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Overview

PCTL for MDPs
— syntax, semantics, examples

PCTL model checking
— next, bounded until, until
— precomputation algorithms
— value iteration, linear optimisation
— examples

- Costs and rewards



PCTL

- Temporal logic for describing properties of MDPs

— |dent|ca| Syntax to the Iog|c PCTL for DTMCS g
: P is true with

/ probability ~p

—¢ =truelaldAP| - |P,y[Y] (state formulas)
- =X | dUkd | dUD (path formulas)
T S A | T
sl — “bounded A sy
next” @ .» i i until
until

susssssssssssssasssssannnal q T Gesmssssssssssssssessnanst

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,>}, k e N



PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas and of path

formulas are identical to those for DTMCs:
- For a state s of the MDP (S,s;,;;,Steps,L):

— SEa < a e L(s)
—sE P Ay < skEO; and s E ¢,
— s kE = < s E ¢ is false

- For a path w = sy(a;,M;)s(a»,U5)s5... in the MDP:

—wEX$ < SiE®
- wkE ¢ Uskd, <« i<k suchthats;= b, and Vj<i, s; E ¢,
~wE ¢ Ud, < Jk=0 such that w = ¢; U=k ¢,



PCTL semantics for MDPs

- Semantics of the probabilistic operator P

— can inherit probabilities for a specific adversary o from
induced DTMC

— s &= P, [ Y ] means “the probability, from state s, that @ is
true for an outgoing path satisfies ~p for all adversaries o”

— formally s =P.,[@] < Probd(s, p) ~ p for all adversaries o
— where Probd(s, @) = Prog{ w € Patho(s) | w = ¢ }

U Probo(s, ) ~ p



Minimum and maximum probabilities

- Letting:

o pmax(sa l])) = SUPgeAdv PI’ObG(S, Ll))
o pmin(s; LP) = infO'EAdV PI’ObO'(S, ‘-I-’)

- We have:

—if~ef{=>} thensEP,[W] < Pminls, P) ~p
—if~ef{<,<l,thens EP,[PY] < Pmals, P) ~p

- Model checking P_,[ @ ] reduces to the computation over all
adversaries of either:

— the minimum probability of ¢ holding
— the maximum probability of ¢ holding



Other classes of adversary

- A more general semantics for PCTL over MDPs
— parameterise by a class of adversaries Adv*

- E.g., take Adv* to be the set of all fair adversaries

— path (strong) fairness: if a state occurs on a path infinitely
often, then each non-deterministic choice occurs infinitely
often [BK98]

+ Only change is:

— S Fagvr Pop [W] < Probd(s, ) ~ p for all adversaries o € Adv*

- Original semantics obtained by taking Adv* = Adv



PCTL-derived operators

- Many of the same equivalences as for DTMCs, e.q.:

— Fd=trueU ¢ (eventually)
— Fsk ¢ = true Usk ¢

— G = —(F ) = —(true U —¢) (always)

— G=k cb = —(F=k _,CI))

— etc.

- But... for example:

— Pop[W] # -PplW] (negation + probability)

+ Duality between min/max:

— for any path formula Q: pmin(s, W) = 1= pmax(s, ~W)
— so, for example: P.,[G =P ,[F ~d]



Qualitative properties

- PCTL can express qualitative properties of MDPs
— like for DTMCs, can relate these to CTL’s AF and EF operators
— need to be careful with “there exists” and adversaries

- P.; [F & ]is (similar to but) weaker than AF ¢

— P.i [Fé$ ] < Probo(s, F ¢) = 1 for all adversaries o
— recall that “probability=1" is weaker than “for all”

- We can construct an equivalence for EF ¢
— EF ¢ #Poo[F ]

— but:

— EF ¢ = -Po[F o]



Quantitative properties

For PCTL properties with P as the outermost operator
— PRISM allows a quantitative form
— for MDPs, there are two types: Pmin—> [ W ] and Ppax=2 [ W ]

— i.e. “what is the minimum/maximum probability (over all
adversaries) that path formula  is true?”

— model checking is no harder since it computes the values of
pmin(s; LIJ) or pmax(S, L|-’) anyway
— useful to spot patterns/trends 1

0.8

Example CSMA/CD protocol %0.6

— “min/max probability g
that a message is sent lt — maximum
within the deadline” . [raverage |

800 1000 12‘00T14'oo 1600 1800
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Some real PCTL examples

Byzantine agreement protocol
— Pumin=2 [ F (agreement A rounds=<?2) ]

— “what is the minimum probability that agreement is reached
within two rounds?”

- CSMA/CD communication protocol

— Prmax=> [ F collisions=k ]
— “what is the maximum probability of k collisions?”

- Self-stabilisation protocols

— Prinz? [ F=k stable ]

— “what is the minimum probability of reaching a stable state
within k steps?”

11



PCTL model checking for MDPs

- Algorithm for PCTL model checking [BAA95]

— inputs: MDP M=(S,sini;,Steps,L), PCTL formula ¢

— output: Sat(d) ={s €S |s k&= ¢} = setof states satisfying ¢
- Often, also consider quantitative results

— e.g. compute result of Pyin—» [ Fsk stable ] for 0<k<100

- Basic algorithm same as PCTL for DTMCs

— proceeds by induction on parse tree of ¢

- For the non-probabilistic operators: o~
— Sat(true) = S
~Sat@ ={seS|lacls)} /&D

— Sat(—¢) = S \ Sat(d) <J_> d)
— Sat(d; A Py) = Sat(P;) N Sat(Ppy)



PCTL model checking for MDPs

- Main task: model checking P, [ ¢ | formulae
— reduces to computation of min/max probabilities

— i.€. Pmin(S, W) Oor Pmax (s, W) forall s € S
— depending on whether ~ € {=,>} or ~ € {<,<}

- Three cases:

— next (X ¢)
— bounded until (¢; U=k &b,)
— unbounded until (d; U &>)
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PCTL next for MDPs

- Computation of probabilities for PCTL next operator
- Consider case of minimum probabilities...

— SatP,[ X P ) ={s €S| pmin(s, XP) ~p}, ~€{=,>}
— need to compute pmin(s, X ) forall s € S

- Recall in the DTMC case

— sum outgoing probabilities for
transitions to ¢-states o 5

_ Prob(s’ X cb) — Zs’eSat(d)) P(S,S’) .............

- For MDPs, perform computation for each distribution

available in s and then take minimum:
— Pmin(S, X §) = min{ g csare) M(S") | (@,m)ESteps(s) }

- Maximum probabilities case is analogous
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PCTL next - Example

Model check: P,y [ X heads ]
— lower probability bound so minimum probabilities required
— Sat (heads)= {s,}
— €.g. Pmin(s1, X heads) = min (0, 0.5) =0
— can do all at once with matrix-vector multiplication:

0] 1 0] 0 | 0] 0
0.7 0.3 O 0 0 0]
Steps -heads=| O O 0.5 0.5]- 1= 0.5
0] 0] 1 0 0 1
| 0 0] 0] 1T]-- [0

Extracting the minimum for each state yields
_ Qmin(x headS) — [01 01 ]1 O]
— Sat(P-g 5 [ X heads ]) = {s,}

15



PCTL bounded until for MDPs

- Computation of probabilities for PCTL U=k operator
- Consider case of minimum probabilities...
— Sat(P.p[ &1 U=k ]) ={s €S | Pmin(s, 1 Usk ) ~p}, ~ € {=,>}
— need to compute pmin(s, d; Usk d,) forall s € S
- First identify (some) states where probability is 1 or O
— Syes = Sat(¢d,) and Sno =S\ (Sat(d;) U Sat(d,))
- Then solve the recursive equations:
1

0
pmin (S’ ¢1 ng ¢2) = O

min {Z U(8) Do (' 6 U )] (1, 1) € Steps(s)

if s €S’

if seS™

if seS and k=0
} if seS and k>0

s'eS

- Maximum probabilities case is analogous
16



PCTL bounded until for MDPs

- Simultaneous computation of vector p,in(P; U=k d,)
— i.e. probabilities pmin(s, ¢; Usk ¢,) forall s € S

Recursive definition in terms of matrices and vectors
— similar to DTMC case
— requires k matrix-vector multiplications
— in addition requires k minimisation operations

17



PCTL bounded until - Example

- Model check: P_ggs [ F=3 init] = P_y g5 [ true U=3 init ]
— upper probability bound so maximum probabilities required
— Sat (true) = S and Sat (init) = {s¢}
— Sves = {sp} and S = &9
— §7 = {s4,52,53}
- The vector of probabilities is
computed successively as:
— Pmax(true U=C init) =[1,0,0, 0]
— Pmax(true U=l init) =[1,0.7,0, 0]
— Pmax(true U=2init) =1, 0.91, 0, 0]
— Pmax(true Us3init) =1, 0.973, 0, 0]

- Hence, the result is:

— Sat(P<0_95 [ F=3 init ]) = { S2, 53 }

18



PCTL until for MDPs

Computation of probabilities for all s € S:
_ pmin(s, d)] U (132) or pmax(S, d)] U ¢2)

Essentially the same as computation of reachability
probabilities (see previous lecture)

— just need to consider additional ¢; constraint

Overview:
— precomputation:
. identify states where the probability is 0 (or 1)

— several options to compute remaining values:
. value iteration
. reduction to linear programming

19



PCTL until for MDPs - Precomputation

Determine all states for which probability is O
— min case: S = { sES | Pmin(s, ;1 U $d,)=0} - ProbOE
— max case: S = {seS | Pmax(s, P71 U $,)=01} - Prob0OA g
Determine all states for which probability is 1 «— covered
— min case: $Y5 = { SES | pin(s, $1 U by)=11} - Probta | Nere
— max case: S¥es = { sES | pmax(s, 1 U d,)=11}1 - ProblE
Like for DTMCs:
— identifying O states required (for uniqueness of LP problem)
— identifying 1 states is optional (but useful optimisation)
- Advantages of precomputation
— reduces size of numerical computation problem
— gives exact results for the states in S¥és and S"° (no round-off)
— suffices for model checking of qualitative properties

20



PCTL until for MDPs - ProbOE

Minimum probabilities O

— S" ={SES | Pmin(s, d1 U $2)=0} = Sat(=P.o[ &1 U ¢ ])

PROBOE(Sat (¢ ), Sat(ds))

1. R := Sat(ps)

2. done := false

3.  while (done = false)

4. R' == R U{s e Sat(¢y) | Yu € Steps(s).3s" € R. u(s
5. if (R' = R) then done := true

6. R:= R

7. endwhile

8. return S\R

(s) > 0}

21



PCTL until for MDPs - ProbOA

Maximum probabilities O
— Sno = { seS | pmax(ss cbl U CI)Z):O }

PROBOA (Sat(py), Sat(ds))

1. R := Sat(oy)

2. done := false

3.  while (done = false)

4. R := R U{s e Sat(¢y) | Iu € Steps(s).3s" € R.u(s") > 0}
5. if (R' = R) then done := true

6. R := R

7. endwhile

8. return S\R




PCTL until for MDPs - Prob1E

Maximum probabilities 1

— S8 = { SES | Pmax(s, 1 U d2)=1}=Sat(=P [Py U o))
Prob1E algorithm (see next slide)

— two nested loops (double fixed point)

— result, stored in R, will be Syes; initially R is S

— iteratively remove (some) states u with pmax(u, ¢; U §,)<1

. i.e. remove (some) states for which,
under no adversary o, is Probo(s, ¢; U ¢,)=1

— done by inner loop which computes subset R’ of R

. R’ contains ¢;-states with a probability distribution for which all
transitions stay within R and at least one eventually reaches ¢,

— note: after first iteration, R contains:

. {s | Prob%s, ¢; U $,)>0 for some o}
. essentially: execution of ProbOA and removal of S"™ from R

23



PCTL until for MDPs - Prob1E

Prowl1E(Sat(¢y), Sat(ods))

A

-] & O

10.
11.
12.
13.
14.

R:=5
done = false
while (done = false)
R = Sat(¢9)
done’ := false
while (done’ = false)
R":= R U{s € Sat(¢1) | pu € Steps(s).
vs'eS.pu(s') >0—s €R)A(3s' € R .pu(s') > 0)}
if (R” = R') then done’ := true
R = R"
endwhile
if (R' = R) then done := true
R =R
endwhile

return R

24



Prob1E - Example

« Sves ={seS | prax(s, "a U b)=1}

- R={0,1,2,3,4,56}
- R ={2}; R =1{1,2,5}; R"={1,2,4,5};R" ={1, 2,4, 5, 6}

.R:{]12’4’516}

- R={1,2,5}

- R={1,2,5}

. Sves={1,2,5}

- R ={2}; R ={1, 2, 5}

- R ={2}; R ={1, 2, 5}

25



PCTL until for MDPs - Prob1A

- Minimum probabilities 1

— Sves = { seS | pmin(S, CI)] U ¢2):] }

- Can also be done with a graph-based algorithm

- Details omitted here

- For minimum probabilities, just take Sves = Sat(d,)

— recall that computing states for which probability=1 is just an
optimisation: it is not required for correctness

26



PCTL until for MDPs

Min/max probabilities for the remaining states, i.e.
S? =S\ (Sves U S"9 ), can be computed using either...

1. Value iteration
— approximate iterative solution method
— preferable in practice for efficiency reasons

2. Reduction to a linear optimisation problem
— solve with well-known linear programming (LP) techniques
. via simplex, ellipsoid method, interior point method
— yields exact solution in finite number of steps

3. Policy iteration (not considered here)

27



Method 1 - Value iteration (min)

Minimum probabilities satisfy:
— Pmin(S, &1 U d3) = lim,_ . XM where:

-

1 ifs € SY*°
0 ifs e S™
Xs(n):< 0 ifseS’andn=0
min {Z us) - x."" | (a,u) e Steps (s)} ifseS’andn>0
s'eS

- Approximate iterative solution:

— compute vector xM for “sufficiently large” n

— in practice: terminate iterations when some pre-determined
convergence criteria satisfied

— e.g. maxs | xiMW(s) — x(n-1)(s)) | < € for some tolerance ¢

28



Method 1 - Value iteration (max)

- Similarly, maximum probabilities satisfy:
— Pmax(s, ®1 U P3) = limp_ X where:

1 if s e S¥
0) ifseS™
X" = 0 ifseS"andn=0
max {Z us) -x."" | (a,u) e Steps (s)} ifseS’andn>0
L s'eS

- ...and can be approximated iteratively

29



PCTL until - Example

- Model check: P.os[Fa]l]=P.gs[trueUa]

— lower probability bound so minimum probabilities required

30



PCTL until - Example

Model check: P.os [Fa] = P.gs[true U a]
— lower probability bound so minimum probabilities required

Sves = Sat(a)

ProbOE

Sne = {seS | pmin(s, Fa)=0}

31



PCTL until - Example

Compute: pmin(si, F a)
Syes = {52}1 Sno :{53}1 S? - {501 S]}

[ XoM, XM, x5 x50 ]
n=0: [0,0,1,0]
n=1: [min(1-0, 0.25-0+0.25-0+0.5-1),
0.1-0+0.5-0+0.4-1, 1, 0]
=[0,0.4,1,0]
n=2: [min(1-0.4,0.25-0+0.25-0+0.5-1),
0.1-0+0.5-0.4+0.4-1,1, 0]
=[0.4,0.6,1,0]

32



PCTL until - Example

Qmin(Fa):
[2/3,14/15,1,0]

Sat(P.os[F al) = { sg, S1, 52 }

5 3 3 3 53 3 5 5 5
I
XNV RWN 7O

>
I

N
e

n=21:

[ Xo(n),Xl(n),Xz(n),X3(n) ]

[ 0.000000, 0.000000, 1

[ 0.000000, 0.400000, 1

[ 0.400000, 0.600000, 1

[ 0.600000, 0.740000, 1

[ 0.650000, 0.830000, 1, 0]
[ 0.662500, 0.880000, 1

[ 0.665625, 0.906250, 1

[ 0.666406, 0.919688, 1

[ 0.666602, 0.926484, 1

[ 0.666667, 0.933332, 1, 0]
[ 0.666667, 0.933332, 1, 0]
[2/3,14/15,1,0]

33



Example - Optimal adversary

Like for reachability, can generate an optimal memoryless
adversary using min/max probability values

— and thus also a DTMC

Min adversary o, [ X0™, %M, %M, x3™ ]

n=20: [0.666667,0.933332,1,0]
n=21: [0.666667,0.933332,1,0]
~[2/3,14/15,1,0]

So: min(1-14/15, 0.5-140.5-0+0.25-2/3)
=min(14/15, 2/3)

34



Method 2 - Linear optimisation problem

- Probabilities for states in S = S \ (Svés U S"°) can also be
obtained from a linear optimisation problem

- Minimum probabilities:

maximize ZS .- Xs subject to the constraints:

X, < ZM(S')' X + ZM(S')
s'eS’ s'eSYes

for all s € S” and for all (a,n) € Steps (s)

- Maximum probabilities:

minimize Zs .- Xs subject to the constraints:

X, > ZM(S')° X + ZH(S')
s'eS’ s'eSYes

for all s € S” and for all (a,n) € Steps (s)
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PCTL until - Example

Let X; = Pmin(Si, F @)

Sves: x,=1, Sho: x3=0

For S7 = {so, si1}:

Maximise xo+X; subject to constraints:
. Xo < X
e« X0 < 0.25-x9 + 0.5
e X7 <0.1-x9g+ 0.5-x + 0.4

36



PCTL until - Example

Let Xi = Pmin(si, F a)

Syes: x,=1, Sho: x3=0
For S7 = {so, si1}:
Maximise xo+X; subject to constraints:

oXOSX]
e X1 <0.2:X9+ 0.8
X1
'|“ _In
Xo = Xj
| xo=2/3
0 ¥—————— Xy 0 /> X,
0 1 0 2/3 1

X1 < 0.2-Xq
+ 0.8




PCTL until - Example

Let Xi = Pmin(si, F a)

Syes: x,=1, Sho: x3=0

For S7 = {so, si1}:

Maximise xo+X; subject to constraints:

° XO S X'|
e X7 <0.2-x9g+ 0.8
X
_lu
Bmin(F ) = 0.8 — Solution:
[2/3,14/15,1,0] _ ma% (X0, X1)
Sat(P.os[F a]) = | (2/3, 14/15)
{s0, 51,52} 0 . Xo




Example - Optimal adversary

Get optimal adversary from constraints of
optimisation problem that yield solution

Alternatively, use optimal probability
values in value iteration function, as
shown in value iteration example

@,
x; = 0.2-Xo + 0.8 . ma%
o0 memoryless
/'/' adversaries
Xo = Xy /-
Xo=2/3 0 —— > Xo
0 2/3 1

39



PCTL until - Example 2

- Model check: P.o;[Fal

— upper probability bound so maximum probabilities required

40



PCTL until - Example 2

- Model check: P.og;[Fal

— upper probability bound so maximum probabilities required

ProbOA

Sho = { SES | pmax(S, F a):O } =

+ Pmax(F@)=[1,1,1,1] and Sat(P.o; [Fal) =@

41



PCTL until - Example 3

Model check: P.,[Fa]

— lower probability bound so minimum probabilities required
— qualitative property so numerical computation can be avoided

Sno = {s&€S | pmin(s, Fa)=0}

ProbOE yields Sno = {s3}

- Pmin(Fa)=1[7,7,7,0] and Sat(P.o [ F a]) = {s0,51,52}

42



Costs and rewards

- We can augment MDPs with rewards (or costs)
— real-valued quantities assigned to states and/or actions

— different from the DTMC case where transition rewards
assigned to individual transitions

For a MDP (S,s;,i;,Steps,L), a reward structure is a pair (p,U)
— p:S — R.gis the state reward function
— 1S X Act — R, is transition reward function

- As for DTMCs these can be used to compute:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

43



PCTL and rewards

- Augment PCTL with reward-based properties
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards

---------------------------------------------------------------------------

expected reward is ~r

/ ....................... J .......................... \
¢ = .. [ RA[IFT | RLIC=k] [ R, [F&]

wherer € R.g, ~ € {<,>,<,2}, ke N

- R., [ - ] means “the expected value of - satisfies ~r for all
adversaries”

44



PCTL and rewards

- Augment PCTL with reward-based properties
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards

---------------------------------------------------------------------------

expected reward is ~r

/ ....................... J .......................... \
¢ = .. [ RA[IFT | RLIC=K] [ R, [F]

wherer € R.g, ~ € {<,>,<,2}, ke N

- R., [ - ] means “the expected value of - satisfies ~r for all
adversaries”



Types of reward formulas

Instantaneous: R_, [ I7K]

— the expected value of the reward at time step k is ~r for all
adversaries

— “the minimum expected queue size after exactly 90 seconds”

Cumulative: R_, [ C=k ]

— the expected reward cumulated up to time step k is ~r for all
adversaries

— “the maximum expected power consumption over one hour”

Reachability: R, [F & ]

— the expected reward cumulated before reaching a state
satisfying ¢ is ~r for all adversaries

— “the maximum expected time for the algorithm to terminate”

46



Reward formula semantics

Formal semantics of the three reward operators:
— for a state s in the MDP:
— sER.,[IFk] & Exp9(s, X,—x) ~ r for all adversaries o
— sE R, [C=sk] & Exps, Xc<k) ~ r for all adversaries o
—sER,[F®] < Expa(s, Xgp) ~ r for all adversaries o

Exp(s, X) denotes the expectation of the random variable
X : Patho(s) — R.q with respect to the probability measure Pro,

47



Reward formula semantics

- For an infinite path w= sy(ag,Mg)si(ar,M1)s5...

X|:|< ((D) — B(Sk )

( 0 ifk=0
XCsk(w) =1 1
Do P(s)+U@) otherwise
0 if s, e Sat(¢)
X (W) =1 00 if s, « Sat(¢p) foralli>0
\ Z:(j;] p(s;)+(a;) otherwise

where ky, =min{i| s & ¢}

(typo: iota fcn also depends on state)
48



Model checking reward formulas

Instantaneous: R, [ 17k ]
— similar to the computation of bounded until probabilities
— solution of recursive equations
— k matrix-vector multiplications (+ min/max)

--------------------------------------------------

Cumulative: R_, [ C=X] See [FKNPTT]
— extension of bounded until computation - fordetalls ..........
— solution of recursive equations

— k iterations of matrix-vector multiplication + summation

Reachability: R, [ F ¢ ]
— similar to the case for until
— solve a linear optimization problem (or value iteration)

49



Model checking R_, [ 17K]

- Min/max expected instantaneous reward at step k
— can be computed recursively, in a “backwards” fashion
— i.e. similar to the equivalent reward operator on DTMCs

+ Let: Exp™2X(s, Xi_x) = SUPgeadv EXP(s, X_1)

- Then:
o(s) ifk =0

Expma X — 3
XS, X max {ZM(S')- Exp™(s’, X)) | (@,p) e Steps(S)} itk >0

s'eS

- See [FKNP11] for further details
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Model checking complexity

For model checking of an MDP (§,s,,;;,Steps,L) and PCTL
formula ¢ (including reward operators)

— complexity is linear in |®| and polynomial in |S]

- Size |d| of ¢ is defined as number of logical connectives
and temporal operators, plus sizes of temporal operators

— model checking is performed for each operator

- Worst-case operators are P, [ ¢, U, ]Jand R, [ F ¢ ]

— main task: solution of linear optimization problem of size |S]
— can be solved with ellipsoid method (polynomial in |S])

— and also precomputation algorithm (max |S| steps)
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Summing up...

PCTL for MDPs

— same as syntax as for PCTL

— key difference in semantics: “for all adversaries”

— requires computation of minimum/maximum probabilities
PCTL model checking for MDPs

— same basic algorithm as for DTMCs

— next: matrix-vector multiplication + min/max

— bounded until: k matrix-vector multiplications + min/max

— until : precomputation algorithm + numerical computation
. precomputation: ProbOA and Prob1E for max, ProbOE for min
. numerical computation: value iteration, linear optimisation

— complexity linear in |®| and polynomial in |S|
Costs and rewards
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