Probabilistic Model Checking

Lecture 14
w-reqgular properties

Alessandro Abate

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Long-run properties

Last lecture: reqular safety properties
— e.g. “a message failure never occurs”

— e.g. “an alarm is only ever triggered by an error”

— bad prefixes represented by a regular language

— property always refuted by a finite trace/path
Similar approach over reqular co-safety properties
Liveness properties

— e.g. "for every request, an acknowledgement eventually
follows”

— no finite prefix can refute the property

— any finite prefix can be extended to a satisfying trace
Fairness assumptions

— e.g. “every process that is enabled i.o. is scheduled i.0.”

Need properties over infinite paths

Overview

- w-regular expressions and w-regular languages

- Nondeterministic Buchi automata (NBA)

- Deterministic Bluchi automata (DBA)

- Deterministic Rabin automata (DRA)

- Deterministic w-automata and DTMCs

w-regular expressions

- Regular expressions E over alphabet = are given by:
—E:=0|e|x|E+E|EE]|E* (where € 3)

- An w-regular expression takes the form:
— G =E.(F))w + E>.(Fo)w + ... + E.(Fy)w
— where E; and F,; are regular expressions with € ¢ L(F))

- The language L(G) < 2% of an w-regular expression G
— is L(Ey).L(F;)» U L(E,).L(F,)» U ... U L(E,).L(F,)«

— where L(E) is the language of regular expression E

— and L(E)» = { wyw,ows... | wy,eL(E), i=1 }

- Example: (t+pB+y)*(B+y)® forZ ={ o, B, Y}

w-regular languages/properties

- A language L < >» over alphabet 2 is an w-regular
language if and only if:

— L = L(G) for some w-regular expression G

- w-regular languages are:

— closed under intersection
— closed under complementation

P c (2AP)w js an w-reqgular property
— if P is an w-regular language over 2AP
— (where AP is the set of atomic propositions for some model)
— path w satisfies P if trace(w) € P

— NB: any reqgular safety property is an w-regular property

Examples

- A message is successfully sent infinitely often
— ((—succ)*.succ)w

Every time the process tries to send a message, it
eventually succeeds in sending it

— (—=try + try.(—succ)*.succ)w

Bluichi automata

- A nondeterministic Buichi automaton (NBA) is...

— atuple A = (Q, Z, 8, Qq, F) where:

— Q is a finite set of states

— 2 is an alphabet

— 0 :Q X 2 — 2Qijs a transition function
— Qp € Qs a set of initial states

— F< Qs a set of accepting/final states

— Syntax is that of nondeterministic finite automaton (NFA)

- The difference is the semantics of accepting conditions ...

Language of an NBA

- Consider a Bluchi automaton A = (Q, 2, 9, Qq, F)

- A run of A on an infinite word o 0(,... is:
— an infinite sequence of automaton states qoq;... such that:
— do € Qo and g, € 8(q;, &iyy) forall i=0

- An accepting run is a run with q; € F for infinitely many i

- The language L(A) of A is the set of all infinite words on
which there exists an accepting run of A

Example

- Infinitely often a

Example (cont’d)

- As in the last lecture, we use automata to represent

languages of the form L c (2AP)w

- So, if AP = {a,b}, then: a

. ...is actually:

10

Properties of Bluchi automata

- w-regular languages
— L(A) is an w-regular language for any NBA A
— any w-regular language can be represented by an NBA

- w-regular expressions

— like for finite automata, can construct an NBA from an
arbitrary w-regular expression E;.(F;)® + ... + E,.(F,)®

— i.e. there are operations on NBAs to:
. construct NBA accepting L* for regular language L
. construct NBA from NFA for (regular) E and NBA for (w-regular) F
. construct NBA accepting union L(A;) U L(A,) for NBAs A; and A,

11

Bluchi automata and LTL

LTL formulae

—ypu=tuelalpryw|-w[Xp|lwUuy
— where a € AP is an atomic proposition

- Can convert any LTL formula ¢ into an NBA A over 2AP
— so for a path w, w = Y < trace(w) € L(A) for any path w

LTL-to-NBA translation (see e.g. [VW86])

— construct a generalized NBA (GNBA, multiple sets of accepting
states), exponential in size of formula

— based on decomposition of LTL formula into subformulae
— can convert GNBA into an equivalent NBA
— various optimisations to the basic techniques developed

— not covered here; see e.g. section 5.2 of [BKOS] .

Bluchi automata and LTL

- G(@a - Fb)

- GFa (“infinitely often a")

—d

(“b always eventually follows a”)

aAn—Db

B —ED-

—aVvb

13

Deterministic Buchi automata

- Like for finite automata...

- A NBA is deterministic if:

— |Qpl=1
— 8(g,®)| = 1forallgeQand x € X
— i.e. one initial state and no nondeterministic successors

- A deterministic Blichi automaton (DBA) is total if:
— |8(g,®)| =1forallge Qand x € X
— i.e. unique successor states

- But, NBA can not always be determinised...
— i.e. NBA are strictly more expressive than DBA

14

NBA and DBA

- NBA and DBA for the LTL formula G b A GF a

b
NBA: ’ anb
3 anb

b

anb
DBA:]I' b
g —aAb "

—aAb

15

No DBA possible

- Consider the w-regular expression (x+p)*x* over 2={x,B}
— i.e. words containing only finitely many instances of B
— there is no deterministic Blichi automaton accepting this

In particular, take o« = {a} and p = &, i.e. >3=2AP, AP={a}
— (x+B)*ox» represents the LTL formula FG a

FG a is represented by the following NBA:

g 8 8

true true

But there is no DBA for FG a
- (subset/powerset construction algorithm does not work) 16

Deterministic Rabin automata

- A deterministic Rabin automaton (DRA) is...

— atuple A =(Q, 2, 9, go, Acc) where:

— Q is a finite set of states

— 2 is an alphabet

— 0 :Q x 2 — Qs a transition function

— go € Q is an initial state

— Acc € 22 x 2Qjs an acceptance condition

- The acceptance condition is a set of pairs of state sets
— Acc = { (Li, K|) |]SISI(}

17

Deterministic Rabin automata

- A run of a word on a DRA is accepting iff:

— for some pair (L, K;), all states in L; are visited finitely often
and at least one state in K; is visited infinitely often

—orinlTL: V (FG-L A GFK)

1<i<k

- Hence:

— a deterministic Blichi automaton is a special case of a
deterministic Rabin automaton where Acc = { (J, F) }

18

FG a

- NBA for FG a, and no DBA exists

g 8 &

true true

- DRA for FG a

@-@, a
()

—d

— where acceptance condition is Acc = { {qo},{a:}) }

19

Example - DRA

- Another example of a DRA (over alphabet 2{a.b})

d
@-@’ av—b
' —aAb

—d

— where acceptance condition is Acc = { {g;},{qo}) }

- In LTL: G(a — F(—aAb)) A FG —a

20

Properties of DRA

- Any w-regular language can represented by a DRA
— (and L(A) is an w-regular language for any DRA A)

- i.e. DRA and NBA are equally expressive

— however, NBA may be more compact
— hence, DRA are strictly more expressive than DBA

- Any NBA can be converted to an equivalent DRA [Saf88]
— size of the resulting DRA is 20(nlogn)

21

Deterministic w-automata and DTMCs

- Let A be a DBA or DRA over the alphabet 24P
— i.e. L(A) c (2AP)» identifies a set of paths in a DTMC

- Let ProbP(s, A) denote the corresponding probability
— from state s in a discrete-time Markov chain D
— i.e. ProbP(s, A) = PrP{ w € Path(s) | trace(w) € L(A) }

- Like for finite automata (i.e. DFA), we can evaluate
ProbP(s, A) by constructing a product of D and A

— product models the state of both the DTMC and the
automaton

22

Product DTMC for a DBA

- ForaDTMCD = (S, s, P, L)
. and a (total) DBA A = (Q, =, &, go, F)

- The product DTMC D ® A is:
— the DTMC (SXQ, (Sinit’qinit)’ P’, L’) where:

Qinit = 0(do,L(Sinit))
' . P(S],Sz) if q2 — 6(q]1L(SZ))
P51 (52,0.)) = { 0 otherwise

L’((s,q)) = { accept }if g € F and L’((s,q)) = @ otherwise

- Since A is deterministic
— unique mappings between paths of D, Aand D ® A

— probabilities of paths are preserved

23

Product DTMC for a DBA

- For DTMC D and DBA A

ProbP(s, A) = ProbP®A((s,q.), GF accept)

— where g5 = 8(qo,L(s))

24

Recall: fundamental property of DTMCs

- Strongly connected component (SCC)

— maximally strongly connected set of states

- Bottom strongly connected component (BSCC)

— SCC T from which no state outside T is reachable from T

- With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often

- Formally:
— Pr{ w € Path(s) | 3 i=0, 3 BSCC T such that

V j=iw() € Tand

V €T w(k) = s' for infinitely many k} =

1

25

Qualitative repeated reachability

« Pr.{w e Path(s) | Vi=0.3dj=i.w() € Sat(a) } = 1

if and only if

- T n Sat(a) # @ for all BSCCs T reachable from s

Examples:

So E P- [GF (b\/C)]
SoH&PZ][GFb]
52|:PZ][GFC]

26

Quantitative repeated reachability

- Prob(s, GF a) = Prob(s, F T¢g,)
— where T¢r, = union of all BSCCs T with T n Sat(a) + @

Example:

Prob(sg, GF b)
= PrOb(So, F TGFb)

= Prob(sg, F (T;UT),))
= Prob(so, F {S3,54})
=2/3+1/6=5/6

- From the above, we also have:

— P.o[GFa] & T n Sat(a) # & for some reachable BSCC T

27

Repeated reachability + persistence

- Repeated reachability and persistence are dual properties
— GFa = —-(FG —a)
— FG a = =(GF —a)

- Hence, for example:
— Prob(s, GF a) = 1 - Prob(s, FG —a)

- Can show this through LTL equivalences, or...

- Prob(s, GF a) + Prob(s, FG —a)
= Prob(s, F T¢gy) + Prob(s, F Tec_2)
— Tcra = union of BSCCs T with TnSat(a)+©@ (T intersects Sat(a))
— Tgc-a = union of BSCCs T with T<(S\Sat(a)) (no intersection)
= Prob(s, F (T, U Tec22)) = 1 (fundamental DTMC property)

28

Product DTMC for a DBA

- For DTMC D and DBA A

ProbP(s, A) = ProbP®A((s,q.), GF accept)

— where g5 = 8(qo,L(s))

- Hence:

ProbD(s, A) = PI’ObD®A((S1qs)’ F TGFaccept)

— where Tgraccepr = Union of D®A BSCCs T with TnSat(accept)+©@

- Reduces to computing BSCCs and reachability probabilities

29

Example

- Compute Prob(sy, GF a)

— property can be represented as a DBA

- Result: 1

30

Example 2

- Compute Prob(sy, G —=b A GF a)
— property can be represented as a DBA

- Result: 0.75

31

Product DTMC for a DRA

- ForaDTMCD = (S, s, P, L)

- and a (total) DRA A = (Q, 2, 9, qy, AcC)
— where Acc = { (L, K)) | T<i<k}

- The product DTMC D ® A is:

— the DTMC (SXQ, (Sinit,qinit)’ P’, L’) where:

Qinit = 0(do,L(Sinit))
' . P(S],SZ) if q, = 6(th—(sz))
P50, (52, G2)) = { 0 otherwise

l € L’((s,q)) if g € Liand k; € L'((s,q)) if g € K
(i.e. state sets of acceptance condition used as labels)

- (same product as for DBA, except for state labelling)

32

Product DTMC for a DRA

- For DTMC D and DRA A

ProbP(s, A) = ProbP®A((s,qs), Vi< (FG =I; A GF kj))

— where g5 = 8(qo,L(s))

- Hence:

ProbP(s, A) = ProbP®A((s,q.), F Tac)

— where Ta. is the union of all accepting BSCCs in D®A

— an accepting BSCC T of D®A is such that, for some 1<i<k:

. qE —liforall (s,gq) € Tand g E kifor some (s,q) € T
e, TNn(SxL)=Jand TN (S xK) I

- Reduces to computing BSCCs and reachability probabilities

33

Example 3

- Compute Prob(sy, FG a)

— property can be represented as a DRA

Acc = { {gohiai}) }

- Result: 0.125

34

Example 4

- Compute Prob(sy, G(b — F(=baa)) A FG —b)

— property can be represented as a DRA

Acc = { ({g;},{do}) }

- Result: 1

35

Summing up...

w-regular expressions and w-regular languages

— languages of infinite words: E;.(F;)® + E,.(Fo)® + ... + E,.(F)®
Nondeterministic Buchi automata (NBA)

— accepting runs visit a state in F infinitely often

— can represent any w-regular language by an NBA

— can translate any LTL formula into equivalent NBA
Deterministic Bluchi automata (DBA)

— strictly less expressive than NBA (e.g. no NBA for FG a)
Deterministic Rabin automata (DRA)

— generalised acceptance condition: { (L;, K;) | 1<i<k }

— as expressive as NBA; can convert any NBA to a DRA
Deterministic w-automata and DTMCs

— product DTMC + BSCC computation + simple reachability

36

