Probabilistic Model Checking

Lecture 13
Automata-based properties

Alessandro Abate

UNIVERSITY OF

0),430)23D)

Department of Computer Science
University of Oxford

Property specifications

1. Reachability properties, e.g. in PCTL
— F aor F=ta (reachability)
—aUbor aU=tb (until - constrained reachability)
— G a (invariance) (dual of reachability)

— probability computation: graph analysis + iterative
computation, or solution of linear equation system (or linear
optimisation problem)

2. Long-run properties, e.g. in LTL

— GF a (repeated reachability)
— FG a (persistence)
— probability computation: BSCCs + probabilistic reachability

- This lecture: more expressive property class for type 1
Next lecture: extension to type 2 properties

Overview

- Nondeterministic finite automata (NFA)

- Regular expressions and regular languages

- Deterministic finite automata (DFA)

- Regular safety properties

- DFAs and DTMCs

Some notations

- Let 2 be a finite alphabet

- A (finite or infinite) word w over X is
— a sequence of x;x5,... where «; € 2 for all |

- A prefix w of word w = ;5... is
— a finite word B4 B,... B, with B;=«; for all 1<i<n

- >* denotes the set of all finite words over X

— includes the empty word ¢

- >w denotes the set of all infinite words over > (nhext lecture)

Finite automaton

- A nondeterministic finite automaton (NFA) is...

— atuple A = (Q, Z, 8, Qq, F) where:

— Q is a finite set of states
— 2 is an alphabet

— 0:Q X X — 2Qis a transition function Y
— Qp € Qs a set of initial states

— F< Qs a set of accepting states

Language of an NFA

- Consider an NFA A = (Q, Z, 9, Qq, F)

- A run of A on a finite word w=0o,0¢,...0¢, iSs:
— a sequence of automata states qod;...q, such that:
— o € Qo and q;;; € 08(q;, &) for all 0<i<n
- An accepting runis a run with g, € F

- Word w is accepted by A iff:

— there exists an accepting run of Aonw
- The language of A, denoted L(A) is:

— the set of all words accepted by A

- Automata A and A’ are equivalent if L(A)=L(A’)

Regular expressions

- Regular expressions E over a finite alphabet X

— are given by the following grammar:
—E:=0|e|x|E+E|EE]|E*
— where @x € 2

- Language L(E) < 2* of a regular expression E:

- (V) = (empty language)
—L(e) ={¢} (empty word)
— L(x) ={ o'} (symbol)
— L(E; + E,) = L(E;) U L(E,) (union)
— L(E;.E>) = L(E;).L(E>) (concatenation)

={w;.w, | wy€L(E,) and w,€L(E,) }
— L(E*) = Ujen L(E)' and L(E)+T=L(E).L(E)}, VieN (finite repetition)

Side remark: Operations on NFA

+ Can construct NFA from regular expression inductively
— includes addition (and then removal) of e-transitions

- Can construct the intersection of two NFA

— build (synchronised) product automaton
— cross product of A; ® A, accepts L(A;) N L(A,)

Regular languages

- A set of finite words L is a regular language...

— iff L = L(E) for some regular expression E

— iff L = L(A) for some finite NFA A

(x+B)*B(cx+P)

(i.e. penultimate symbol is B)

Deterministic finite automaton

- A finite automaton is deterministic if:

— |Qpl=1
— 8(g,®)| = 1forallgeQand x € X
— i.e. one initial state and no nondeterministic successors

- A deterministic finite automaton (DFA) is total if:

— |8(gq, ®)| =1 forallg e Qand forall x €
— i.e. unique successor states for all symbols in alphabet

- A total DFA

— can always be constructed from a DFA
— has a unique run for any word w € >*

10

Side remark: determinisation NFA — DFA

- Determinisation of an NFA A = (Q, Z, 5, Qq, F)
— i.e. removal of choice in each automaton state

- Equivalent DFA is Ayt = (29, 2, O4et, Qo, Fyer) Where:

- 8@, 0 = | 8(,)

—Feee=1{Q cQ[Q NF+ U}

- Note: possible exponential blow-up in size...

11

Side remark: Example of determinisation

regexp:

NFA A (ot B)*B(cx+B)

Side remark: Example of determinisation

regexp:

NFA A (ot B)*B(cx+B)

DFA Aget

Side remark: other properties of NFA/DFA

- NFA/DFA have the same expressive power
— but NFA can be more efficient (up to exponentially smaller)

- For any reqgular language L, there is a unique minimal DFA
that accepts L (up to isomorphism)

— efficient algorithm to minimise DFA into equivalent DFA
— partition refinement algorithm (like for bisimulation)

- Language emptiness of an NFA reduces to reachability
— L(A) # @ iff can reach a state in F from an initial state in Qq

- NFA/DFA are closed under complementation
— build tota/ DFA, swap accept/non-accept states

14

Languages as properties

- Consider a model, i.e. an LTS/DTMC/MDP/ ...

— e.g. DTMC D = (S, Sinits P, Lab)
— where labelling Lab uses atomic propositions from set AP
— let w € Path(s) be some infinite path

- Temporal logic properties
— for some temporal logic (path) formula g, does w = ?

- Traces and languages

— trace(w) € (2AP)» denotes the projection of state labels of w
— j.e. trace(sps15,53...) = Lab(sg)Lab(s;)Lab(s,)Lab(ss)...

— for some language L c (2AP)w, is trace(w) € L ?

15

Example

1 {fail}

- Atomic propositions
— AP = { fail, try } Q
OO

— 2AP = { @), {fail}, {try}, {fail,try} }

— €.0. W = SpS5151525051525057153S53S3...
— trace(w) = G {try} {try} {fail} @ {try} {fail} G {try} @ @ @ ...

- Languages

— e.g. “no failures”
— L={o0Xp... € 2AP)» | x; is & or {try} for all i }

1

') G

- Paths and traces 0.01

16

Regular safety properties

- A safety property P is a language over 24P such that

— for any word w that violates P (i.e. is not in the language),
w has a finite prefix w’, all extensions of which also violate P

- A reqgular safety property is

— safety property for which the set of “bad prefixes” (finite
violations) forms a regular language

Formally...
— P c (2AP)w s a safety property if:
.V w e ((2AP)w\P) . 3 finite prefix w’ of w such that:
- Pn{w’e 2AP)w | w’ is a prefix of W’ } = &
— Pis a regular safety property if in addition:
AW e A VY W e (AW w.w’ ¢ Plis regular

17

Regular safety properties

- A safety property P is a language over 24P such that

— for any word w that violates P (i.e. is not in the language),
w has a finite prefix w’, all extensions of which also violate P

- A reqgular safety property is

— safety property for which the set of “bad prefixes” (finite
violations) forms a regular language

Examples:
— “at least one traffic light is always on”
— “two traffic lights are never on simultaneously”
— “ared light is always preceded immediately by an amber light”

18

Example

- Regular safety property:

— “at most 2 failures occur”
— language over:
2AP = { @, {fail}, {try}, {fail,try} }

Example

- Regular safety property: :

— “at most 2 failures occur” e
— language over:
@ @ 0.98 _ 1

2AP = { &, {fail}, {try}, {fail,try}}

- Bad prefixes (regexp): 0.01
(—fail)*.fail.(=fail)*.fail.(—fail)*.fail.(true)* e ,

. fail denotes:
\ {fail} + {fail,try}) :

- Bad prefixes (DFA): . —fail denotes:
_ _ t (D + {try}
—fail - —fail —fail - true . true denotes:

())
(Gof—>{ar}—»(a2) e S

fail fail fail

20

Regular safety properties + DTMCs

+ Consider a DTMC D (with atomic propositions from AP)
and a reqgular safety property P c (2AP)w

- Let ProbP(s, P) denote the probability of P being satisfied
— i.e. ProbP(s, P) = Prb{ w € Path(s) | trace(w) € P}

— where Prb; is the probability measure over Path(s) for D

— this set is always measurable (see later)

- Example (safety) specifications

— “the probability that at most 2 failures occur is >0.999”
— “what is the probability that at most 2 failures occur?”

- How to compute ProbP(s, P) ?

21

Product DTMC

- We construct the product of

—aDTMCD = (S, sinir, P, L)

— and a (total) DFA A = (Q, 2, 9, qo, F)

— intuitively: records state of A for path fragments of D

- The product DTMC D ® A is:
— the DTMC (SXQ, (Sinit,qinit)’ P’, L’) where:

— Qinit = 0(9o,L(Sinit))

P(s,,s,) if g, =38(q,,L(s,))
0 otherwise

— P'((s],q1),(sz,q2)) —{

— L’((s,q)) = { accept }if g € F and L’((s,q)) = @ otherwise

22

Example

DFA A

—fail —fail

: fail denotes: |

- ({fail} + {fail,try}) :

. —fail denotes:
(D + {try})

. true denotes:

- (O +Hfail}+{try}+

: {fail,try}) :

true

23

statesbeyondthlsareall/\v
Product DTMC D ® A {accept}

accepting

24

Product DTMC

One interpretation of D ® A:

— unfolding of D where q for each state (s,q) records state of
automaton A for path fragment so far

In fact, since A is deterministic...

— for any w € Path(s) of the DTMC D:

. there is a unique run in A for trace(w)
. and a corresponding (unique) path through D ® A

— for any path w’ € PathP®A(s,q;,i) where qinir = 0(qo,L(s))
. there is a corresponding path in D and a runin A

DFA has no effect on probabilities
— i.e. probabilities preserved in product DTMC

25

Regular safety properties + DTMCs

Regular safety property P c (2AP)w
— “bad prefixes” (finite violations) represented by DFA A

Probability of P being satisfied in state s of D
— ProbP(s, P) = Prb{ w € Path(s) | trace(w) € P}

=1 - Prb{ w € Path(s) | trace(w) ¢ P}

=1 - Pro{ w € Path(s) | pref(trace(w)) N L(A) + & }
— where pref(w) = set of all finite prefixes of infinite word w

ProbP(s, P) = 1 - ProbP®A((s,q.), F accept)

— where g = 8(qo,L(s))

26

Example

- ProbP(s,, “at most 2 failures occur”)

= 1 = Prob®®A((s,q), F accept) {accept}
=1-(1/99)3

~ 0.9999989694

Summing up...

Nondeterministic finite automata (NFA)

— can represent any regular language, regular expression

— closed under complementation, intersection, ...

— (non-)emptiness reduces to reachability
Deterministic finite automata (DFA)

— can be constructed from NFA through determinisation

— equally expressive as NFA, but may be larger
Regular safety properties

— language representing set of possible traces

— bad (violating) prefixes form a regular language
Probability of a reqgular safety property on a DTMC

— construct product DTMC

— reduces to probabilistic reachability

28

