₃Sn coatings: target production

Single target configuration easiest to scale onto elliptical geometry Nb₃Sn cylindrical targets are not commercially available

LNL Strategy for Nb₃Sn cylindrical targets production for 6 GHz cavities

Nb₃Sn thickness related to **dipping time**

Possible tin content

Cristian Pira

Nb₃Sn Coatings Long R&D phase on PVD Parameter Optimization

Optimized Coating Recipe

- Coating Parameters:
 - Pressure = 2*10⁻² mbar
 - Power = 16 W
 - T substrate \geq 600 C
- Nb Thick Barrier Layer > 30 um

A thick Nb buffer layer accommodates the Nb₃Sn coating

Nb substrate can be used to validate Nb₃Sn Coating Performances

First Nb₃Sn RF Results (on a small Nb planar resonator)

Quench >70 mT @ 4.5 K

- Nb₃Sn coating suffer flux trapping
- Cooldown procedure influence Rs

Equivalent to a Q of 9.10⁹ @5 MV/m @4.5 K Almost 1 order of magnitude better than LHC!!! *Room for improvement*

Nb₃Sn Path to Final Prototype

- I.3 GHz Vacuum system ready
- Magnetron source commissioned

Nb₃Sn on bulk Nb to validate coating performances (2025) on 1.3 GHz Elliptical Cavities (2025)

Develop Nb thick barrier/accommodation layer on 1.3 GHz Elliptical Cavities (2025) (proof of concept on 6 GHz cavities already done)

Nb₃Sn on Cu with thick Nb coating on 1.3 GHz Elliptical Cavities (2026-2028)

In parallel:

Study on alternative buffer layer

Study on flux trapping Science and Technology Science and Technology

Cristian Pira

Superconductive Materials

SIS Multilayer

SIS Multilayer

Taking advantage of the high – Tc superconductors with much higher H_c without being penalized by their lower Hc1...

Multilayer coating of SC cavities: alternating SC and insulating layers with d < λ

Higher T_c thin layers provide magnetic screening of the Nb SC cavity (bulk or thick film) without vortex penetration

- Strong increase of H_{c1} in films allows using RF fields > H_c of Nb, but lower than those at which flux penetration in grain boundaries may become a problem=> no transition, no vortex in the layer
- high H_{C1} applied field is damped by each layer
- insulating layer prevents Josephson coupling between layers
- applied field, i.e. accelerating field can be increased without high field dissipation
- Strong reduction of BCS resistance (ie high Q_0) because of using SC layers with higher T_c, Δ (Nb₃Sn, NbN, etc)

Possibility to move operation from 2K to 4.2K

Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)

A-M Valente, SRF2017 Tutorials

Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)

Cristian Pira

SIS First Attemps

	ne de la		(Chronester	
19139 (mark)		aretati in casca	8. S	nd Programme and
nego de la la como de Manago de Calenda de	in card Na kasali	Pat-4.00		ret ges og som en førdet Konstansister og som en
n og kor Korectered	n Forman History (18	Po 1 = 270.0	and Constant Constant	de de la proposi de seguera Referèndes de seguera
Mangana kang se Dan sebagai kang se	ia nyaéti Ny isara k	alisti en Alista est	The second s The second se	2017 Capita Balancia Contrata succession
TER REAL AN REAL AND A DAY	1 .11.3.18. 	n Provinsion Alexandria		
กมสาวมาให้เ		. 141) Will *	1999 - 1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999	un zuin fait an
1 µm	EHT = 5.00 kV WD = 3 mm	Signal A = InLens Mag = 15.00 K X	Date :6 Jun 2014 File Name = 1_04.tif	University Slegen

NbN - Nb multilayer @ Siegen University

Single Cell 1.3 GHz in a titanium box after ALD deposition of Al2O3 @ CEA

Superconductive Materials

In the future?

C. Antoine, CEA Saclay

Concluding remarks

- Niobium is getting close to its ultimate limits
- Superconducting cavities are dominated by their surface quality (Niobium AND other SC !)
- H_{SH} difficult to reach in real "accelerating cavities" (low T, large scale cavity fabrication, surface defects, ...)
- Many long-standing problems of condensed matter physics and non-equilibrium superconductivity will have to be addressed to understand nonlinear surface resistance under strong if fields
- Renewed activity on bulk-like Nb films (cost issues) and high H_{SH} SC e.g. Nb₃Sn or NbN (higher performances)
- ML structures seem to be a promising way to go beyond Nb for accelerator cavities Possibility to move from 2K to 4.2K: huge cost saving on refrigeration
- Multi-parameter materials optimization is required to revel the full SRF performance potential
- Look for higher Q_0 , not only accelerating gradients

The interest & efforts for new materials research for SRF cavities application has been re-lighted and is gaining traction. Still a lot of work ahead!

Technological Revolution(s) In Perspective For SRF Cavities ...

Recommanded Literature

- R. Padamsee, J. Knobloch and T. Hays « RF Superconductivity for Accelerators », Wiley-VCH, 2008
- J. P. Turneaure, J. Halbritter, and H. A. Schwettman. « The surface impedance of superconductors and normal conductors: The Mattis-Bardeen theory. » Journal of Superconductivity 4.5 (1991): 341-355
- A. Gurevich « Theory of RF superconductivity for resonant cavities. » Superconductor Science and Technology, 30(3), 034004 (2017).
- SRF Tutorials (<u>https://jacow.org/Main/Proceedings?sel=SRF</u> and websites of the SRF conferences)

