
Lecture 12
PCTL Model Checking for MDPs

Alessandro Abate

Department of Computer Science
University of Oxford

Probabilistic Model Checking

Overview

• PCTL for MDPs
− syntax, semantics, examples

• PCTL model checking
− next, bounded until, until
− precomputation algorithms
− value iteration, linear optimisation
− examples

• Costs and rewards

2

PCTL

• Temporal logic for describing properties of MDPs
− identical syntax to the logic PCTL for DTMCs

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

“until”

ψ is true with
probability ~p

“bounded
until”“next”

3

PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP
− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas and of path
formulas are identical to those for DTMCs:

• For a state s of the MDP (S,sinit,Steps,L):
− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false
• For a path ω = s0(a1,µ1)s1(a2,µ2)s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

4

PCTL semantics for MDPs

• Semantics of the probabilistic operator P
− can inherit probabilities for a specific adversary σ from

induced DTMC
− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is

true for an outgoing path satisfies ~p for all adversaries σ”
− formally s ⊨ P~p [ψ] ⇔ Probσ(s, ψ) ~ p for all adversaries σ
− where Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ }

s

¬ψ

ψ Probσ(s, ψ) ~ p

5

Minimum and maximum probabilities

• Letting:
− pmax(s, ψ) = supσ∈Adv Probσ(s, ψ)
− pmin(s, ψ) = infσ∈Adv Probσ(s, ψ)

• We have:
− if ~ ∈ {≥,>}, then s ⊨ P~p [ψ] ⇔ pmin(s, ψ) ~ p
− if ~ ∈ {<,≤}, then s ⊨ P~p [ψ] ⇔ pmax(s, ψ) ~ p

• Model checking P~p[ψ] reduces to the computation over all
adversaries of either:
− the minimum probability of ψ holding
− the maximum probability of ψ holding

6

Other classes of adversary

• A more general semantics for PCTL over MDPs
− parameterise by a class of adversaries Adv*

• E.g., take Adv* to be the set of all fair adversaries
− path (strong) fairness: if a state occurs on a path infinitely

often, then each non-deterministic choice occurs infinitely
often [BK98]

• Only change is:
− s ⊨Adv* P~p [ψ] ⇔ Probσ(s, ψ) ~ p for all adversaries σ ∈ Adv*

• Original semantics obtained by taking Adv* = Adv

7

PCTL-derived operators

• Many of the same equivalences as for DTMCs, e.g.:
− F φ ≡ true U φ (eventually)
− F≤k φ ≡ true U≤k φ
− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ) (always)
− G≤k φ ≡ ¬(F≤k ¬φ)
− etc.

• But… for example:
− P≥p [ψ] ≢ ¬P<p [ψ] (negation + probability)

• Duality between min/max:
− for any path formula ψ: pmin(s, ψ) = 1- pmax(s, ¬ψ)
− so, for example: P≥p [G φ] ≡ P≤1-p [F ¬φ]

8

Qualitative properties

• PCTL can express qualitative properties of MDPs
− like for DTMCs, can relate these to CTL’s AF and EF operators
− need to be careful with “there exists” and adversaries

• P≥1 [F φ] is (similar to but) weaker than AF φ
− P≥1 [F φ] ⇔ Probσ(s, F φ) = 1 for all adversaries σ
− recall that “probability=1” is weaker than “for all”

• We can construct an equivalence for EF φ
− EF φ ≢ P>0[F φ]
− but:
− EF φ ≡ ¬P≤0[F φ]

⇔ there exists a finite path from s to a φ-state
⇔ Probσ(s, F φ) > 0 for some adversary σ
⇔ not Probσ(s, F φ) ≤ 0 for all adversaries σ
⇔ ¬P≤0 [F φ]

9

Quantitative properties

• For PCTL properties with P as the outermost operator
− PRISM allows a quantitative form
− for MDPs, there are two types: Pmin=? [ψ] and Pmax=? [ψ]
− i.e. “what is the minimum/maximum probability (over all

adversaries) that path formula ψ is true?”
− model checking is no harder since it computes the values of

pmin(s, ψ) or pmax(s, ψ) anyway
− useful to spot patterns/trends

• Example CSMA/CD protocol
− “min/max probability

that a message is sent
within the deadline”

10

Some real PCTL examples

• Byzantine agreement protocol
− Pmin=? [F (agreement ∧ rounds≤2)]
− “what is the minimum probability that agreement is reached

within two rounds?”

• CSMA/CD communication protocol
− Pmax=? [F collisions=k]
− “what is the maximum probability of k collisions?”

• Self-stabilisation protocols
− Pmin=? [F≤k stable]
− “what is the minimum probability of reaching a stable state

within k steps?”

11

PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]
− inputs: MDP M=(S,sinit,Steps,L), PCTL formula φ
− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• Often, also consider quantitative results
− e.g. compute result of Pmin=? [F≤k stable] for 0≤k≤100

• Basic algorithm same as PCTL for DTMCs
− proceeds by induction on parse tree of φ

• For the non-probabilistic operators:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

12

PCTL model checking for MDPs

• Main task: model checking P~p [ψ] formulae
− reduces to computation of min/max probabilities
− i.e. pmin(s, ψ) or pmax (s, ψ) for all s ∈ S
− depending on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

• Three cases:
− next (X φ)
− bounded until (φ1 U≤k φ2)
− unbounded until (φ1 U φ2)

13

PCTL next for MDPs

• Computation of probabilities for PCTL next operator
• Consider case of minimum probabilities…

− Sat(P~p[X φ]) = { s ∈ S | pmin(s, X φ) ~ p }, ~ ∈ {≥,>}
− need to compute pmin(s, X φ) for all s ∈ S

• Recall in the DTMC case
− sum outgoing probabilities for

transitions to φ-states
− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• For MDPs, perform computation for each distribution
available in s and then take minimum:
− pmin(s, X φ) = min { Σs’∈Sat(φ) µ(s’) | (a,µ)∈Steps(s) }

• Maximum probabilities case is analogous

s

φ

14

PCTL next - Example

• Model check: P≥0.5 [X heads]
− lower probability bound so minimum probabilities required
− Sat (heads)= {s2}
− e.g. pmin(s1, X heads) = min (0, 0.5) = 0
− can do all at once with matrix-vector multiplication:

• Extracting the minimum for each state yields
− pmin(X heads) = [0, 0, 1, 0]
− Sat(P≥0.5 [X heads]) = {s2}

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

×

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=×

0
1
5.0

0
0

0
1
0
0

1000
0100
5.05.000

003.07.0
0010

 headsSteps

15

PCTL bounded until for MDPs

• Computation of probabilities for PCTL U≤k operator
• Consider case of minimum probabilities…

− Sat(P~p[φ1 U≤k φ2]) = { s ∈ S | pmin(s, φ1 U≤k φ2) ~ p } , ~ ∈ {≥,>}
− need to compute pmin(s, φ1 U≤k φ2) for all s ∈ S

• First identify (some) states where probability is 1 or 0
− Syes = Sat(φ2) and Sno = S \ (Sat(φ1) ∪ Sat(φ2))

• Then solve the recursive equations:

• Maximum probabilities case is analogous

0k and Ss if
0k and Ss if

Ss if
Ss if

)()(a, |) U ,(s'p)s'(min

0
0
1

) U (s,p

?

?

no

yes

Ss'
2

1-k
1min

2
k

1min

>Î
=Î

Î
Î

ï
ï

î

ï
ï

í

ì

þ
ý
ü

î
í
ì

Î×

=

å
Î

£

£

sStepsµffµ

ff

16

PCTL bounded until for MDPs

• Simultaneous computation of vector pmin(φ1 U≤k φ2)
− i.e. probabilities pmin(s, φ1 U≤k φ2) for all s ∈ S

• Recursive definition in terms of matrices and vectors
− similar to DTMC case
− requires k matrix-vector multiplications
− in addition requires k minimisation operations

17

PCTL bounded until - Example

• Model check: P<0.95 [F≤3 init] ≡ P<0.95 [true U≤3 init]
− upper probability bound so maximum probabilities required
− Sat (true) = S and Sat (init) = {s0}
− Syes = {s0} and Sno = ∅
− S? = {s1,s2,s3}

• The vector of probabilities is
computed successively as:
− pmax(true U≤0 init) = [1, 0, 0, 0]
− pmax(true U≤1 init) = [1, 0.7, 0, 0]
− pmax(true U≤2 init) = [1, 0.91, 0, 0]
− pmax(true U≤3 init) = [1, 0.973, 0, 0]

• Hence, the result is:
− Sat(P<0.95 [F≤3 init]) = { s2, s3 }

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

18

PCTL until for MDPs

• Computation of probabilities for all s ∈ S:
− pmin(s, φ1 U φ2) or pmax(s, φ1 U φ2)

• Essentially the same as computation of reachability
probabilities (see previous lecture)
− just need to consider additional φ1 constraint

• Overview:
− precomputation:

• identify states where the probability is 0 (or 1)
− several options to compute remaining values:

• value iteration
• reduction to linear programming

19

PCTL until for MDPs - Precomputation

• Determine all states for which probability is 0
− min case: Sno = { s∈S | pmin(s, φ1 U φ2)=0 } - Prob0E
− max case: Sno = { s∈S | pmax(s, φ1 U φ2)=0 } - Prob0A

• Determine all states for which probability is 1
− min case: Syes = { s∈S | pmin(s, φ1 U φ2)=1 } - Prob1A
− max case: Syes = { s∈S | pmax(s, φ1 U φ2)=1 } - Prob1E

• Like for DTMCs:
− identifying 0 states required (for uniqueness of LP problem)
− identifying 1 states is optional (but useful optimisation)

• Advantages of precomputation
− reduces size of numerical computation problem
− gives exact results for the states in Syes and Sno (no round-off)
− suffices for model checking of qualitative properties

not
covered

here

20

PCTL until for MDPs - Prob0E

• Minimum probabilities 0
− Sno = { s∈S | pmin(s, φ1 U φ2)=0 } = Sat(¬P>0 [φ1 U φ2])

21

PCTL until for MDPs - Prob0A

• Maximum probabilities 0
− Sno = { s∈S | pmax(s, φ1 U φ2)=0 }

22

PCTL until for MDPs - Prob1E

• Maximum probabilities 1
− Syes = { s∈S | pmax(s, φ1 U φ2)=1 } = Sat(¬P<1 [φ1 U φ2])

• Prob1E algorithm (see next slide)
− two nested loops (double fixed point)
− result, stored in R, will be Syes; initially R is S
− iteratively remove (some) states u with pmax(u, φ1 U φ2)<1

• i.e. remove (some) states for which,
under no adversary σ, is Probσ(s, φ1 U φ2)=1

− done by inner loop which computes subset R’ of R
• R’ contains φ1-states with a probability distribution for which all

transitions stay within R and at least one eventually reaches φ2

− note: after first iteration, R contains:
• { s | Probσ(s, φ1 U φ2)>0 for some σ }
• essentially: execution of Prob0A and removal of Sno from R

23

PCTL until for MDPs - Prob1E

24

Prob1E - Example

• Syes = { s∈S | pmax(s, ¬a U b)=1 }

• R = { 0, 1, 2, 3, 4 ,5 6 }
− R’ = {2} ; R’ = {1, 2, 5} ; R’ = {1, 2, 4, 5} ; R’ = {1, 2, 4, 5, 6}

• R = { 1, 2, 4, 5, 6 }
− R’ = {2} ; R’ = {1, 2, 5}

• R = { 1, 2, 5 }
− R’ = {2} ; R’ = {1, 2, 5}

• R = { 1, 2, 5 }

• Syes = { 1, 2, 5 } 4

1 2

5

{b}
0 3

6

{a}

25

PCTL until for MDPs - Prob1A

• Minimum probabilities 1
− Syes = { s∈S | pmin(s, φ1 U φ2)=1 }

• Can also be done with a graph-based algorithm

• Details omitted here

• For minimum probabilities, just take Syes = Sat(φ2)
− recall that computing states for which probability=1 is just an

optimisation: it is not required for correctness

26

PCTL until for MDPs

• Min/max probabilities for the remaining states, i.e.
S? = S \ (Syes ∪ Sno), can be computed using either…

• 1. Value iteration
− approximate iterative solution method
− preferable in practice for efficiency reasons

• 2. Reduction to a linear optimisation problem
− solve with well-known linear programming (LP) techniques

• via simplex, ellipsoid method, interior point method
− yields exact solution in finite number of steps

• 3. Policy iteration (not considered here)

27

Method 1 - Value iteration (min)

• Minimum probabilities satisfy:
− pmin(s, φ1 U φ2) = limn→∞ xs(n) where:

• Approximate iterative solution:
− compute vector x(n) for “sufficiently large” n
− in practice: terminate iterations when some pre-determined

convergence criteria satisfied
− e.g. maxs | x(n)(s) - x(n-1)(s)) | < ɛ for some tolerance ɛ

ï
ï
ï

î

ïï
ï

í

ì

>Î
þ
ý
ü

î
í
ì

Î×

=Î
Î
Î

=

å
Î

- 0nandSsif)s()µ(a,|x)'s(µmin

0nandSsif0
Ssif0
Ssif1

x
?

S s'

)1n(
's

?

no

yes

)n(
s

Steps

28

Method 1 - Value iteration (max)

• Similarly, maximum probabilities satisfy:
− pmax(s, φ1 U φ2) = limn→∞ xs(n) where:

• …and can be approximated iteratively

ï
ï
ï

î

ïï
ï

í

ì

>Î
þ
ý
ü

î
í
ì

Î×

=Î
Î
Î

=

å
Î

- 0nandSsif)s()µ(a,|x)'s(µmax

0nandSsif0
Ssif0
Ssif1

x
?

S s'

)1n(
's

?

no

yes

)n(
s

Steps

29

PCTL until - Example

• Model check: P>0.5 [F a] ≡ P>0.5 [true U a]
− lower probability bound so minimum probabilities required

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}
0.4

0.5

0.1

0.25

1

30

PCTL until - Example

• Model check: P>0.5 [F a] ≡ P>0.5 [true U a]
− lower probability bound so minimum probabilities required

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(a)

Sno = { s∈S | pmin(s, F a)=0 }

Prob0E

31

PCTL until - Example

Compute: pmin(si, F a)
Syes = {s2}, Sno ={s3}, S? = {s0, s1}

[x0(n),x1(n),x2(n),x3(n)]
n=0: [0, 0, 1, 0]
n=1: [min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0]
= [0, 0.4, 1, 0]

n=2: [min(1·0.4,0.25·0+0.25·0+0.5·1),
0.1·0+0.5·0.4+0.4·1, 1, 0]

=[0.4, 0.6, 1, 0]
n=3: …

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

32

PCTL until - Example
[x0(n),x1(n),x2(n),x3(n)]

n=0: [0.000000, 0.000000, 1, 0]
n=1: [0.000000, 0.400000, 1, 0]
n=2: [0.400000, 0.600000, 1, 0]
n=3: [0.600000, 0.740000, 1, 0]
n=4: [0.650000, 0.830000, 1, 0]
n=5: [0.662500, 0.880000, 1, 0]
n=6: [0.665625, 0.906250, 1, 0]
n=7: [0.666406, 0.919688, 1, 0]
n=8: [0.666602, 0.926484, 1, 0]
…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

pmin(F a) =
[2/3, 14/15, 1, 0]

Sat(P>0.5 [F a]) = { s0, s1, s2 }

33

Example - Optimal adversary

• Like for reachability, can generate an optimal memoryless
adversary using min/max probability values
− and thus also a DTMC

• Min adversary σmin [x0(n),x1(n),x2(n),x3(n)]
…
n=20: [0.666667, 0.933332, 1, 0]
n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

s0 : min(1·14/15, 0.5·1+0.5·0+0.25·2/3)
=min(14/15, 2/3)s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

34

Method 2 - Linear optimisation problem

• Probabilities for states in S? = S \ (Syes ∪ Sno) can also be
obtained from a linear optimisation problem

• Minimum probabilities:

• Maximum probabilities:

minimize xs subject to the constraints :
sÎS?å

xs ³ µ(s')× xs' +
s'ÎS?

å µ(s')
s'ÎSyes

å

for all s Î S? and for all (a,µ) Î Steps (s)

maximize xs subject to the constraints :
sÎS?å

xs £ µ(s')× xs' +
s'ÎS?

å µ(s')
s'ÎSyes

å

for all s Î S? and for all (a,µ) Î Steps (s)

35

PCTL until - Example

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5
● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

36

PCTL until - Example

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

0.8

x0

x1

0
0

1

1

x1 ≤ 0.2·x0

+ 0.8

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3
● x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

37

PCTL until - Example

x0

x1

0
0

1

1

0.8

2/3

max
Solution:
(x0, x1)

=
(2/3, 14/15)

Let xi = pmin(si, F a)
Syes: x2=1, Sno: x3=0
For S? = {s0, s1} :
Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3
● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

pmin(F a) =
[2/3, 14/15, 1, 0]

Sat(P>0.5 [F a]) =
{ s0, s1, s2 }

38

Example - Optimal adversary

Get optimal adversary from constraints of
optimisation problem that yield solution

Alternatively, use optimal probability
values in value iteration function, as
shown in value iteration example

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0
0

1

1

0.8

2/3

max
Two memoryless

adversaries

x1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

39

PCTL until - Example 2

• Model check: P<0.1 [F a]
− upper probability bound so maximum probabilities required

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}
0.4

0.5

0.1

0.25

1

40

PCTL until - Example 2

• Model check: P<0.1 [F a]
− upper probability bound so maximum probabilities required

• pmax(F a) = [1, 1, 1, 1] and Sat(P<0.1 [F a]) = ∅

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = { s∈S | pmax(s, F a)=1 } = S

Sno = { s∈S | pmax(s, F a)=0 } = ∅

Prob0A

Prob1E

41

PCTL until - Example 3

• Model check: P>0 [F a]
− lower probability bound so minimum probabilities required
− qualitative property so numerical computation can be avoided

• pmin(F a) = [?, ?, ?, 0] and Sat(P>0 [F a]) = {s0,s1,s2}

Sno = { s∈S | pmin(s, F a)=0 }

Prob0E yields Sno = {s3}
s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Sno

42

Costs and rewards

• We can augment MDPs with rewards (or costs)
− real-valued quantities assigned to states and/or actions
− different from the DTMC case where transition rewards

assigned to individual transitions

• For a MDP (S,sinit,Steps,L), a reward structure is a pair (ρ,ι)
− ρ : S → ℝ≥0 is the state reward function
− ι : S × Act → ℝ≥0 is transition reward function

• As for DTMCs these can be used to compute:
− elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

43

PCTL and rewards

• Augment PCTL with reward-based properties
− allow a wide range of quantitative measures of the system
− basic notion: expected value of rewards

φ ::= … | R~r [I=k] | R~r [C≤k] | R~r [F φ]

where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r for all
adversaries”

expected reward is ~r

44

PCTL and rewards

• Augment PCTL with reward-based properties
− allow a wide range of quantitative measures of the system
− basic notion: expected value of rewards

φ ::= … | R~r [I=k] | R~r [C≤k] | R~r [F φ]

where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r for all
adversaries”

“reachability”

expected reward is ~r

“cumulative”“instantaneous”

45

Types of reward formulas

• Instantaneous: R~r [I=k]
− the expected value of the reward at time step k is ~r for all

adversaries
− “the minimum expected queue size after exactly 90 seconds”

• Cumulative: R~r [C≤k]
− the expected reward cumulated up to time step k is ~r for all

adversaries
− “the maximum expected power consumption over one hour”

• Reachability: R~r [F φ]
− the expected reward cumulated before reaching a state

satisfying φ is ~r for all adversaries
− “the maximum expected time for the algorithm to terminate”

46

Reward formula semantics

• Formal semantics of the three reward operators:
− for a state s in the MDP:
− s ⊨ R~r [I=k] ⇔ Expσ(s, XI=k) ~ r for all adversaries σ
− s ⊨ R~r [C≤k] ⇔ Expσ(s, XC≤k) ~ r for all adversaries σ
− s ⊨ R~r [F Φ] ⇔ Expσ(s, XFΦ) ~ r for all adversaries σ

Expσ(s, X) denotes the expectation of the random variable
X : Pathσ(s) → ℝ≥0 with respect to the probability measure Prσs

47

Reward formula semantics

• For an infinite path ω= s0(a0,µ0)s1(a1,µ1)s2…

where kφ =min{ i | si ⊨ φ }
(typo: iota fcn also depends on state)

 otherwise

0k if

)a()s(ρ

0
)ω(X

1k
0i ii

kC

=

+ïî

ï
í
ì

=
å -

=

£

ι

)s(ρ)ω(X kkI ==

otherwise

 0i all for)φSat(s if

)φSat(s if

)a()s(ρ

0

)ω(X i

0

1-k
0i ii

φF

φ

³Ï

Î

+

¥

ï
ï
î

ïï
í

ì

=

å =
ι

48

Model checking reward formulas

• Instantaneous: R~r [I=k]
− similar to the computation of bounded until probabilities
− solution of recursive equations
− k matrix-vector multiplications (+ min/max)

• Cumulative: R~r [C≤k]
− extension of bounded until computation
− solution of recursive equations
− k iterations of matrix-vector multiplication + summation

• Reachability: R~r [F φ]
− similar to the case for until
− solve a linear optimization problem (or value iteration)

See [FKNP11]
for details

49

Model checking R~r [I=k]

• Min/max expected instantaneous reward at step k
− can be computed recursively, in a “backwards” fashion
− i.e. similar to the equivalent reward operator on DTMCs

• Let: Expmax(s, XI=k) = supσ∈Adv Expσ(s, XI=k)

• Then:

• See [FKNP11] for further details

Expmax(s, XI=k) =

r(s) if k = 0

max µ(s')× Expmax(s', XI=k-1)
s'ÎS
å | (a,µ) Î Steps (s)
ì
í
ï

î ï

ü
ý
ï

þ ï
if k > 0

ì

í
ï

î
ï

50

Model checking complexity

• For model checking of an MDP (S,sinit,Steps,L) and PCTL
formula φ (including reward operators)
− complexity is linear in |Φ| and polynomial in |S|

• Size |φ| of φ is defined as number of logical connectives
and temporal operators, plus sizes of temporal operators
− model checking is performed for each operator

• Worst-case operators are P~p [φ1 U φ2] and R~r [F φ]
− main task: solution of linear optimization problem of size |S|
− can be solved with ellipsoid method (polynomial in |S|)
− and also precomputation algorithm (max |S| steps)

51

Summing up…

• PCTL for MDPs
− same as syntax as for PCTL
− key difference in semantics: “for all adversaries”
− requires computation of minimum/maximum probabilities

• PCTL model checking for MDPs
− same basic algorithm as for DTMCs
− next: matrix-vector multiplication + min/max
− bounded until: k matrix-vector multiplications + min/max
− until : precomputation algorithm + numerical computation

• precomputation: Prob0A and Prob1E for max, Prob0E for min
• numerical computation: value iteration, linear optimisation

− complexity linear in |Φ| and polynomial in |S|
• Costs and rewards

52

