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Overview

• Nondeterminism

• Markov decision processes (MDPs)

• Paths, probabilities and adversaries

• End components: long-run behaviour
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Recap: DTMCs

• Discrete-time Markov chains (DTMCs)
− discrete state space,  transitions are discrete timesteps
− from each state, choice of successor state (i.e. which 

transition) is determined by a discrete probability distribution

• DTMCs are fully probabilistic
− well suited to modelling, for example, simple random 

algorithm or synchronous probabilistic system where 
components move in lock-step
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Nondeterminism
• But, some aspects of a system may not be probabilistic and 

should not be modelled probabilistically; for example:
• Concurrency – scheduling/composition of parallel components

− e.g. randomised distributed algorithm- multiple probabilistic 
processes operating asynchronously

• Unknown environments
− e.g. probabilistic security protocols - unknown adversary

• Underspecification - unknown model parameters
− e.g. a probabilistic communication protocol designed for 

message propagation delays of between dmin and dmax

• Abstraction
− e.g. partition DTMC into similar (but not identical) states

• Planning/Strategy Synthesis
− Nondeterminism as action choices for an agent
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Probability vs. nondeterminism

• Labelled transition system
− (S,s0,R,L) where R ⊆ S×S
− choice is nondeterministic

• Discrete-time Markov chain
− (S,s0,P,L) where P : S×S→[0,1]
− choice is probabilistic

• How to combine the two?
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Markov decision processes

• Markov decision processes (MDPs)
− extension of DTMCs allowing nondeterministic choices

• Like DTMCs:
− discrete set of states representing possible configurations of 

the system being modelled
− transitions between states occur in discrete time steps

• Probabilities and nondeterminism
− in each state, a nondeterministic

choice between several discrete
probability distributions over
successor states

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

6



Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,Steps,L) where: 
− S is a finite set of states (“state space”)
− sinit ∈ S is the initial state
− Steps : S → 2Act×Dist(S) is the transition probability function,

where Act is a set of actions and Dist(S) is the set of discrete 
probability distributions over the set S

− L : S → 2AP is a labelling with atomic propositions

• Notes:
− Steps(s) is always non-empty,

i.e. no deadlocks
− the use of actions to label

distributions can be omitted
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Simple DTMC example

• Modelling a very simple communication protocol
− after one step, process starts trying to send a message
− with probability 0.01, channel unready so wait a step
− with probability 0.98, send message successfully and stop
− with probability 0.01, message sending fails, restart
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Simple MDP example

• Modification of the simple DTMC communication protocol
− after one step, process starts trying to send a message
− then, a nondeterministic choice between: (a) waiting a step 

because the channel is unready; (b) sending the message
− if the latter, with probability 0.99 send successfully and stop
− and with probability 0.01, message sending fails, restart
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Simple MDP example 2

• Another simple MDP example with four states
− from state s0, move directly to s1 (action a)
− in state s1, nondeterministic choice between actions b and c
− action b gives a probabilistic choice: self-loop or return to s0

− action c gives a 0.5/0.5 random choice between heads/tails
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Simple MDP example 2

M = (S,sinit,Steps,L)

S = {s0, s1, s2, s3} 
sinit = s0

Steps(s0) = { (a, [s1↦1]) }
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) }
Steps(s2) = { (a, [s2↦1]) }
Steps(s3) = { (a, [s3↦1]) }
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The transition probability function

• It is often useful to think of the function Steps as a matrix
− non-square matrix with |S| columns and Σs∈S |Steps(s)| rows

• Example (for clarity, we omit actions from the matrix)
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    Steps

Steps(s0) = { (a, s1↦1) }
Steps(s1) = { (b, [s0↦0.7,s1↦0.3]), (c, [s2↦0.5,s3↦0.5]) }
Steps(s2) = { (a, s2↦1) }
Steps(s3) = { (a, s3↦1) }

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b

c
a

a

12



Example - Parallel composition

t0 t1 t2 1
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Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

module M1
s : [0..2] init 0;
[] s=0 -> (s’=1);

[] s=1 -> 0.5:(s’=0) + 0.5:(s’=2);
[] s=2 -> (s’=2);

endmodule

module M2 = M1 [ s=t ] endmodule
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Example - Parallel composition
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labels omitted here)
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Paths and probabilities

• A (finite or infinite) path through an MDP
− is a sequence of states and action/distribution pairs
− e.g. s0(a0,µ0)s1(a1,µ1)s2…
− such that (ai,µi) ∈ Steps(si) and µi(si+1) > 0 for all i≥0
− represents an execution (i.e. one possible behaviour) of the 

system that the MDP is modelling

• Path(s) = set of all paths through MDP starting in state s
− Pathfin(s) = set of all finite paths from s

• Paths resolve both nondeterministic
and probabilistic choices
− how to reason about probabilities?
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Adversaries

• To consider the probability of some behaviour of the MDP
− first need to resolve the nondeterministic choices
− this results in a DTMC, for which we can define a probability 

measure over paths

• An adversary resolves nondeterministic choice in an MDP
− also known as “scheduler”, “policy”, “strategy”, “controller”

• Formally:
− an adversary σ for an MDP M is a function mapping every 

finite path ω = s0(a0,µ0)s1...sn to an element σ(ω) of Steps(sn)
− i.e. resolves nondeterminism based on execution history

• Adv (or AdvM) denotes the set of all adversaries
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Adversaries - Examples

• Consider the previous example MDP
− note that s1 is the only state for which |Steps(s)| > 1
− i.e. s1 is the only state for which an adversary makes a choice
− let µb and µc denote the probability distributions associated 

with actions b and c in state s1

• Adversary σ1

− picks action c the first time
− σ1(s0s1)=(c,µc)

• Adversary σ2

− picks action b the first time, then c
− σ2(s0s1)=(b,µb), σ2(s0s1s1)=(c,µc),
σ2(s0s1s0s1)=(c,µc), …
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Adversaries and paths

• Pathσ(s) ⊆ Path(s) 
− (infinite) paths from s where nondeterminism resolved by σ
− i.e. paths s0(a0,µ0)s1(a1,µ1)s2…
− for which σ(s0(a0,µ0)s1…sn)) = (an,µn), for any n

• Adversary σ1

− (picks action c the first time)
− Pathσ1(s0) = { s0s1s2ω, s0s1s3ω }

• Adversary σ2

− (picks action b the first time, then c)
− Pathσ2(s0) = { s0s1s0s1s2ω, s0s1s0s1s3ω, s0s1s1s2ω, s0s1s1s3ω }
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Induced DTMCs

• Adversary σ for MDP induces an infinite-state DTMC Dσ

• Dσ = (Pathσfin(s),s,Pσs) where:
− states of the DTMC are the finite paths of σ starting in state s
− initial state is s (the path starting in s of length 0)
− Pσs(ω,ω’)=µ(s’) if ω’= ω(a, µ)s’ and σ(ω)=(a,µ)
− Pσs(ω,ω’)=0 otherwise
− (labels omitted for simplicity)

• 1-to-1 correspondence between Pathσ(s) and paths of Dσ

• This gives us a probability measure Prσs over Pathσ(s)
− from probability measure over paths of Dσ
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Adversaries - Examples

• Fragment of induced DTMC for adversary σ1

− σ1 picks action c the first time
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Adversaries - Examples

• Fragment of induced DTMC for adversary σ2

− σ2 picks first action b, then c thereafter
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MDPs and probabilities

• Probσ(s, ψ) = Prσs { ω ∈ Pathσ(s) | ω ⊨ ψ }
− for some path formula ψ
− e.g. Probσ(s, F tails)

• MDP provides best-/worst-case analysis
− based on lower/upper bounds on probabilities
− over all possible adversaries
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pmin(s,y) = infsÎAdv Probs (s,y)

  

 

pmax(s,y) = supsÎAdv Probs(s,y)
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Examples
• Probσ1(s0, F tails) = 0.5
• Probσ2(s0, F tails) = 0.5

− (where σi picks b i-1 times then c)
• …
• pmax(s0, F tails) = 0.5
• pmin(s0, F tails) = 0

• Probσ1(s0, F tails) = 0.5
• Probσ2(s0, F tails)

= 0.3+0.7·0.5 = 0.65
• Probσ3(s0, F tails)

= 0.3+0.7·0.3+0.7·0.7·0.5 = 0.755
• …
• pmax(s0, F tails) = 1
• pmin(s0, F tails) = 0.5
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Memoryless adversaries

• Memoryless adversaries always pick same choice in a state
− also known as: Markov, simple, positional, stationary
− formally, σ(s0(a0,µ0)s1...sn) depends only on sn

− can write as a mapping from states, i.e. σ(s) for each s ∈ S
− induced DTMC can be mapped to a |S|-state DTMC

• From previous example:
− adversary σ1 (picks c in s1) is memoryless; σ2 is not
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Other classes of adversaries

• Finite-memory adversary
− finite number of modes, which can govern choices made
− formally defined by a deterministic finite automaton
− induced DTMC (for finite MDP) again mapped to finite DTMC

• Randomised adversary
− maps finite paths s0(a1,µ1)s1...sn in MDP to a probability

distribution over element of Steps(sn)
− generalises deterministic schedulers
− still induces a (possibly infinite-state) DTMC

• Fair adversary
− fairness assumptions on resolution of nondeterminism
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Recall: fundamental property of DTMCs

• Strongly connected component (SCC)
− maximally strongly connected set of states

• Bottom strongly connected component (BSCC)
− SCC T from which no state outside T is reachable from T

• With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often

• Formally:
− Prs { ω ∈ Path(s) | ∃ i≥0, ∃ BSCC T such that

∀ j≥i ω(j) ∈ T and
∀ s’∈T ω(k) = s' for infinitely many k }  =  1
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Qualitative repeated reachability: DTMCs

• Prs { ω ∈ Path(s) | ∀ i≥0 . ∃ j≥i . ω(j) ∈ Sat(a) } = 1
• P≥1 [ GF a ]

if and only if

• T ∩ Sat(a) ≠ ∅ for all BSCCs T reachable from s
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s2 ⊨ P≥1 [ GF c ]
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Qualitative persistence: DTMCs

• Prs { ω ∈ Path(s) | ∃ i≥0 . ∀ j≥i . ω(j) ∈ Sat(a) } = 1
• P≥1 [ FG a ]

if and only if

• T ⊆ Sat(a) for all BSCCs T reachable from s
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Repeated reachability + persistence

• Repeated reachability and persistence are dual requirements
− GF a ≡ ¬(FG ¬a), FG a ≡ ¬(GF ¬a)

• Hence, for example:
− Prob(s, GF a) = 1 - Prob(s, FG ¬a)

• Prob(s, GF a) + Prob(s, FG ¬a)
= Prob(s, F TGFa) + Prob(s, F TFG¬a)

− TGFa = union of BSCCs T with T∩Sat(a)≠∅ (T intersects Sat(a))
− TFG¬a = union of BSCCs T with T⊆(S\Sat(a)) (no intersection)

= Prob(s, F (TGFa ∪ TFG¬a)) = 1 (fundamental DTMC property)

• Can we generalise this statement to MDPs?
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End components of MDPs

• Consider an MDP M = (S,sinit,Steps,L)

• A sub-MDP of M is a pair (T,Steps’) where:
− T ⊆ S is a (non-empty) subset of M’s states
− Steps’(s) ⊆ Steps(s) for each s ∈ T
− (T,Steps’) is closed under probabilistic

branching, i.e. the set of states
{ s’ | µ(s’)>0 for some (a,µ)∈Steps’(s) }
is a subset of T

• An end component of M is a
strongly connected sub-MDP
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End components - Examples

• Sub-MDPs
− can be formed from state sets such as:
− {s2,s5,s7,s8}, {s0,s2,s5,s7,s8}, {s5,s7,s8},
− {s1,s3,s4}, {s1,s3,s4,s6}, {s3,s4}, …

• End components
− can be formed from state sets:
− {s3,s4}, {s1,s3,s4}, {s6}, {s5,s7,s8}

• Note that
− state sets do not necessarily

uniquely identify end components
− e.g. {s1,s3,s4} 
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Fundamental property of MDPs

• For finite MDPs…
− (analogue of fundamental property

of finite DTMCs)

1. For every end component, there
is a (finite-memory) adversary σ 
which, with probability 1, forces 
the MDP starting in the end 
component to remain there and visit 
all its states infinitely often

2. Under any adversary σ,  with 
probability 1 an end component  will 
be reached
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Qualitative repeated reachability - MDPs

• Repeated reachability (GF) for MDPs
− special case of more general limiting properties
− need to distinguish between max and min
− consider first the case of maximum probabilities…
− pmax(s, GF a)

• First, a simple qualitative property:
− Probσ(s, GF a) > 0 for some adversary σ, i.e. pmax(s, GF a) > 0

⇔
− T ∩ Sat(a) ≠ ∅ for some end component T reachable from s

• Can reason via reachability (F TGFa ), as earlier for DTMCs
− see next slide for justification…
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Repeated reachability - MDPs (max)

• For the qualitative property given earlier:
− Probσ(s, GF a) > 0 for some adversary σ
⇔ pmax(s, GF a) > 0
⇔ pmax(s, F TGFa) > 0
⇔ Probσ(s, F TGFa) > 0 for some adversary σ
⇔ s ⊨ EF TGFa

⇔ T ∩ Sat(a) ≠ ∅ for some E.C. T reachable from s

• Another qualitative property:
− Probσ(s, GF a) = 1 for some adversary σ
⇔ pmax(s, GF a) = 1
⇔ pmax(s, F TGFa) = 1
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Repeated reachability - MDPs (min)

• Repeated reachability for MDPs - minimum probabilities
− pmin(s, GF a)

• First, a useful qualitative property:

− Probσ(s, GF a) = 1 for all adversaries σ
⇔

− s ⊨ P≥1 [ GF a ]
⇔

− T ∩ Sat(a) ≠ ∅ for all end components T reachable from s

PCTL*
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Summing up…

• Nondeterminism
− concurrency, unknown environments/parameters, abstraction

• Markov decision processes (MDPs)
− discrete-time + probability and nondeterminism
− nondeterministic choice between multiple distributions

• Adversaries
− resolution of nondeterminism only
− induced set of paths and (infinite state DTMC)
− induces DTMC yields probability measure for adversary
− best-/worst-case analysis: minimum/maximum probabilities
− memoryless adversaries

• Long-run behaviour
− Limiting properties via reachability of end components
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