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Outline
• Motivation for thin films in SRF cavities

• How to realize a thin film coating?

• State of the art in Nb thin films (accelerators using thin film technology)

• Characteristics of Nb thin films

• R&D on Nb thin films
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Why thin films for SRF?

1. Reduce material cost

2. Change the surface properties (bulk properties ≠ surface properties)

3. Use materials with poor mechanical properties (but excellent SRF properties)

4. Realize complex structures
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Reduce material cost
RF penetration in Nb is limited by λL (less than 100 nm)

Not necessary more than 1 micron of Nb at the surface

Cu is almost 100 times cheaper than high pure Nb

It is possible to increase the mechanical stability of the cavities increasing wall thickness
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Change the surface properties

Cu presents high thermal conductivity

Bulk: High thermal conductivity

∼ 1 - 2 m NbNb

Cu ∼ 3 mm

RF

He

Surface: Low Rs
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→ resistance to quench
[1] DOI: 10.5170/CERN-1996-003.191
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Temperature distribution in Nb-Cu

Temperature distribution simulation for an iron
baseddefect imbedded in Nb or Cu

Nb bulk

Nb-Cu

3.3K

10.2 K

Joachim Tuckmantel  Thermal effects in superconducting RF cavities: some new results from an improved program  CERN-EF-RF-84-6. - 1984

Copper prevent Quench
due to thermo-magnetic breakdown
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Change the surface properties

Cu presents high thermal conductivity→ resistance to quench
Nb surface resistance could be modulated

Bulk: High thermal conductivity

∼ 1 - 2 m NbNb

Cu ∼ 3 mm

RF

He

Surface: Low Rs
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BCS resistance depends on mean free path

RBCS @ 4.2 K
Nb bulk: ~900 n
Nb films: ~400 n

RBCS @ 1.7 K
Nb bulk: ~2.5 n
Nb films: ~1.5 n
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Benvenuti C et al 1999 Physica C 316 153
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Change the surface properties

Cu presents high thermal conductivity→ resistance to quench
Nb surface resistance could be modulated
Safer handling for the chemical surface treatments

Bulk: High thermal conductivity

∼ 1 - 2 m NbNb

Cu ∼ 3 mm

RF

He

Surface: Low Rs
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Cu polishing VS Nb polishing

Cu Chemical Polishing
SUBU5 composition

• sulfamic acid (5g/l)
• hydrogen peroxide 32% (50ml/l) 
• n-butanol 99% (50ml/l) 
• ammonium citrate (1g/l)

Nb Chemical Polishing
BCP composition (1:1:1 or 1:1:2)

• HF - Hydrofluoric acid (49%)
• HNO3 -  Nitric acid (70%)
• H3PO4 -  Phosphoric acid (85%)

Cu Electrochemical Polishing
EP bath composition (3:2)

• H3PO4 -  Phosphoric acid (85%)
• N-buthanol (99%)

Nb Electrochemical Polishing
EP bath composition (1:9)

• HF - Hydrofluoric acid (49%)
• H2SO4 -  Sulphoric acid (96%)
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No HF for Cu polishing
No chemical post treatment on Nb film necessary
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Use materials with poor mechanical properties
(but excellent SRF properties)

A15 materials (Nb3Sn, V3Si, Nb3Ge, etc.) present high Tc and High Hc1 but are very brittle: can not be 
used as bulk materials for SRF cavities

(WAIT THE NEXT LECTURE)
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C. Antoine (CEA Saclay), SRF Tutorials 2019
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Realize complex structures

SIS Multilayer

(WAIT THE NEXT LECTURE)
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Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)
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Thin film applications
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Thin film deposition techniques
Chemical Deposition

Phisical Deposition

• Plating/Electroplating

• Dip/Spin coating

• Chemical Vapour Deposition
• Thermal CVD
• Plasma EnhancedCVD
• Atomic Layer Deposition (ALD)

• Physical Vapour Deposition
• Evaporation
• Laser Ablation
• Plasma Spray
• Sputtering
• Cathodic Arc
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PVD deposition techniques

Physical vapor deposition processes 
(often just called thin film processes) 
are atomistic deposition processes in 
which material is vaporized from a solid 
or liquid source in the form of atoms or 
molecules and transported in the form of 
a vapor through a vacuum or low 
pressure gaseous (or plasma) 
environment to the substrate, where it 
condenses
Donald M. Mattox,
Handbook of Physical Vapor Deposition PVD) 
Processing
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Interface
The depositing film material may diffuse and react with the substrate to form a 
“interfacial region”

Abrupt Graded

Weak chemical reaction between atoms and substrate

Low deposition temperature

Surface contamination

Low nucleation density

By diffusion (solubility, temperature, time, contaminations)

Chemical reaction (oxygen-active metals on oxide 
substrates)

By co-deposition or implantation of energetic ions of the 
material

Nb-Cu case
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Nucleation stages
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Phases of film growth: Nuclei growth

Nuclei grow by collecting adatoms which either impinge on the nuclei
or migrate over the surface

binding energy atom-atom < binding energy atom-surface

Layer by layer growth (Frank-van der Merwe)

binding energy atom-atom > binding energy atom-surface

Island growth (Volmer-Weber)

binding energy atom-atom = binding energy atom-surface

Layer by layer + island growth (Stranski-Krastanov)
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Phases of film growth: Film growth
Is the evolution of the nucleation, where arriving atoms are deposited on the 
previously deposited material
Usually exhibits a columnar morphology

TiN on glass  from Macleod’s book Nb on Cu (A. Sublet, CERN)
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On growth and adhesion
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Stress on thin films
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Donald M. Mattox, Handbook of Physical Vapor Deposition PVD) Processing
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How to reduce film stress? Temperature effect
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J. A. Thornton and D. W. Hoffman, “Stress-related effects in thin films,” Thin Solid Films, 1989
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Temperature effect and Structure Zone Diagram (SZD)
• Based on the compilation of the 

experimental results, is a guideline for 
“predicting” the structure of deposited 
thin films

• 1st proposed in 1969 by Movchan & 
Demchishin for films deposited by thermal 
evaporation.

𝑻𝒉 =
𝑻

𝑻𝒎
Homologous temperature
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How to reduce film stress? Pressure effect

ZERO STRESS PRESSURE

J. A. Thornton and D. W. Hoffman, “Stress-related effects in thin films,” Thin Solid Films, 1989
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How to reduce film stress? Pressure effect

ZERO STRESS PRESSURE

J. A. Thornton and D. W. Hoffman, “Stress-related effects in thin films,” Thin Solid Films, 1989

7 · 10-3 mbar

9 · 10-3 mbar

2 · 10-2 mbar

5 · 10-2 mbar
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Thorton Structure Zone Diagram
• ZONE 1: characterized by a fine-grained structure of 

textured and fibrous grains, pointing in the direction 
of the arriving vapor flux. The morphology is caused 
by the low mobility of the adatoms that produce a 
continued nucleation of grain.

• ZONE T: a dense fibrous structure with a smooth, 
highly reflective surface. Diffusion is “remarkable” 
but grain boundary diffusion is strongly limited. 
Ionic bombardment of the growing film can move 
the morphology from zone 1 to zone T.

• ZONE 2: surface diffusion sets in, leading to uniform 
columnar grains.

• ZONE 3: dense films with large grains, drive by bulk 
diffusion and recrystallization.
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J.A. Thornton and D.W. Hoffman, Thin Solid Films, vol. 171, no. 1, pp. 5–31, 1989
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Nb film is a well known technology

• 288 Nb/Cu cavities installed in LEP @ CERN

• 56 Nb/Cu cavities installed in ALPI @ LNL INFN

• 16 Nb/Cu cavities installed in LHC @ CERN

• 20 Nb/Cu cavities installed in HIE-ISOLDE @ CERN

• R&D in many different labs: CERN, INFN, JLAB, STFC, Cornell, 
IMP, ... 

90’s LEP2: 350MHz 4-cells

1998-2004 ALPI: 160 MHz QWR

2000’s LHC: 400MHz 1-cell

2010’s HIE-ISOLDE: 100MHz QWR
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Elliptical cavities @CERN - LEP2, LHC and 1,5 GHz R&D

SPUTTERING PARAMETERS (1,5 GHz)
• RRR: 11.5 ± 0.1
• Argon content: 435 ± 70 ppm
• Grain size: 110 ± 20 nm
• Tc: 9.51 ± 0.01 K

SPUTTERING PARAMETERS (1,5 GHz)
• Sputter gas pressure of 1.5x10-3 mbar (Ar or Kr)
• Plasma current stabilized at 3A –  DC
• Sputter potential ~ -360 V
• Coating temperature is 150 °C
• Thickness: 1.5 µm

Courtesy of S. Calatroni (CERN)
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1.5 GHz Cavity Sputtering System @LNL
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LEP2 Performances

Eight pre-series 4-cell cavities for LEP were built at CERN, the remaining 
264 were made by three European industrial suppliers

No thermal quench (contrary to bulk Nb)

Higher performances compare to bulk Nb
Nb bulk cavities performance in the eighties were limited by the poor Nb 
thermal conductivity (RRR of 40)

Unexpected advantage

G. Arnolds-Mayer et al. 1988 Proc. of the 3rd Workshop on RF Superconductivity
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Almost insensitive to the Earth’s magnetic field

• Bulk Nb: 100 nΩ/Gauss

• Nb films: 1 nΩ/Gauss 

cheaper cryostats
Not necessary complex magnetic 
shielding of the cavities

C. Benvenuti et al. I Physica B 197 (1994)
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Almost insensitive to the Earth’s magnetic field

• Bulk Nb: 100 nΩ/Gauss

• Nb films: 1 nΩ/Gauss 

cheaper cryostats
Not necessary complex magnetic 
shielding of the cavities

C. Benvenuti et al., Physica C 316 (1999) 153–188

Rfl = (Rfl
0 + Rfl

1 HRF) Hext
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LHC cavities: from substrate fabrication to 
installation in the tunnel

LHC Point 4, ~ 100 m deep shaft → LHC tunnel Courtesy of A. Sublet (CERN)
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LHC

Distribution of cavity quality Q0 at a gradient
of Eacc = 5 MV/m and a bath temperature of 4.5 K

Highest gradients Eacc and quality factors Q0 at the highest 
gradients achieved at bath temperatures of 4.5 K and 2.5 K

21 cavities 400 MHz cavities produced at ACCEL

S. Bauer et al., “Production of Nb/Cu sputtered superconducting cavities for LHC,” 1999
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LHC cavities coating setup
• Cavity as UHV chamber (10-10 mbar base vacuum)
• Cavity = anode, grounded
• Nb cylindrical cathodes tubes
• movable electromagnet inside, liquid cooled
→ DC-magnetron sputtering, 6 kW, 1.10-3 mbar Kr 

→ Cavity bake-out (bake-out tent) to 180°C
→ Coating 7 steps for the 7 different electromagnet positions
→ Duration = 1h 20’ at low temperature (150°C)
→ Nb layer thickness ~ 2 mm

Cathode

LHC cavity coating setup

Magnet

Before and after coating views from cavity main aperture

8 spare cavities producedSta
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A. Sublet, Thinfilms Workshop 2018
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R&D on 1,5 GHz - State of the art for Nb-Cu cavities

High Q at low field

Strong Q-slope still present

LEP II
350MHz Nb/Cu (4.2K)

LEP II
350MHz Nb/Cu (4.2K)

CERN 2000

1.5 GHz Nb/Cu cavities, sputtered Kr @ 1.7 K (Q0=295/Rs)

bulk Nb

N-doped bulk Nb

C. Benvenuti  et al., Physica C, Vol 351(4), April 2001, pp. 421–428
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Increasing complexity:
Quarter Wave Resonator
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ALPI @ LNL – 160 MHz QWR
A more complex geometry than
elliptical cavities
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QWR in ALPI @ LNL INFN 

• 1988:  development of Pb/Cu QWRs (established technology at the time)

• 1994: a U-shaped linac with Pb/Cu mid- QWRs; R&D of low- full Nb and high-
Nb/Cu 

• 1998: first high- and 3 lower- cryostats installed

• 1998-2004: mid- QWRs with Nb/Cu technology (same Cu-base); 2nd high-QWR, 
4th full-Nb QWR; development and construction of PIAVE full Nb QWRs and SRFQs;

• 2006-2008:  liquid-N cooled coupler improve stability of lower- full Nb QWRs; 
Nb/Cu on new Cu-bases in test cryostat CR15

• 2016-2018:  upgrades of PIAVE SRFQs to improve field and phase stability

• 2019-2021: 2 additional high- Nb/Cu resonators

G. Bisoffi – Long-term SRF Experience at INFN-Legnaro, TTC Meeting – Vancouver 2019
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The early ALPI with mid- Pb/Cu QWRs

1992:  ALPI during first assembly

Reliable operation

Cheaper than full Nb, mechanically stable, not susceptible 

to quench, ideal for complicated geometries

Limited performance, and some degradation of Ea

Ea = 2.3÷2.7 MV/m
0=0,11
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R&D on full-Nb and Nb/Cu QWRs

First 80 MHz low- full Nb cavity in 1993
(double wall thin Nb outer conductor, equipped
with original mechanical dampers)

First 160 MHz high-b Nb/Cu cavity in 1993
(geometry optimized for sputtering, capacitive coupler
far from the shorting plate)

Off-line Q-curves:  6÷8 MV/m at 7 W
Off-line Q-curves:  6÷8 MV/m at 7 W

G. Bisoffi – Long-term SRF Experience at INFN-Legnaro, TTC Meeting – Vancouver 2019
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Higher mechanical stability
Less sensitive to microphonic effects 
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The next step:  apply Nb/Cu to mid- QWRs…
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Nb/Cu 2006

Removed Pb/Cu

(Ea = 2,7 → 4,4 MV/m)

… on a non-Nb/Cu-
optimized geometry and 
Cu-brazed joints (smaller

radii on end pkate and 
beam-ports, beam coupler

hole in high-H region)

n.16 80 MHz, full Nb, 0 0,055

n.44 160 MHz, Nb/Cu, 0 0,11 n.8 160 MHz, Nb/Cu, 0 0,13

Bu

Bu

Bu

G. Bisoffi – Long-term SRF Experience at INFN-Legnaro, TTC Meeting – Vancouver 2019
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ALPI Veq from 20 to 48 MV
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ALPI QWR - Effect of the substrate
High  QWRs  (=0.13, 160 MHz) 
Drilled by a billet of OFHC Cu, 99.95% grade
No brazed joints, beam ports jointed by indium gaskets
Rounded shorting plate 

Medium  QWRs  (=0.13, 160 MHz) 
Brazed joints (especially the ones in the outer resonator surface)
Flat shorting plate 
Beam ports shape
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7W
15W

3W

Q

Ea [MV/m]

 Average Q at 7W

A. Porcellato, Nb Sputtered Cu QWR, Thin Films Workshop LNL 2006
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Nb/Cu sputtering advantages
Mechanical stability (mechanical vibrations are not an issue)
Frequency not affected by changes He bath Dp (<0.01Hz/mbar)
Reduced over-coupling (smaller amplifier, coupler do not need cooling, rf lines have reduced size and limited rf dissipation)
High thermal stability (less prone to hot spots, conditioning easier)
Stiffness (in case of loss of isolation vacuum leak)

Absence of Q-disease (less demand on cryogenic system cooling velocity and reliability)
Insensitivity to small magnetic fields (no magnetic shielding)
High Q of the N.C. cavity (easier coupling in N.C state)
Absence of In vacuum joints (vacuum leaks less probable)
Price (both material and construction)

The lower performance of Nb/Cu cavities at high fields, due to the more pronounced Q-slope of Nb/Cu resonators, is not an issue in 
QWRs as it is in b>0.5 cavities, because beam dynamic constraints require to limit the accelerating gradient in the low b section  of 
linacs  to values well reachable by Nb sputtered resonators

A. Porcellato, Nb Sputtered Cu QWR, Thin Films Workshop LNL 2006
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ALPI QWR - Substrate preparation

• Electropolishing (20m, 2 hours)
• Rinsing (water, ultrasonic water, HPR)
• Chemical polishing (10m, 4 min, SUBU5)
• Passivation (sulphamic acid)
• Rinsing (water, ultrasonic water, HPR)
• Drying (ethanol, nitrogen)

A. Porcellato, Nb Sputtered Cu QWR, Thin Films Workshop LNL 2006
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ALPI QWR - Sputtering process
QWR

(-130 V)

Cathode
(-800 V)

Grids
(0 V)

Parameters
Argon pressure: 0.2 mbar
Substrate T: 300-500°C

Film characteristics
Thickness: 1-2 microns
RRR: 9-20

A. Porcellato, Nb Sputtered Cu QWR, Thin Films Workshop LNL 2006
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HIE-ISOLDE @ CERN
Superconducting linear accelerator for energy upgrade of 
ISOLDE radioactive ion beam facility

Cryomodule clean room assembly 4 cryomodules in HIE-ISODLE Linac

0.
9 

m

180 kg
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Courtesy of A. Sublet (CERN)
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HIE-ISOLDE @ CERN
Same sputtering configuration as in ALPI
Clean room assembly improvement

Cavity in UHV chamber (10-8 mbar base vacuum)
3D-forged Cu cavity substrate, biased at -80 V
Nb cylindrical cathode used on both sides, not cooled
DC-bias diode sputtering, 8 kW, Ar 0.2 mbar
Coating at high temperature (300 → 620°C)
Done in 15 run/cool-down cycles (4 days)
Nb layer thickness ranging from 1.5 mm to 12 mm
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Courtesy of A. Sublet (CERN)
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HIE-ISOLDE film characteristics

inner grid

outer grid
Nb cathode

inner
conductor

outer 
conductor

Cu

Nb

Cu

Nb

HAADF TEM -15 layers

→ Influence of “multilayered” Nb film/dislocations/morphology on the RF performances?
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A. Sublet (CERN), Thinfilms Workshop, LNL 2018
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HIE ISOLDE R&D @LNL
Helicoidal magnetic configuration
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HIE ISOLDE R&D @LNL
Helicoidal magnetic configuration

0

1

2

3

4

-20 -10 0 10 20

Th
ic

kn
e

ss
 (

µ
m

)

Sample position

Good thickness uniformity

R&D stopped due to difficulties in the handling
of the chemical polishing

(HIE ISOLDE QWR larger than ALPI QWR)
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HIE-ISOLDE QWR Performances
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Courtesy of W. Venturini (CERN)
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State of the art of Nb-Cu films around 2 K

QPR ECR
400MHz

LHC 
DCMS 
400MHz

1-cell 
HIPIMS
1.3GHz

HIE-ISOLDE QS16
100MHz

1-cell DCMS
1.5GHz

HIE-ISOLDE QSS2
100MHz

TESLA bulk Nb
1.3GHz (*)

Courtesy of W. Venturini (CERN)
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HIE-ISOLDE QWR Seamless Design

Vertical tests
Cool down in 
earth field
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Courtesy of W. Venturini (CERN)
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Motivation through the seamless design

→ longitudinal fracture along the weld
→ Source of chemicals trap/release
→ oxidation/contamination → peel-off
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Courtesy of A. Sublet (CERN)
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QWR Main Lesson learned:
the substrate is important!
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Outline
• Motivation for thin films in SRF cavities

• How to realize a thin film coating?

• State of the art in Nb thin films (accelerators using thin film technology)

• Characteristics of Nb films
• R&D on Nb films
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Q-slope problem
Unsolved problemsince 1990s

Several theory proposed
Depinning of trapped flux

Low HC1

Early vortex penetration due to 
roughness

Grain boundaries

Bad thermal contact at the interface

Not intrinsic problem of the films
Substrate is important
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Effect of Polishing
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Cu substrate plays a 
fundamental role in SRF 
performances
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Effect of Polishing

SUBU EP EP + SUBU

SUBU EP EP + SUBU

Cu

Nb film

PVD film mimate the surface morphology
Pira et al., SRF 2018



Fermilab, 5 December 2023
TTC meeting 2023

This project has received funding from the European Union’s Horizon 2020 

Research and Innovation programme under GA No 101004730.
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Basics of PEP

DC Power

Workpiece/anode

VGE

Electrolyte

Cathode
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Pira C. et. Al, SRF Proceeding 2021
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DC Power

Workpiece/anode

VGE

Electrolyte

Cathode

Basics of PEP

Vana, D et. al, Int. J. Mod. Eng. Res. 2013
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PEP Advantages

Diluted water solutions, 
enviromentally friendly

The fastest
non-destructive polishing

Equal thickness removal yield
 lowest roughness among 

competitors

Less sensitive to the 
cathode shape!
AM compatible
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PEP is Green

BCP 1:1:2 EP Nb 1:9 PEP Nb

93 %79 % ~5%
Quantity of chemicals (w. %)
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PEP is Faster

100 µm removed
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PEP is Efficient
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PEP is Efficient
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PEP is Efficient
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PEP, Ra 0,33 um

BCP, Ra 2,23 um

PEP is Efficient
Initial, Ra 1,63 um

EP, Ra 0,75 um
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PEP is Efficient

∼
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PEP is Versatile
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PEP is Versatile
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PEP is Versatile
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PEP is Versatile
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PEP is Versatile

μ

→ ∼

1000 X
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Conclusions
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Effect of the Cu substrate forming process

Cu substrate plays a 
fundamental role in SRF 
performances

Cavity fabrication

Different possibilities:

Welding/seamless

Spinning, hydroforming, 
electroforming…

SWEEL cavity

Simpler coating 
procedure
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Effect of the Cu substrate forming process
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Coatings on oxide-free hydroformed 
cavities consistently worse than for 
spun cavities? Why?

S. Calatroni (CERN), SRF 2001

Possible answer: a larger quantity of 
hydrogen was migrating into the film 

from the hydroformed cavity
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Effect of the gas

o  oxide-free copper

•  oxidized copper

S. Calatroni (CERN), SRF 2001
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Angle of incidence of coating

Superconducting properties of niobium 
films depends on deposition angle between 
target and substrate

D. Tonini et al, Morphology of niobium films sputtered at different target-substrate angle, SRF99, THP11

The effect is related to change in the 
coating morphology

Ch
ara

cte
ris

tic
s o

f N
b f

ilm
s



100Cristian Pira   Superconductive Materials  13 Materials for SRF – Thin films

Angle of incidence of coating

β = 0.48

β = 0.8

C. Benvenuti et al, Production and test of 352 MHz Niobium Sputtered Reduced Beta cavities, 1997, SRF97D25

Ch
ara

cte
ris

tic
s o

f N
b f

ilm
s



101Cristian Pira   Superconductive Materials  13 Materials for SRF – Thin films

Next generation Nb films
ALL  film properties are a direct consequence of the film structure, defect/impurity 

content… thus the technique, environment, substrate are key factors 

Careful characterization of the attained composition and microstructure
(RHEED, STM, XRD, EBSD, AFM, optical profilometry, XPS, SIMS,TEM, FIB).

Close association with resulting RF surface impedance & superconducting 
properties  (λ, Δ, Tc, Hc, RRR)

UNDERSTANDING OF
❑ The chemistry of the involved species

❑ Reactivity
❑ Stoichiometric sensitivity
❑ Reaction process temperatures

❑ Crystal structure dependence on substrate structure
❑ Influence of deposition energy on resulting structure
❑ Sensitivity to the presence of contaminating species, defects
❑ Stabilization of desired film against subsequent degradation

Full control of the 
deposition process

&
tailored 

SRF  performance

A-M Valente, SRF2017 Tutorials
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b f
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Energetic Condensation
Additional energy provided by fast particles 
arriving at a surface:
• residual gases desorbed from the substrate 

surface
• chemical bonds may be broken and defects 

created thus affecting nucleation processes & film 
adhesion

• enhanced mobility of surface atoms

Changes & control in:
• Film density
• morphology
• microstructure
• Stress
• low-temperature epitaxy

Generalized Structure Zone Diagram

A. Anders, Thin Solid Films 518 (2010) 4087

A-M Valente, SRF2017 Tutorials
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Energetic Condensation

A variety of techniques with 
distinct technologies
• Vacuum Arc Plasma & Coaxial Energetic 

Deposition (CED)
• Electron cyclotron Resonance (ECR)
• High Impulse Power Magnetron sputtering 

(HiPIMS)

Generalized Structure Zone Diagram

A. Anders, Thin Solid Films 518 (2010) 4087

A-M Valente, SRF2017 Tutorials
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HiPIMS
CERN (G. Rosaz et al.)

Jefferson Lab (A-.M. Valente et al.)
STFC ASTeC (R. Valizadeh et al.)

Siegen University (M. Vogel et al.)

Lawrence Berkeley National Laboratories (A. Anders et al.)
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HiPIMS
• Pulsed sputtering where the peak power 

exceeds the average power by typically two 
orders of magnitude

• The target material is partially ionized
• Large concentration of ions producing high-

quality homogeneous films
• Possibility to self sustain discharge

J. Böhlmark et al., J. Vac. Sci. Technol. A 23 (2005) 18

Very high purity  
Excellent adhesion 
better (normal) conductivity,
Large crystal grains, low defect density
Suppression of fiber structure
Superior density
Decreased roughness
Homogeneous coating even on complex-shaped  surfaces
Phase composition tailoring
Interface engineering 

Lower coating rate :
ions captured at the  cathode
Very  sensitive to cathode surface  state 
(roughness), induced arcing
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Conformal Coating

CrN Glancing 
Angle Deposition

Inclination of columns is reduced at high target current 
densities due to high ion-to-neutral ratio 

High-quality image (731K) - Opens new window

DCMS

0.1 
Acm-2

0.2 
Acm-2

0.6 
Acm-2

0.9 
Acm-2

1.7 
Acm-2

G. Greczynski, et al., Thin Solid Films 519 (2011) 6354.

biased substrate

E ion
neutral
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http://www.sciencedirect.com/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6TW0-52MJ8KC-7&_image=B6TW0-52MJ8KC-7-M&_ba=&_fmt=full&_orig=na&_pii=S0040609011008467&view=full&_isHiQual=Y&_acct=C000010260&_version=1&_urlVersion=0&_userid=126038&md5=f37578e465d0a6a323d9d2c77a0d91c1
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Conformal HiPIMS @CERN

Rosaz, SRF 2017, Lanzhou (China)
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CERN HiPIMS Setup

• Same hardware as for DCMS  
• Pulsed Power supply

• 1% duty cycle
• Short pulses: 200 µs
• High peak current (200 A vs 3 A for DCMS)
• High peak power (80 kW peak for 1kW avg)  

• Ionization of sputtered species
• Lower coating rate than DCMS1.3 GHz cavity coating setup

Nb cathode with permanent  
magnets inside and Nb anodes

HiPIMS discharge

Courtesy of G. Rosaz (CERN)
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HiPIMS Results @ CERN

Rosaz, SRF 2017, Lanzhou (China)

Courtesy of G. Rosaz (CERN)

• High Bias does not give good results (gas implantation , stress)
• Lower pressure tends to better performances (contamination, stress)

• Q-slope looks mitigated vs DCMS coating
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HiPIMS Results @ CERN

Rosaz, SRF 2017, Lanzhou (China)

• High Bias does not give good results (gas implantation , stress)
• Lower pressure tends to better performances (contamination, stress)

• Q-slope looks mitigated vs DCMS coating
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HiPIMS @ JLAB

• fdfd

System re-commissioned  
June  2018

• Movable cylindrical Nb cathode 
• Background pressure in 10-9-10- 10 Torr
• Coating temperatures up top 400 °C under external 

nitrogen flow
• Kr atmosphere

Courtesy of A.-M. Valente
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Courtesy of A-M. Valente (JLAB)
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HiPIMS Results @JLAB
Some HiPIMS Nb/Cu cavities show mitigation of 
the characteristic Q-slope

Substrates are a possible cause of performance 
limitation
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Courtesy of A-M. Valente (JLAB)
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HiPIMS configuration @ LBNL

• HiPIMS Dual Magnetron Configuration
• Most effective for Biasing  & influencing Ion Energies & Trajectories
• High power mode (above runaway threshold)
• Dominated by Nb emission
• No cavity RF tested

ion trajectory

possible collision

cavity
sheath

nearly 
perpendicular
incidence!

plasma
Vbias

magnetron 1 magnetron 2

A. Anders, Thinfilms Workshop 2016, JLab
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The WOW cavity coating challenge

1.4m / 290kg

Wide-Open Waveguide (WOW) crab cavity (Nb/Cu), 1st prototype completed in 2018

• Distances 
(20 –  80 mm)

• Angles of incidence 
(0  –  90°)

x6 Cylindrical 
magnetrons

252mm

More metal ions

HiPIMS

• positive pulse

High energy metal ions to 
densify the film

• negatively
biased substrate+

R&
D o
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F. Avino (CERN), TTC Meeting, CERN 2020
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ECR

Jefferson Lab (A-.M. Valente et al.)

R&
D o

n N
b f

ilm
s



116Cristian Pira   Superconductive Materials  13 Materials for SRF – Thin films

Energetic Condensation with ECR @JLAB
ECR DEPOSITION PROCESS
1. Nb is evaporated by e-beam in a separate vacuum chamber
2. Nb vapours are ionized by an ECR process

• RF power (@ 2.45GHz) 
• Static B ⊥ ERF with ECR condition

3. Nb ion are accelerate to the substrate (cavity) by a bias voltage

No working gas 
Singly charged ions (64eV) produced in vacuum
Controllable deposition energy with Bias voltage 
Excellent bonding , No macro particles
Good conformality

Scalability?
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ECR film properties
SEQUENTIAL PHASE FOR FILM GROWTH
• Interface
• Film nucleation (184 eV)
• Growth of appropriate template for subsequent  deposition (64 eV)
• Deposition of  final surface optimized for minimum defect density

Substrate RRR

max

In
su

la
ti

n
g

a-Al2O3 591

r-Al2O3 725

c-Al2O3 247

MgO 
(100) 188

MgO 
(110) 424

MgO 
(111) 270

Al2O3 
ceramic 135

AlN ceramic 110

Fused Silica 84

M
et

al
lic

Cu (100) 181
Cu (110) 275
Cu (111) 245
Cu fine 
grains 193

Cu large 
grains 305

Subsequent growth
Nb homo-epitaxy

substrate

Template – adaptive layer

RF  layer

Opportunity for film engineering

Hetero-epitaxial growth Growth on amorphous interface

Bulk like properties

Fiber growth ECR Nb/Cu films perform 
better than hetero-epitaxial ones
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Courtesy of A-M. Valente (JLAB)
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ECR Results
Mitigation of Rs slope possible
Energetic Condensation Nb/Cu films show 
similar RF behavior compare to 
bulk Nb in QPR measurements

Courtesy of A-M. Valente (JLAB)
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Chemical Vapour Deposition
Fundamental sequential steps in every CVD process

1. Convective and diffusive transport of reactants from the gas inlets to the reaction
zone

2. Chemical reactions in the gas phase to produce new reactive species and by-
products

3. Transport of the initial reactants and their products to the substrate surface

4. Adsorption (chemical and physical) and diffusion of these species on the substrate
surface

5. Heterogeneous reactions catalyzed by the surface leading to film formation

6. Desorption of the volatile by-products of surface reactions

7. Convective and diffusive transport of the reaction by-products away from the 
reaction zone
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CVD @ Cornell University and Ultramet

Fundamental sequential steps in every CVD process

1. Convective and diffusive transport of reactants from the gas inlets to the reaction zone

2. Chemical reactions in the gas phase to produce new reactive species and by-products

3. Transport of the initial reactants and their products to the substrate surface

4. Adsorption (chemical and physical) and diffusion of these species on the substrate surface

5. Heterogeneous reactions catalyzed by the surface leading to film formation

6. Desorption of the volatile by-products of surface reactions

7. Convective and diffusive transport of the reaction by-products away from the reaction zone
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P. Pizzolet al., (STFC) IPAC (2016)
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CVD @ Cornell University and Ultramet

Film optimization & process scale-up
High purity (high RRR) 
Excellent adhesion
Full size cavity 
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Zeming Sun Mingqi (Cornell), TTC Meeting, CERN 2020
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CVD @ Cornell University and Ultramet

Very Rough Surface

EP smooth pyramids
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Zeming Sun Mingqi (Cornell), TTC Meeting, CERN 2020
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Conclusions
Nb thin films are the optimum choice for low gradient/4.2 K applications

• Cost reduction
• RBCS film < RBCS bulk →   Q0 film > Q0 bulk 
• Thermal stability
• Mechanical stability
• Less sensitivity to magnetic field trapping

Mitigation of Q-slope for high gradient applications seems possible
We need to understand the reason of the Q-slope

• Establish adequate process controls
• Mandatory have better substrates  and chemical processes
• Need more RF measurements statistics
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Other materials for SRF?
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Superconductors for SRF?

C. Antoine, CEA Saclay
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Nb3Sn - in principle a great choice
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Energy saving is mandatory for FCC-ee and the next generation accelerators…
…cryogenics is one of the larger energy cost in modern SRF accelerators

Nb3Sn motivation
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→ →

Nb3Sn motivation
Energy saving is mandatory for FCC-ee and the next generation accelerators…

…cryogenics is one of the larger energy cost in modern SRF accelerators
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Effect of High Tc
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Nb3Sn in magnets
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Nb3Sn phase diagram
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Tin-depleted Nb3Sn
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Changing lattice parameter
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Tc suppression
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Moral of the story

Make stoichiometric Nb3Sn!
25 atomic-% Sn

No exceptions!
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Making Nb3Sn a challenge!



138Cristian Pira   Superconductive Materials  13 Materials for SRF – Thin films

The vapour diffusion process
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The vapour diffusion process
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Cornell coating profile
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Comparision to Nb
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S. Posen, SRF 2019 proceedings (elaborated)

Nb3Sn State of the art

∼

S. Posen, SRF 2019 proceedings
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How far can Nb3Sn go?

Present results suggest we already reached the limit...
How is it possible change the Hsh slope?
Changing the synthesis method? 
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Different coating techniques for Nb3Sn
• Technique proved successful for magnet conductor application

• Simple equipment compared to sputtering and CVDDiffusion

• To sputter from a single target of correct stoichiometry (prepared by powder sintering) 

• Stoichiometry, Substrate Temperature, Deposition Rate, Deposition Thickness Can be varied 
independently 

Sputtering

• Successful in synthesizing difficult materials like Nb3Ge ( highest Tc~23k),r V3Si 

• Constituents are sputtered simultaneously onto a temperature controlled substrate

• Stoichiometry dependent on relative positions of target & substrate (manipulated to get perfect stoichiometry)

• Stoichiometry control difficult over large areas  and if narrow stoichiometry range for A-15 phase

Co-
sputtering

• MOCVD (Metal Organic Chemical Vapour Deposition)= CVD with metallorganic compound precursor

• Precursor(s) in vapor phase chemically react on an heated substrate to grow a solid film

• Deposition rate & structure of the film depend upon temperature & reagent concentration

• Uniformity of temperature and flow of gaseous may be difficult with complex geometry 

CVD

A-M Valente, SRF2017 Tutorials
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Nb3Sn on Cu Coatings
@LNL
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Nb3Sn coatings: target production

Raw Nb 
target

Dipping in 
liquid Sn

Nb3Sn 
cylindrical 

target
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Nb3Sn Coatings

Optimized Coating Recipe

• Coating Parameters:
• Pressure = 2*10-2 mbar
• Power = 16 W
• T substrate ≥ 600 C

• Nb Thick Barrier Layer > 30 um
Nb substrate can be used to validate Nb3Sn Coating Performances 

A thick Nb buffer layer accommodates the Nb3Sn coating

Cu
+ 1 μm Nb3Sn

Cu
+ 1 μm Nb 
+ 1 μ Nb3Sn

Cu
+ 30 μm Nb
+ 1 μ Nb3Sn
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First Nb3Sn RF Results
  (on a small Nb planar resonator)

·

Ω

Ω
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Nb3Sn Path to Final Prototype
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SIS Multilayer
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SIS Multilayer

Taking advantage of the high – Tc superconductors with much higher Hc without being penalized by their lower Hc1…
Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)

Higher Tc thin layers provide magnetic screening of the Nb SC cavity 
(bulk or thick film) without vortex penetration

Multilayer coating of SC cavities:
 alternating SC and insulating layers with d <  

• Strong increase of Hc1 in films allows using RF fields > Hc of Nb, but lower than those 
at which flux penetration in grain boundaries may become a problem=> no 
transition, no vortex in the layer

• high HC1 applied field is damped by each layer

• insulating layer prevents Josephson coupling between layers

• applied field, i.e. accelerating field can be increased without high field dissipation

• Strong reduction of BCS resistance (ie high Q0)  because of using SC layers with 
higher Tc,  (Nb3Sn, NbN, etc) 

Possibility to move operation from 2K to 4.2K
A-M Valente, SRF2017 Tutorials

Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)
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SIS First Attemps

NbN –  Nb multilayer @ Siegen University

Single Cell 1.3 GHz in a titanium box 
after ALD deposition of Al2O3 @ CEA  
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In the future?

C. Antoine, CEA Saclay
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Concluding remarks
• Niobium is getting close to its ultimate limits  
• Superconducting cavities are dominated by their surface quality (Niobium AND other SC !)
• HSH difficult to reach in real “accelerating  cavities” (low T, large scale cavity fabrication, surface defects,…)
• Many long-standing problems of condensed matter physics and non-equilibrium superconductivity will have to be 

addressed to understand nonlinear surface resistance under strong rf fields
• Renewed activity on bulk-like Nb films (cost issues) and high HSH SC e.g. Nb3Sn or NbN (higher performances) 
• ML structures  seem to be a promising way to go beyond Nb for accelerator cavities Possibility to move from 2K to 4.2K: 

huge cost saving on refrigeration 
• Multi-parameter materials optimization is required to revel the full SRF performance potential
• Look for higher Q0, not only accelerating gradients

The interest & efforts for new materials research for SRF cavities application has been re-lighted 
and is gaining traction. Still a lot of work  ahead!

Technological Revolution(s) In Perspective For SRF Cavities …
A-M Valente, SRF2017 Tutorials
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