Probabilistic Model Checking

Lecture 12 PCTL Model Checking for MDPs

Alessandro Abate

Department of Computer Science University of Oxford

Overview

- PCTL for MDPs
 - syntax, semantics, examples
- PCTL model checking
 - next, bounded until, until
 - precomputation algorithms
 - value iteration, linear optimisation
 - examples
- Costs and rewards

PCTL

• Temporal logic for describing properties of MDPs

- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
 - $-s \models \varphi$ denotes φ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas and of path formulas are identical to those for DTMCs:
- For a state s of the MDP (S,s_{init},Steps,L):
 - $s \vDash a \iff a \in L(s)$

$$- \ s \vDash \varphi_1 \land \varphi_2 \qquad \Leftrightarrow \ s \vDash \varphi_1 \ \text{and} \ s \vDash \varphi_2$$

- $s \models \neg \varphi \qquad \Leftrightarrow s \models \varphi \text{ is false}$
- For a path $\omega = s_0(a_1,\mu_1)s_1(a_2,\mu_2)s_2...$ in the MDP:

$$- \omega \models X \varphi \qquad \Leftrightarrow s_1 \models \varphi$$

- $\omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \ \exists i \leq k \text{ such that } s_i \vDash \varphi_2 \text{ and } \forall j < i, \ s_j \vDash \varphi_1$
- $\omega \vDash \varphi_1 \cup \varphi_2 \qquad \Leftrightarrow \ \exists k \ge 0 \text{ such that } \omega \vDash \varphi_1 \cup^{\leq k} \varphi_2$

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can inherit probabilities for a specific adversary σ from induced DTMC
 - $s \models P_{\sim p}$ [ψ] means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all adversaries σ "
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow Prob^{\sigma}(s, \psi) \sim p$ for all adversaries σ
 - $\text{ where } \mathsf{Prob}^{\sigma}\!(s,\,\psi) = \mathsf{Pr}^{\sigma}_{s} \left\{ \, \omega \in \mathsf{Path}^{\sigma}\!(s) \mid \omega \vDash \psi \, \right\}$

Minimum and maximum probabilities

- Letting:
 - $\ p_{max}(s, \, \psi) = sup_{\sigma \in \mathsf{Adv}} \ \mathsf{Prob}^{\sigma}\!(s, \, \psi)$
 - $\ p_{min}(s, \, \psi) = inf_{\sigma \in \mathsf{Adv}} \ \mathsf{Prob}^{\sigma}(s, \, \psi)$
- We have:
 - $\text{ if } \textbf{\sim} \in \{ \geq, > \} \text{, then } \textbf{s} \vDash P_{\textbf{\sim}p} \textbf{[} \textbf{\psi} \textbf{]} \iff p_{min}(\textbf{s}, \textbf{\psi}) \textbf{\sim} p$
 - if ~ $\in \{<,\leq\}$, then s $\models P_{\sim p}$ [ψ] $\Leftrightarrow p_{max}(s, \psi) \sim p$
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of $\boldsymbol{\psi}$ holding
 - the maximum probability of ψ holding

Other classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a class of adversaries Adv*
- E.g., take Adv* to be the set of all fair adversaries
 - path (strong) fairness: if a state occurs on a path infinitely often, then each non-deterministic choice occurs infinitely often [BK98]
- Only change is:
 - $\ s \vDash_{\mathsf{Adv}^*} P_{\mathsf{\sim}p} \left[\psi \right] \ \Leftrightarrow \ \mathsf{Prob}^\sigma\!(s, \psi) \thicksim p \ \underline{\mathsf{for all adversaries}} \ \sigma \in \mathsf{Adv}^*$
- Original semantics obtained by taking Adv* = Adv

PCTL-derived operators

• Many of the same equivalences as for DTMCs, e.g.:

$$\begin{array}{ll} - \ F \ \varphi \equiv true \ U \ \varphi & (eventually) \\ - \ F^{\leq k} \ \varphi \equiv true \ U^{\leq k} \ \varphi \end{array}$$

$$- G \varphi \equiv \neg(F \neg \varphi) \equiv \neg(true \cup \neg \varphi)$$

$$- \mathbf{G}^{\leq k} \mathbf{\varphi} \equiv \neg (\mathbf{F}^{\leq k} \neg \mathbf{\varphi})$$

- But... for example:
 - $P_{\geq p} \left[\psi \right] \neq \neg P_{< p} \left[\psi \right]$

(negation + probability)

(always)

- Duality between min/max:
 - for any path formula ψ : $p_{min}(s, \psi) = 1 p_{max}(s, \neg \psi)$
 - so, for example: $P_{\geq p}$ [G φ] \equiv $P_{\leq 1-p}$ [F $\neg \varphi$]

Qualitative properties

- PCTL can express qualitative properties of MDPs
 - like for DTMCs, can relate these to CTL's AF and EF operators
 - need to be careful with "there exists" and adversaries
- + $P_{\geq 1}$ [F φ] is (similar to but) weaker than AF φ
 - $-P_{\geq 1}$ [F φ] \Leftrightarrow Prob^{σ}(s, F φ) = 1 for all adversaries σ
 - recall that "probability=1" is weaker than "for all"
- We can construct an equivalence for EF φ
 - $EF \varphi \not\equiv P_{>0}[F \varphi]$
 - but:
 - $\ EF \ \varphi \ \equiv \ \neg P_{\leq 0}[\ F \ \varphi \]$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - PRISM allows a quantitative form
 - for MDPs, there are two types: $P_{min=?}$ [ψ] and $P_{max=?}$ [ψ]
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - model checking is no harder since it computes the values of $p_{min}(s, \psi)$ or $p_{max}(s, \psi)$ anyway
 - useful to spot patterns/trends
- Example CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"

Some real PCTL examples

- Byzantine agreement protocol
 - $P_{min=?}$ [F (agreement \land rounds \leq 2)]
 - "what is the minimum probability that agreement is reached within two rounds?"
- CSMA/CD communication protocol
 - P_{max=?} [F collisions=k]
 - "what is the maximum probability of k collisions?"
- Self-stabilisation protocols
 - $P_{min=?} [F^{\leq k} stable]$
 - "what is the minimum probability of reaching a stable state within k steps?"

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init},Steps,L), PCTL formula ϕ

- output: Sat(ϕ) = { s \in S | s $\models \phi$ } = set of states satisfying ϕ

Often, also consider quantitative results

- e.g. compute result of $P_{min=?}$ [$F^{\leq k}$ stable] for $0{\leq}k{\leq}100$

- Basic algorithm same as PCTL for DTMCs
 - proceeds by induction on parse tree of $\boldsymbol{\varphi}$
- For the non-probabilistic operators:
 - Sat(true) = S
 - $Sat(a) = \{ s \in S \mid a \in L(s) \}$
 - $Sat(\neg \varphi) = S \ \backslash \ Sat(\varphi)$
 - $\ Sat(\varphi_1 \ \land \ \varphi_2) = Sat(\varphi_1) \ \cap \ Sat(\varphi_2)$

PCTL model checking for MDPs

- Main task: model checking P_{-p} [ψ] formulae
 - reduces to computation of min/max probabilities
 - i.e. $p_{min}(s,\,\psi)$ or $p_{max}\left(s,\,\psi\right)$ for all $s\in S$
 - depending on whether $\sim \in \{\geq, >\}$ or $\sim \in \{<, \leq\}$
- Three cases:
 - next (X ϕ)
 - bounded until ($\phi_1 U^{\leq k} \phi_2$)
 - unbounded until ($\phi_1 U \phi_2$)

PCTL next for MDPs

- Computation of probabilities for PCTL next operator
- Consider case of minimum probabilities...
 - $\text{ Sat}(P_{\sim p}[\ X \ \varphi \]) = \{ \ s \in S \ | \ p_{min}(s, \ X \ \varphi) \thicksim p \ \}, \ \thicksim \in \{ \geq, > \}$

S

- need to compute $p_{min}(s,\,X\,\varphi)$ for all $s\in S$
- Recall in the DTMC case
 - sum outgoing probabilities for transitions to φ-states
 - Prob(s, X φ) = $\Sigma_{s' \in Sat(\varphi)} \mathbf{P}(s,s')$

- $p_{min}(s, X \varphi) = min \{ \Sigma_{s' \in Sat(\varphi)} \mu(s') \mid (a,\mu) \in Steps(s) \}$
- Maximum probabilities case is analogous

PCTL next – Example

- Model check: $P_{\geq 0.5}$ [X heads]
 - lower probability bound so minimum probabilities required
 - Sat (heads) = $\{s_2\}$
 - e.g. $p_{min}(s_1, X \text{ heads}) = min(0, 0.5) = 0$
 - can do all at once with matrix-vector multiplication:

- Extracting the minimum for each state yields
 - $\underline{p}_{min}(X \text{ heads}) = [0, 0, 1, 0]$
 - Sat($P_{\geq 0.5}$ [X heads]) = {s₂}

PCTL bounded until for MDPs

- Computation of probabilities for PCTL $U^{\leq k}$ operator
- Consider case of minimum probabilities...

 $- \text{ Sat}(P_{\sim p}[\ \varphi_1 \ U^{\leq k} \ \varphi_2 \]) = \{ \ s \in S \ | \ p_{min}(s, \ \varphi_1 \ U^{\leq k} \ \varphi_2) \thicksim p \ \}, \ \thicksim \in \{ \geq, > \}$

- need to compute $p_{min}(s,\,\varphi_1\;U^{\leq k}\;\varphi_2)$ for all $s\in S$
- First identify (some) states where probability is 1 or 0

 $- \ S^{yes} = Sat(\varphi_2) \ and \ S^{no} = S \ \backslash \ (Sat(\varphi_1) \ \cup \ Sat(\varphi_2))$

Then solve the recursive equations:

$$p_{\min}(s, \phi_1 U^{\leq k} \phi_2) = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^2 \text{ and } k = 0 \\ \min\left\{\sum_{s' \in S} \mu(s') \cdot p_{\min}(s', \phi_1 U^{\leq k-1} \phi_2) \,|\, (a, \mu) \in \text{Steps}(s) \right\} & \text{if } s \in S^2 \text{ and } k > 0 \end{cases}$$

Maximum probabilities case is analogous

PCTL bounded until for MDPs

- Simultaneous computation of vector $\underline{p}_{min}(\phi_1 | U^{\leq k} | \phi_2)$
 - i.e. probabilities $p_{min}(s, \varphi_1 \cup U^{\leq k} \varphi_2)$ for all $s \in S$
- Recursive definition in terms of matrices and vectors
 - similar to DTMC case
 - requires k matrix-vector multiplications
 - in addition requires k minimisation operations

PCTL bounded until – Example

- Model check: $P_{<0.95}$ [$F^{\leq 3}$ init] $\equiv P_{<0.95}$ [true $U^{\leq 3}$ init]
 - upper probability bound so maximum probabilities required
 - Sat (true) = S and Sat (init) = $\{s_0\}$
 - $S^{yes} = \{s_0\} and S^{no} = \emptyset$
 - $S^{?} = \{s_{1}, s_{2}, s_{3}\}$
- The vector of probabilities is computed successively as:
 - \underline{p}_{max} (true U^{≤ 0} init) = [1, 0, 0, 0]
 - \underline{p}_{max} (true U^{≤ 1} init) = [1, 0.7, 0, 0]
 - \underline{p}_{max} (true U^{≤ 2} init) = [1, 0.91, 0, 0]
 - \underline{p}_{max} (true U^{≤3} init) = [1, 0.973, 0, 0]
- Hence, the result is:
 - Sat(P_{<0.95} [$F^{\leq 3}$ init]) = { s₂, s₃ }

PCTL until for MDPs

- Computation of probabilities for all $s \in S$:
 - $p_{min}(s, \phi_1 \cup \phi_2)$ or $p_{max}(s, \phi_1 \cup \phi_2)$
- Essentially the same as computation of reachability probabilities (see previous lecture)
 - just need to consider additional φ_1 constraint
- Overview:
 - precomputation:
 - \cdot identify states where the probability is 0 (or 1)
 - several options to compute remaining values:
 - \cdot value iteration
 - reduction to linear programming

PCTL until for MDPs – Precomputation

- Determine all states for which probability is 0
 - min case: S^{no} = { s \in S | p_{min}(s, φ_1 U φ_2)=0 } ProbOE
 - max case: $S^{no} = \{ s \in S \mid p_{max}(s, \varphi_1 \cup \varphi_2) = 0 \}$ ProbOA
- Determine all states for which probability is 1

- min case: $S^{yes} = \{ s \in S \mid p_{min}(s, \varphi_1 \cup \varphi_2) = 1 \}$ - Prob1A

- max case: $S^{yes} = \{ s \in S \mid p_{max}(s, \varphi_1 \cup \varphi_2) = 1 \}$ Prob1E
- Like for DTMCs:
 - identifying 0 states required (for uniqueness of LP problem)
 - identifying 1 states is optional (but useful optimisation)
- Advantages of precomputation
 - reduces size of numerical computation problem
 - gives exact results for the states in Syes and Sno (no round-off)
 - suffices for model checking of qualitative properties

not

covered here

PCTL until for MDPs – Prob0E

Minimum probabilities 0

 $- \ S^{no} = \{ \ s \in S \ | \ p_{min}(s, \ \varphi_1 \ U \ \varphi_2) = 0 \ \} = Sat(\neg P_{>0} \ [\ \varphi_1 \ U \ \varphi_2 \])$

$$\begin{array}{ll} \operatorname{PROB0E}(Sat(\phi_1), Sat(\phi_2)) \\ 1. & R := Sat(\phi_2) \\ 2. & done := \mathbf{false} \\ 3. & \mathbf{while} \ (done = \mathbf{false}) \\ 4. & R' := R \cup \{s \in Sat(\phi_1) \mid \forall \mu \in Steps(s) . \exists s' \in R . \, \mu(s') > 0\} \\ 5. & \mathbf{if} \ (R' = R) \ \mathbf{then} \ done := \mathbf{true} \\ 6. & R := R' \\ 7. & \mathbf{endwhile} \\ 8. & \mathbf{return} \ S \backslash R \end{array}$$

PCTL until for MDPs – Prob0A

- Maximum probabilities 0
 - $\ S^{no} = \{ \ s {\in} S \ | \ p_{max}(s, \ \varphi_1 \ U \ \varphi_2) {=} 0 \ \}$

PCTL until for MDPs – Prob1E

- Maximum probabilities 1
 - $S^{yes} = \{ s \in S \mid p_{max}(s, \varphi_1 \cup \varphi_2) = 1 \} = Sat(\neg P_{<1} [\varphi_1 \cup \varphi_2])$
- Prob1E algorithm (see next slide)
 - two nested loops (double fixed point)
 - result, stored in R, will be Syes; initially R is S
 - iteratively remove (some) states u with $p_{max}(u, \varphi_1 U \varphi_2) < 1$
 - i.e. remove (some) states for which, under no adversary σ , is Prob^{σ}(s, $\phi_1 \cup \phi_2$)=1
 - done by inner loop which computes subset R' of R
 - $\cdot\,$ R' contains φ_1- states with a probability distribution for which all transitions stay within R and at least one eventually reaches φ_2
 - note: after first iteration, R contains:
 - + { s | Prob^{σ}(s, $\varphi_1 \cup \varphi_2$)>0 for some σ }
 - $\cdot\,$ essentially: execution of ProbOA and removal of S^{no} from R

PCTL until for MDPs – Prob1E

Prob1E – Example

•
$$S^{yes} = \{ s \in S \mid p_{max}(s, \neg a \cup b) = 1 \}$$

•
$$R = \{0, 1, 2, 3, 4, 5, 6\}$$

- $R' = \{2\}; R' = \{1, 2, 5\}; R' = \{1, 2, 4, 5\}; R' = \{1, 2, 4, 5, 6\}$
• $R = \{1, 2, 4, 5, 6\}$
- $R' = \{2\}; R' = \{1, 2, 5\}$
• $R = \{1, 2, 5\}$

•
$$S^{yes} = \{ 1, 2, 5 \}$$

PCTL until for MDPs – Prob1A

- Minimum probabilities 1
 - S^{yes} = { s \in S | p_{min}(s, φ_1 U φ_2)=1 }
- Can also be done with a graph-based algorithm
- Details omitted here
- For minimum probabilities, just take $S^{yes} = Sat(\phi_2)$
 - recall that computing states for which probability=1 is just an optimisation: it is not required for correctness

PCTL until for MDPs

- Min/max probabilities for the remaining states, i.e. $S^{?} = S \setminus (S^{yes} \cup S^{no})$, can be computed using either...
- 1. Value iteration
 - approximate iterative solution method
 - preferable in practice for efficiency reasons
- 2. Reduction to a linear optimisation problem
 - solve with well-known linear programming (LP) techniques
 - $\cdot\,$ via simplex, ellipsoid method, interior point method
 - yields exact solution in finite number of steps
- 3. Policy iteration (not considered here)

Method 1 – Value iteration (min)

Minimum probabilities satisfy:

$$- p_{min}(s, \varphi_1 \cup \varphi_2) = \lim_{n \to \infty} x_s^{(n)}$$
 where:

$$x_s^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^? \text{ and } n = 0 \\ \min\left\{\sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} \mid (a,\mu) \in \text{Steps}\left(s\right)\right\} & \text{if } s \in S^? \text{ and } n > 0 \end{cases}$$

- Approximate iterative solution:
 - compute vector $\underline{x}^{(n)}$ for "sufficiently large" n
 - in practice: terminate iterations when some pre-determined convergence criteria satisfied
 - e.g. max_s | $\underline{x}^{(n)}(s) \underline{x}^{(n-1)}(s)$) | < ϵ for some tolerance ϵ

Method 1 – Value iteration (max)

• Similarly, maximum probabilities satisfy:

$$- p_{max}(s, \varphi_1 \cup \varphi_2) = \lim_{n \to \infty} x_s^{(n)}$$
 where:

$$x_s^{(n)} = \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ 0 & \text{if } s \in S^? \text{ and } n = 0 \\ \max\left\{\sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} \mid (a,\mu) \in \text{Steps } (s) \right\} & \text{if } s \in S^? \text{ and } n > 0 \end{cases}$$

• ...and can be approximated iteratively

- Model check: $P_{>0.5}$ [F a] $\equiv P_{>0.5}$ [true U a]
 - lower probability bound so minimum probabilities required

- Model check: $P_{>0.5}$ [F a] $\equiv P_{>0.5}$ [true U a]
 - lower probability bound so minimum probabilities required

Compute: $p_{min}(s_i, F a)$ $S^{yes} = \{s_2\}, S^{no} = \{s_3\}, S^? = \{s_0, s_1\}$

$$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$$

n=0: [0,0,1,0]

n=1: [min(1.0,
$$0.25.0+0.25.0+0.5.1$$
),
0.1.0+0.5.0+0.4.1, 1, 0]

= [0, 0.4, 1, 0]

n=2:
$$[\min(1 \cdot 0.4, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1),$$

 $0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4 \cdot 1, 1, 0]$
= $[0.4, 0.6, 1, 0.1]$

n=3: ...

 $\underline{p}_{min}(F a) = [2/3, 14/15, 1, 0]$

Sat($P_{>0.5}$ [F a]) = { s₀, s₁, s₂ }

 $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

. . .

n

n=20: [0.6666667, 0.933332, 1, 0]

 \approx [2/3, 14/15, 1, 0]

Example – Optimal adversary

- Like for reachability, can generate an optimal memoryless adversary using min/max probability values
 - and thus also a DTMC
- + Min adversary σ_{min}

 $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$

 $\begin{array}{ll} n{=}20{:}& [\ 0.6666667, \ 0.933332, \ 1, \ 0 \] \\ n{=}21{:}& [\ 0.6666667, \ 0.933332, \ 1, \ 0 \] \\ & \approx \left[\ 2/3, \ 14/15, \ 1, \ 0 \ \right] \end{array}$

 s_0 : min(1·14/15, 0.5·1+0.5·0+0.25·2/3) =min(14/15, 2/3)

Method 2 - Linear optimisation problem

- Probabilities for states in $S^? = S \setminus (S^{yes} \cup S^{no})$ can also be obtained from a linear optimisation problem
- Minimum probabilities:

maximize
$$\sum_{s \in S^?} x_s$$
 subject to the constraints $x_s \leq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$
for all $s \in S^?$ and for all $(a, \mu) \in$ **Steps** (s)

Maximum probabilities:

minimize
$$\sum_{s \in S^{?}} x_{s}$$
 subject to the constraints :
 $x_{s} \ge \sum_{s' \in S^{?}} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$
for all $s \in S^{?}$ and for all $(a, \mu) \in$ **Steps** (s)

Let $x_i = p_{min}(s_i, F a)$ S^{yes} : $x_2=1$, S^{no} : $x_3=0$ For $S^? = \{s_0, s_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

- $x_0 \leq x_1$
- $x_0 \le 0.25 \cdot x_0 + 0.5$
- $x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$

Example - Optimal adversary

- Model check: P_{<0.1} [F a]
 - upper probability bound so maximum probabilities required

- Model check: P_{<0.1} [F a]
 - upper probability bound so maximum probabilities required

• $\underline{p}_{max}(F a) = [1, 1, 1, 1]$ and $Sat(P_{<0.1} [F a]) = \emptyset$

- Model check: P_{>0} [F a]
 - lower probability bound so minimum probabilities required
 - qualitative property so numerical computation can be avoided

$$S^{no} = \{ s \in S | p_{min}(s, F a) = 0 \}$$

ProbOE yields $S^{no} = \{s_3\}$

• $\underline{p}_{min}(F a) = [?, ?, ?, 0]$ and $Sat(P_{>0} [F a]) = \{s_0, s_1, s_2\}$

Costs and rewards

- We can augment MDPs with rewards (or costs)
 - real-valued quantities assigned to states and/or actions
 - different from the DTMC case where transition rewards assigned to individual transitions
- For a MDP (S,s_{init}, Steps, L), a reward structure is a pair (ρ , ι)
 - $\underline{\rho} : S \rightarrow \mathbb{R}_{\geq 0}$ is the state reward function
 - $-\iota:S\times Act \to \mathbb{R}_{\geq 0}$ is transition reward function
- As for DTMCs these can be used to compute:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

PCTL and rewards

- Augment PCTL with reward-based properties
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards

$$\varphi ::= \dots | R_{-r} [I^{=k}] | R_{-r} [C^{\leq k}] | R_{-r} [F \varphi]$$

where $r \in \mathbb{R}_{\geq 0}$, ~ $\in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$

• R_{-r} [•] means "the expected value of • satisfies ~r for all adversaries"

PCTL and rewards

- Augment PCTL with reward-based properties
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards

where $r \in \mathbb{R}_{\geq 0}$, ~ $\thicksim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$

• R_{-r} [•] means "the expected value of • satisfies ~r for all adversaries"

Types of reward formulas

- Instantaneous: R_{-r} [I^{-k}]
 - the expected value of the reward at time step k is ~r for all adversaries
 - "the minimum expected queue size after exactly 90 seconds"
- Cumulative: $R_{-r} [C^{\leq k}]$
 - the expected reward cumulated up to time step k is ~r for all adversaries
 - "the maximum expected power consumption over one hour"
- Reachability: R_{r} [F ϕ]
 - the expected reward cumulated before reaching a state satisfying φ is ~r for all adversaries
 - "the maximum expected time for the algorithm to terminate"

Reward formula semantics

- Formal semantics of the three reward operators:
 - for a state s in the MDP:

$$- s \models R_{-r} [I^{=k}] \iff Exp^{\sigma}(s, X_{I=k}) \sim r \text{ for all adversaries } \sigma$$

- $s \models R_{\sim r} [C^{\leq k}] \iff Exp^{\sigma}(s, X_{C \leq k}) \sim r \text{ for all adversaries } \sigma$
- $s \models R_{\sim r} [F \Phi] \iff Exp^{\sigma}(s, X_{F\Phi}) \sim r \text{ for all adversaries } \sigma$

Exp^{σ}(s, X) denotes the expectation of the random variable X : Path^{σ}(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr^{σ}s

Reward formula semantics

• For an infinite path $\omega = s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$

$$\begin{split} X_{i=k}(\omega) &= \underline{\rho}(s_k) \\ X_{C \leq k}(\omega) &= \begin{cases} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(a_i) & \text{otherwise} \end{cases} \\ X_{F\varphi}(\omega) &= \begin{cases} 0 & \text{if } s_0 \in \text{Sat}(\varphi) \\ \infty & \text{if } s_i \notin \text{Sat}(\varphi) \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(a_i) & \text{otherwise} \end{cases} \end{split}$$

where $k_{\phi} = \min\{i \mid s_i \vDash \phi\}$ (typo: iota fcn also depends on state) 48

Model checking reward formulas

- Instantaneous: R_{-r} [I^{-k}]
 - similar to the computation of bounded until probabilities
 - solution of recursive equations
 - k matrix-vector multiplications (+ min/max)
- Cumulative: $R_{-r} [C^{\leq k}]$
 - extension of bounded until computation
 - solution of recursive equations
 - k iterations of matrix-vector multiplication + summation
- Reachability: R_{-r} [F φ]
 - similar to the case for until
 - solve a linear optimization problem (or value iteration)

See [FKNP11] for details

Model checking R_{-r} [I^{=k}]

- Min/max expected instantaneous reward at step k
 - can be computed recursively, in a "backwards" fashion
 - i.e. similar to the equivalent reward operator on DTMCs
- Let: $Exp^{max}(s, X_{I=k}) = sup_{\sigma \in Adv} Exp^{\sigma}(s, X_{I=k})$
- Then:

$$Exp^{max}(s, X_{l=k}) = \begin{cases} \rho(s) & \text{if } k = 0\\ max \left\{ \sum_{s' \in S} \mu(s') \cdot Exp^{max}(s', X_{l=k-1}) \mid (a, \mu) \in \text{Steps}(s) \right\} & \text{if } k > 0 \end{cases}$$

• See [FKNP11] for further details

Model checking complexity

- For model checking of an MDP (S, s_{init} , Steps, L) and PCTL formula ϕ (including reward operators)
 - complexity is linear in $|\Phi|$ and polynomial in |S|
- Size |φ| of φ is defined as number of logical connectives and temporal operators, plus sizes of temporal operators

 model checking is performed for each operator
- Worst-case operators are P_{-p} [$\phi_1 \cup \phi_2$] and R_{-r} [F ϕ]
 - main task: solution of linear optimization problem of size |S|
 - can be solved with ellipsoid method (polynomial in |S|)
 - and also precomputation algorithm (max |S| steps)

Summing up...

- PCTL for MDPs
 - same as syntax as for PCTL
 - key difference in semantics: "for all adversaries"
 - requires computation of minimum/maximum probabilities
- PCTL model checking for MDPs
 - same basic algorithm as for DTMCs
 - next: matrix-vector multiplication + min/max
 - bounded until: k matrix-vector multiplications + min/max
 - until : precomputation algorithm + numerical computation
 - precomputation: Prob0A and Prob1E for max, Prob0E for min
 - numerical computation: value iteration, linear optimisation
 - complexity linear in $|\Phi|$ and polynomial in |S|
- Costs and rewards