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Overview

• PCTL for MDPs
− syntax, semantics, examples

• PCTL model checking
− next, bounded until, until
− precomputation algorithms
− value iteration, linear optimisation
− examples

• Costs and rewards
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PCTL

• Temporal logic for describing properties of MDPs
− identical syntax to the logic PCTL for DTMCs

− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulas)

− ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

“until”

ψ is true with 
probability ~p

“bounded 
until”“next”
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PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP
− s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas and of path 
formulas are identical to those for DTMCs:

• For a state s of the MDP (S,sinit,Steps,L):
− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ  is false
• For a path ω = s0(a1,µ1)s1(a2,µ2)s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2
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PCTL semantics for MDPs

• Semantics of the probabilistic operator P
− can inherit probabilities for a specific adversary σ from 

induced DTMC
− s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is 

true for an outgoing path satisfies ~p for all adversaries σ”
− formally  s ⊨ P~p [ ψ ]  ⇔  Probσ(s, ψ) ~ p for all adversaries σ
− where Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ }

s

¬ψ

ψ Probσ(s, ψ) ~ p
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Minimum and maximum probabilities

• Letting:
− pmax(s, ψ) = supσ∈Adv Probσ(s, ψ)
− pmin(s, ψ) = infσ∈Adv Probσ(s, ψ)

• We have:
− if ~ ∈ {≥,>}, then s ⊨ P~p [ ψ ]  ⇔  pmin(s, ψ) ~ p 
− if ~ ∈ {<,≤}, then s ⊨ P~p [ ψ ]  ⇔  pmax(s, ψ) ~ p

• Model checking P~p[ ψ ] reduces to the computation over all 
adversaries of either:
− the minimum probability of ψ holding
− the maximum probability of ψ holding
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Other classes of adversary

• A more general semantics for PCTL over MDPs
− parameterise by a class of adversaries Adv*

• E.g., take Adv* to be the set of all fair adversaries
− path (strong) fairness: if a state occurs on a path infinitely 

often, then each non-deterministic choice occurs infinitely 
often [BK98]

• Only change is:
− s ⊨Adv* P~p [ψ]  ⇔  Probσ(s, ψ) ~ p for all adversaries σ ∈ Adv*

• Original semantics obtained by taking Adv* = Adv
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PCTL-derived operators

• Many of the same equivalences as for DTMCs, e.g.:
− F φ ≡ true U φ (eventually)
− F≤k φ ≡ true U≤k φ
− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ) (always)
− G≤k φ ≡ ¬(F≤k ¬φ)
− etc.

• But… for example:
− P≥p [ ψ ] ≢ ¬P<p [ ψ ] (negation + probability)

• Duality between min/max:
− for any path formula ψ:  pmin(s, ψ) = 1- pmax(s, ¬ψ)
− so, for example:  P≥p [ G φ ] ≡ P≤1-p [ F ¬φ ]
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Qualitative properties

• PCTL can express qualitative properties of MDPs
− like for DTMCs, can relate these to CTL’s AF and EF operators
− need to be careful with “there exists” and adversaries

• P≥1 [ F φ ] is (similar to but) weaker than AF φ
− P≥1 [ F φ ] ⇔ Probσ(s, F φ) = 1 for all adversaries σ
− recall that “probability=1” is weaker than “for all”

• We can construct an equivalence for EF φ
− EF φ ≢ P>0[ F φ ]
− but:
− EF φ ≡ ¬P≤0[ F φ ]

⇔ there exists a finite path from s to a φ-state
⇔ Probσ(s, F φ) > 0 for some adversary σ
⇔ not Probσ(s, F φ) ≤ 0 for all adversaries σ
⇔ ¬P≤0 [ F φ ]

9



Quantitative properties

• For PCTL properties with P as the outermost operator
− PRISM allows a quantitative form
− for MDPs, there are two types: Pmin=? [ ψ ] and Pmax=? [ ψ ]
− i.e. “what is the minimum/maximum probability (over all 

adversaries) that path formula ψ is true?”
− model checking is no harder since it computes the values of 

pmin(s, ψ) or pmax(s, ψ) anyway 
− useful to spot patterns/trends

• Example CSMA/CD protocol
− “min/max probability

that a message is sent
within the deadline”
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Some real PCTL examples

• Byzantine agreement protocol
− Pmin=? [ F (agreement ∧ rounds≤2) ]
− “what is the minimum probability that agreement is reached 

within two rounds?”

• CSMA/CD communication protocol
− Pmax=? [ F collisions=k ]
− “what is the maximum probability of k collisions?” 

• Self-stabilisation protocols 
− Pmin=? [ F≤k stable ]
− “what is the minimum probability of reaching a stable state 

within k steps?”
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PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]
− inputs:  MDP M=(S,sinit,Steps,L),  PCTL formula φ
− output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• Often, also consider quantitative results
− e.g. compute result of Pmin=? [ F≤k stable ] for 0≤k≤100

• Basic algorithm same as PCTL for DTMCs
− proceeds by induction on parse tree of φ

• For the non-probabilistic operators:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)
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PCTL model checking for MDPs

• Main task: model checking P~p [ ψ ] formulae 
− reduces to computation of min/max probabilities
− i.e. pmin(s, ψ) or pmax (s, ψ) for all s ∈ S
− depending on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

• Three cases:
− next (X φ)
− bounded until (φ1 U≤k φ2)
− unbounded until (φ1 U φ2)
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PCTL next for MDPs

• Computation of probabilities for PCTL next operator
• Consider case of minimum probabilities…

− Sat(P~p[ X φ ]) = { s ∈ S | pmin(s, X φ) ~ p }, ~ ∈ {≥,>} 
− need to compute pmin(s, X φ) for all s ∈ S

• Recall in the DTMC case
− sum outgoing probabilities for

transitions to φ-states
− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• For MDPs, perform computation for each distribution
available in s and then take minimum:
− pmin(s, X φ) = min { Σs’∈Sat(φ) µ(s’) | (a,µ)∈Steps(s) }

• Maximum probabilities case is analogous

s

φ
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PCTL next - Example

• Model check: P≥0.5 [ X heads ]
− lower probability bound so minimum probabilities required
− Sat (heads)= {s2}
− e.g. pmin(s1, X heads) = min (0, 0.5) = 0
− can do all at once with matrix-vector multiplication:

• Extracting the minimum for each state yields
− pmin(X heads) = [0, 0, 1, 0] 
− Sat(P≥0.5 [ X heads ]) = {s2}
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PCTL bounded until for MDPs

• Computation of probabilities for PCTL U≤k operator
• Consider case of minimum probabilities…

− Sat(P~p[ φ1 U≤k φ2 ]) = { s ∈ S | pmin(s, φ1 U≤k φ2) ~ p } , ~ ∈ {≥,>} 
− need to compute pmin(s, φ1 U≤k φ2) for all s ∈ S

• First identify (some) states where probability is 1 or 0
− Syes = Sat(φ2)  and  Sno = S \ (Sat(φ1) ∪ Sat(φ2))

• Then solve the recursive equations:

• Maximum probabilities case is analogous
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PCTL bounded until for MDPs

• Simultaneous computation of vector pmin(φ1 U≤k φ2)
− i.e. probabilities pmin(s, φ1 U≤k φ2) for all s ∈ S

• Recursive definition in terms of matrices and vectors
− similar to DTMC case
− requires k matrix-vector multiplications
− in addition requires k minimisation operations
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PCTL bounded until - Example

• Model check: P<0.95 [ F≤3 init ] ≡ P<0.95 [ true U≤3 init ]
− upper probability bound so maximum probabilities required
− Sat (true) = S and Sat (init) = {s0}
− Syes = {s0} and Sno = ∅
− S? = {s1,s2,s3}

• The vector of probabilities is
computed successively as:
− pmax(true U≤0 init ) = [ 1, 0, 0, 0 ]
− pmax(true U≤1 init ) = [ 1, 0.7, 0, 0 ]
− pmax(true U≤2 init ) = [ 1, 0.91, 0, 0 ]
− pmax(true U≤3 init ) = [ 1, 0.973, 0, 0 ]

• Hence, the result is:
− Sat(P<0.95 [ F≤3 init ]) = { s2, s3 }

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}
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a
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PCTL until for MDPs

• Computation of probabilities for all s ∈ S:
− pmin(s, φ1 U φ2) or pmax(s, φ1 U φ2)

• Essentially the same as computation of reachability 
probabilities (see previous lecture)
− just need to consider additional φ1 constraint

• Overview:
− precomputation:

• identify states where the probability is 0 (or 1)
− several options to compute remaining values:

• value iteration
• reduction to linear programming
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PCTL until for MDPs - Precomputation

• Determine all states for which probability is 0
− min case: Sno = { s∈S | pmin(s, φ1 U φ2)=0 }  - Prob0E
− max case: Sno = { s∈S | pmax(s, φ1 U φ2)=0 }  - Prob0A

• Determine all states for which probability is 1
− min case: Syes = { s∈S | pmin(s, φ1 U φ2)=1 }  - Prob1A
− max case: Syes = { s∈S | pmax(s, φ1 U φ2)=1 }  - Prob1E

• Like for DTMCs:
− identifying 0 states required (for uniqueness of LP problem)
− identifying 1 states is optional (but useful optimisation)

• Advantages of precomputation
− reduces size of numerical computation problem
− gives exact results for the states in Syes and Sno (no round-off)
− suffices for model checking of qualitative properties

not
covered 

here
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PCTL until for MDPs - Prob0E

• Minimum probabilities 0
− Sno = { s∈S | pmin(s, φ1 U φ2)=0 } = Sat(¬P>0 [ φ1 U φ2 ])
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PCTL until for MDPs - Prob0A

• Maximum probabilities 0
− Sno = { s∈S | pmax(s, φ1 U φ2)=0 }
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PCTL until for MDPs - Prob1E

• Maximum probabilities 1
− Syes = { s∈S | pmax(s, φ1 U φ2)=1 } = Sat(¬P<1 [ φ1 U φ2 ])

• Prob1E algorithm (see next slide)
− two nested loops (double fixed point)
− result, stored in R, will be Syes; initially R is S
− iteratively remove (some) states u with pmax(u, φ1 U φ2)<1

• i.e. remove (some) states for which,
under no adversary σ, is Probσ(s, φ1 U φ2)=1

− done by inner loop which computes subset R’ of R
• R’ contains φ1-states with a probability distribution for which all 

transitions stay within R and at least one eventually reaches φ2

− note: after first iteration, R contains:
• { s | Probσ(s, φ1 U φ2)>0 for some σ }
• essentially: execution of Prob0A and removal of Sno from R
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PCTL until for MDPs - Prob1E
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Prob1E - Example

• Syes = { s∈S | pmax(s, ¬a U b)=1 }

• R = { 0, 1, 2, 3, 4 ,5 6 }
− R’ = {2} ; R’ = {1, 2, 5} ; R’ = {1, 2, 4, 5} ; R’ = {1, 2, 4, 5, 6}

• R = { 1, 2, 4, 5, 6 }
− R’ = {2} ; R’ = {1, 2, 5}

• R = { 1, 2, 5 }
− R’ = {2} ; R’ = {1, 2, 5}

• R = { 1, 2, 5 }

• Syes = { 1, 2, 5 } 4

1 2

5

{b}
0 3

6

{a}
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PCTL until for MDPs - Prob1A

• Minimum probabilities 1
− Syes = { s∈S | pmin(s, φ1 U φ2)=1 }

• Can also be done with a graph-based algorithm

• Details omitted here

• For minimum probabilities, just take Syes = Sat(φ2)
− recall that computing states for which probability=1 is just an 

optimisation: it is not required for correctness
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PCTL until for MDPs

• Min/max probabilities for the remaining states, i.e.
S? = S \ ( Syes ∪ Sno ), can be computed using either…

• 1. Value iteration
− approximate iterative solution method
− preferable in practice for efficiency reasons

• 2. Reduction to a linear optimisation problem
− solve with well-known linear programming (LP) techniques

• via simplex, ellipsoid method, interior point method
− yields exact solution in finite number of steps

• 3. Policy iteration (not considered here)
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Method 1 - Value iteration (min)

• Minimum probabilities satisfy:
− pmin(s, φ1 U φ2) = limn→∞ xs(n) where:

• Approximate iterative solution:
− compute vector x(n) for “sufficiently large” n
− in practice: terminate iterations when some pre-determined 

convergence criteria satisfied
− e.g. maxs | x(n)(s) - x(n-1)(s)) | < ɛ for some tolerance ɛ
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Method 1 - Value iteration (max)

• Similarly, maximum probabilities satisfy:
− pmax(s, φ1 U φ2) = limn→∞ xs(n) where:

• …and can be approximated iteratively
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PCTL until - Example

• Model check: P>0.5 [ F a ] ≡ P>0.5 [ true U a ]
− lower probability bound so minimum probabilities required

s0

s1 s2

s3
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PCTL until - Example

• Model check: P>0.5 [ F a ] ≡ P>0.5 [ true U a ]
− lower probability bound so minimum probabilities required

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(a)

Sno = { s∈S | pmin(s, F a)=0 }

Prob0E
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PCTL until - Example

Compute: pmin(si, F a)
Syes = {s2}, Sno ={s3}, S? = {s0, s1}

[ x0(n),x1(n),x2(n),x3(n) ]
n=0: [ 0, 0, 1, 0 ]
n=1: [ min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0 ]
= [ 0, 0.4, 1, 0 ]

n=2: [ min(1·0.4,0.25·0+0.25·0+0.5·1),
0.1·0+0.5·0.4+0.4·1, 1, 0 ]

=[ 0.4, 0.6, 1, 0 ]
n=3: …

s0

s1 s2

s3
0.5

0.25
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0.25
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PCTL until - Example
[ x0(n),x1(n),x2(n),x3(n) ]

n=0: [ 0.000000, 0.000000, 1, 0 ]
n=1: [ 0.000000, 0.400000, 1, 0 ]
n=2: [ 0.400000, 0.600000, 1, 0 ]
n=3: [ 0.600000, 0.740000, 1, 0 ]
n=4: [ 0.650000, 0.830000, 1, 0 ]
n=5: [ 0.662500, 0.880000, 1, 0 ]
n=6: [ 0.665625, 0.906250, 1, 0 ]
n=7: [ 0.666406, 0.919688, 1, 0 ]
n=8: [ 0.666602, 0.926484, 1, 0 ]
…
n=20: [ 0.666667, 0.933332, 1, 0 ]
n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

pmin(F a) =
[ 2/3, 14/15, 1, 0 ]

Sat(P>0.5 [F a]) = { s0, s1, s2 }

33



Example - Optimal adversary

• Like for reachability, can generate an optimal memoryless 
adversary using min/max probability values
− and thus also a DTMC

• Min adversary σmin [ x0(n),x1(n),x2(n),x3(n) ]
…
n=20: [ 0.666667, 0.933332, 1, 0 ]
n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

s0 : min(1·14/15, 0.5·1+0.5·0+0.25·2/3)
=min(14/15, 2/3)s0
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Method 2 - Linear optimisation problem

• Probabilities for states in S? = S \ (Syes ∪ Sno) can also be 
obtained from a linear optimisation problem

• Minimum probabilities:

• Maximum probabilities:

    

 

minimize xs subject to the constraints :
sÎS?å

xs ³ µ(s' )× xs' +
s'ÎS?

å µ(s' )
s'ÎSyes

å

for all s Î S? and for all (a,µ) Î Steps (s)

    

 

maximize xs subject to the constraints :
sÎS?å

xs £ µ(s' )× xs' +
s'ÎS?

å µ(s' )
s'ÎSyes

å

for all s Î S? and for all (a,µ) Î Steps (s)
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PCTL until - Example

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5
● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3
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PCTL until - Example

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

0.8

x0

x1

0
0

1

1

x1 ≤ 0.2·x0

+ 0.8

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3
● x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3
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PCTL until - Example

x0

x1

0
0

1

1

0.8

2/3

max
Solution:
(x0, x1)

=
(2/3, 14/15)

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3
● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

pmin(F a) =
[ 2/3, 14/15, 1, 0 ]

Sat(P>0.5 [F a]) =
{ s0, s1, s2 }
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Example - Optimal adversary

Get optimal adversary from constraints of
optimisation problem that yield solution

Alternatively, use optimal probability
values in value iteration function, as
shown in value iteration example
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s1 s2
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Two memoryless

adversaries

x1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3
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PCTL until - Example 2

• Model check: P<0.1 [ F a ] 
− upper probability bound so maximum probabilities required
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PCTL until - Example 2

• Model check: P<0.1 [ F a ]
− upper probability bound so maximum probabilities required

• pmax(F a) = [ 1, 1, 1, 1 ]  and Sat(P<0.1 [ F a ]) = ∅

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = { s∈S | pmax(s, F a)=1 } = S

Sno = { s∈S | pmax(s, F a)=0 } = ∅

Prob0A

Prob1E
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PCTL until - Example 3

• Model check: P>0 [ F a ] 
− lower probability bound so minimum probabilities required
− qualitative property so numerical computation can be avoided

• pmin(F a) = [ ?, ?, ?, 0 ]  and Sat(P>0 [ F a ]) = {s0,s1,s2}

Sno = { s∈S | pmin(s, F a)=0 }

Prob0E yields Sno = {s3}
s0
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Costs and rewards

• We can augment MDPs with rewards (or costs)
− real-valued quantities assigned to states and/or actions
− different from the DTMC case where transition rewards 

assigned to individual transitions

• For a MDP (S,sinit,Steps,L), a reward structure is a pair (ρ,ι)
− ρ : S → ℝ≥0 is the state reward function
− ι : S × Act → ℝ≥0 is transition reward function

• As for DTMCs these can be used to compute:
− elapsed time, power consumption, size of message queue, 

number of messages successfully delivered, net profit, …
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PCTL and rewards

• Augment PCTL with reward-based properties
− allow a wide range of quantitative measures of the system
− basic notion: expected value of rewards

φ  ::=  …  |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ]

where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [ · ] means “the expected value of · satisfies ~r for all 
adversaries”

expected reward is ~r
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PCTL and rewards

• Augment PCTL with reward-based properties
− allow a wide range of quantitative measures of the system
− basic notion: expected value of rewards

φ  ::=  …  |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ]

where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [ · ] means “the expected value of · satisfies ~r for all 
adversaries”

“reachability”

expected reward is ~r

“cumulative”“instantaneous”
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Types of reward formulas

• Instantaneous: R~r [ I=k ]
− the expected value of the reward at time step k is ~r for all 

adversaries
− “the minimum expected queue size after exactly 90 seconds”

• Cumulative: R~r [ C≤k ]
− the expected reward cumulated up to time step k is ~r for all 

adversaries
− “the maximum expected power consumption over one hour”

• Reachability: R~r [ F φ ]
− the expected reward cumulated before reaching a state 

satisfying φ is ~r for all adversaries
− “the maximum expected time for the algorithm to terminate”
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Reward formula semantics

• Formal semantics of the three reward operators:
− for a state s in the MDP:
− s ⊨ R~r [ I=k ]  ⇔  Expσ(s, XI=k) ~ r for all adversaries σ
− s ⊨ R~r [ C≤k ]  ⇔  Expσ(s, XC≤k) ~ r for all adversaries σ
− s ⊨ R~r [ F Φ ]  ⇔  Expσ(s, XFΦ) ~ r for all adversaries σ

Expσ(s, X) denotes the expectation of the random variable
X : Pathσ(s) → ℝ≥0 with respect to the probability measure Prσs
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Reward formula semantics

• For an infinite path ω= s0(a0,µ0)s1(a1,µ1)s2…

where kφ =min{ i | si ⊨ φ } 
(typo: iota fcn also depends on state)
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Model checking reward formulas

• Instantaneous: R~r [ I=k ]
− similar to the computation of bounded until probabilities
− solution of recursive equations
− k matrix-vector multiplications (+ min/max)

• Cumulative: R~r [ C≤k ]
− extension of bounded until computation
− solution of recursive equations
− k iterations of matrix-vector multiplication + summation

• Reachability: R~r [ F φ ]
− similar to the case for until
− solve a linear optimization problem (or value iteration)

See [FKNP11]
for details
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Model checking R~r [ I=k ]

• Min/max expected instantaneous reward at step k
− can be computed recursively, in a “backwards” fashion
− i.e. similar to the equivalent reward operator on DTMCs

• Let: Expmax(s, XI=k) = supσ∈Adv Expσ(s, XI=k)

• Then:

• See [FKNP11] for further details
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Model checking complexity

• For model checking of an MDP (S,sinit,Steps,L) and PCTL 
formula φ (including reward operators)
− complexity is linear in |Φ| and polynomial in |S|

• Size |φ| of φ is defined as number of logical connectives 
and temporal operators, plus sizes of temporal operators
− model checking is performed for each operator

• Worst-case operators are P~p [ φ1 U φ2 ] and R~r [ F φ ]
− main task: solution of linear optimization problem of size |S|
− can be solved with ellipsoid method (polynomial in |S|)
− and also precomputation algorithm (max |S| steps)
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Summing up…

• PCTL for MDPs
− same as syntax as for PCTL
− key difference in semantics: “for all adversaries”
− requires computation of minimum/maximum probabilities

• PCTL model checking for MDPs
− same basic algorithm as for DTMCs
− next: matrix-vector multiplication + min/max
− bounded until: k matrix-vector multiplications + min/max
− until : precomputation algorithm + numerical computation

• precomputation: Prob0A and Prob1E for max, Prob0E for min
• numerical computation: value iteration, linear optimisation

− complexity linear in |Φ| and polynomial in |S|
• Costs and rewards
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