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Overview

- Nondeterminism

- Markov decision processes (MDPs)

- Paths, probabilities and adversaries

- End components: long-run behaviour



Recap: DTMCs

Discrete-time Markov chains (DTMCs)
— discrete state space, transitions are discrete timesteps

— from each state, choice of successor state (i.e. which
transition) is determined by a discrete probability distribution

DTMCs are fully probabilistic

— well suited to modelling, for example, simple random
algorithm or synchronous probabilistic system where
components move in lock-step



Nondeterminism

But, some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

Concurrency - scheduling/composition of parallel components

— e.g. randomised distributed algorithm- multiple probabilistic
processes operating asynchronously

Unknown environments
— e.g. probabilistic security protocols - unknown adversary
Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d,,i, and dax

Abstraction

— e.g. partition DTMC into similar (but not identical) states
Planning/Strategy Synthesis

— Nondeterminism as action choices for an agent



Probability vs. nondeterminism

- Labelled transition system

- Discrete-time Markov chain

— (S,s0,R,L) where R < SxS
— choice is nondeterministic

— (5,s0,P,L) where P : SxS—[0,1]
— choice is probabilistic

- How to combine the two?



Markov decision processes

Markov decision processes (MDPs)
— extension of DTMCs allowing nondeterministic choices

Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time steps

Probabilities and nondeterminism {heads}

— in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states




Markov decision processes

Formally, an MDP M is a tuple (S,s,i,Steps,L) where:
— S is a finite set of states (“state space”)
— Sinit € S is the initial state
— Steps : S — 2AxDist®) js the transition probability function,

where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

— L:S — 2AP s a labelling with atomic propositions

Notes:

— Steps(s) is always non-empty,
i.e. no deadlocks

— the use of actions to label
distributions can be omitted




Simple DTMC example

Modelling a very simple communication protocol
— after one step, process starts trying to send a message
— with probability 0.01, channel unready so wait a step
— with probability 0.98, send message successfully and stop
— with probability 0.01, message sending fails, restart




Simple MDP example

Modification of the simple DTMC communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart




Simple MDP example 2

- Another simple MDP example with four states

— from state sg, move directly to s; (action a)

— in state s;, nondeterministic choice between actions b and c
— action b gives a probabilistic choice: self-loop or return to sg
— action c gives a 0.5/0.5 random choice between heads/tails

{heads}
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Simple MDP example 2

M = (S,sii.,Steps,L) AP = {init,heads,tails}
L(so)={init},
S = {S0, 51, S2, 53} L(s1)=12,

S = S L(s,)={heads},
L(s3)={tails}
Steps(sg) ={ (a, [s;—1]) }

Steps(s;) = { (b, [s¢—0.7,5:,—0.3]), (c, [s,—0.5,55—0.5]) }
Steps(sy) ={ (a, [s,~1]) }
Steps(s3) ={ (a, [s3—1]) }




The transition probability function

- It is often useful to think of the function Steps as a matrix

— non-square matrix with |S| columns and 3,<s |Steps(s)| rows

- Example (for clarity, we omit actions from the matrix)

(@, s1—1)1}
(b, [s9—0.7,5,—0.3)]), (c, [s,—0.5,5s3—0.5]) }
(a, s;~1) }
(a, s3—1) }

Steps(sg
Steps(s;
Steps(s;
Steps(ss
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Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

module M1
s : [0..2] init O;
[1s=0->(s’=1);

[ s=1 -> 0.5:(s’=0) + 0.5:(s’=2);

[1s=2-> (s’=2);

endmodule

module M2 = M1 [ s=t ] endmodule

1
1
1

Note: no actions needed

for each DTMC/module 13



Example - Parallel composition

Asynchronous parallel
composition of two
3-state DTMCs

Actions now needed in
composition (action
labels omitted here) 1




Paths and probabilities

- Paths resolve both nondeterministic

- A (finite or infinite) path through an MDP
— is a sequence of states and action/distribution pairs

— e.g. So(ap,Mo)si(ar,My)s;...
— such that (a;,u;) € Steps(s;) and ui(s;.;) > O for all i=0

— represents an execution (i.e. one possible behaviour) of the
system that the MDP is modelling

- Path(s) = set of all paths through MDP starting in state s
— Pathy,(s) = set of all finite paths from s

and probabilistic choices
— how to reason about probabilities?




Adversaries

- To consider the probability of some behaviour of the MDP
— first need to resolve the nondeterministic choices

— this results in a DTMC, for which we can define a probability
measure over paths

- An adversary resolves nondeterministic choice in an MDP

7 1] N 13 b 14

— also known as “scheduler”, “policy”, “strategy”,

Formally:

— an adversary o for an MDP M is a function mapping every
finite path w = s¢(ag,Mg)s1...Sn, to an element o(w) of Steps(s,)

— i.e. resolves nondeterminism based on execution history

controller”

- Adv (or Advy) denotes the set of all adversaries



Adversaries — Examples

- Consider the previous example MDP

— note that s; is the only state for which |Steps(s)| > 1
— i.e. s; is the only state for which an adversary makes a choice

— let y, and u. denote the probability distributions associated
with actions b and c in state s;

- Adversary o,

— picks action c the first time

— 07(S051)=(C,Hc)

- Adversary o,

— picks action b the first time, then c

— 02(S0S1)=(b,Mp), 02(50S151)=(C, M),
02(50S15051)=(C, o), ...

(note: actions/distributions
omitted from paths for clarity) 17



Adversaries and paths

- Patho(s) < Path(s)

- Adversary o,

— (infinite) paths from s where nondeterminism resolved by o

— i.e. paths sg(ag,Mo)si(ar,M1)s;. ..
— for which o(sg(ag,Mg)S1...Sn) = (an,Mn), for any n

— (picks action c the first time)
— Path91(sp) = { 5¢515,%, S0S153* }

- Adversary o,

— (picks action b the first time, then ¢)
— Path92(sp) = { 5051505152, S05150S153%, S0S15152%, S0S15153% }
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Induced DTMCs

- Adversary o for MDP induces an infinite-state DTMC D¢

- Do = (Path°,(s),s,P°) where:

— states of the DTMC are the finite paths of o starting in state s
— initial state is s (the path starting in s of length 0)

— Po.(w,w’)=u(s’) if w’'= w(a, y)s’ and o(w)=(a,H)

— Po.(w,w’)=0 otherwise

— (labels omitted for simplicity)

1-to-1 correspondence between Patho(s) and paths of D°

- This gives us a probability measure Pro, over Pathd(s)
— from probability measure over paths of Do

19



Adversaries — Examples

- Fragment of induced DTMC for adversary o,

— 0, picks action c the first time

20



Adversaries — Examples

- Fragment of induced DTMC for adversary o, {heads}




MDPs and probabilities

. Prob®(s, y) = Pr%, { w € Path’(s) | & = ]

— for some path formula @
— e.g. Prob9(s, F tails)

- MDP provides best-/worst-case analysis

— based on lower/upper bounds on probabilities
— over all possible adversaries

pmin(S’\V) — infGeAdV PrObG(S’\'])

Py (S, W) = SUP__agq, Prob°(s,y)
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Examples

Probc'(s,, F tails) = 0.5
Prob%2(sg, F tails) = 0.5
— (where g, picks b i-1 times then ¢)

Pmax(So, F tails) = 0.5
Pmin(So, F tails) = 0

Prob°'(s,, F tails) = 0.5

Prob%2(s,, F tails)
= 0.3+0.7-0.5 = 0.65

Prob3(sy, F tails)
= 0.3+0.7-0.3+0.7-0.7-0.5 = 0.755

Pmax(So, F tails) = 1
Pmin(So, F tails) = 0.5
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Memoryless adversaries

Memoryless adversaries always pick same choice in a state
— also known as: Markov, simple, positional, stationary
— formally, o(s¢(ag,Mg)s;...S,) depends only on s,
— can write as a mapping from states, i.e. o(s) for each s € S
— induced DTMC can be mapped to a |S|-state DTMC
From previous example:
— adversary o, (picks c in s;) is memoryless; o, is not

24



Other classes of adversaries

Finite—-memory adversary
— finite number of modes, which can govern choices made
— formally defined by a deterministic finite automaton
— induced DTMC (for finite MDP) again mapped to finite DTMC

Randomised adversary

— maps finite paths sq(aj,M1)s;...s, in MDP to a probability
distribution over element of Steps(s,)

— generalises deterministic schedulers
— still induces a (possibly infinite-state) DTMC

Fair adversary
— fairness assumptions on resolution of nondeterminism

25



Recall: fundamental property of DTMCs

- Strongly connected component (SCC)

— maximally strongly connected set of states

- Bottom strongly connected component (BSCC)

— SCC T from which no state outside T is reachable from T

- With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often

- Formally:
— Pr{ w € Path(s) | 3 i=0, 3 BSCC T such that

V j=iw() € Tand

V €T w(k) = s' for infinitely many k} =

1

26



Qualitative repeated reachability: DTMCs

« Pr.{w e Path(s) | Vi=0.3dj=i.w() € Sat(a) } = 1

if and only if

- T n Sat(a) # @ for all BSCCs T reachable from s

Examples:

So F Pz] [GF (b\/C)]
So# P.1 [GFb]
SlePZ][GFC]

27



Qualitative persistence: DTMCs

-« Pr.{w € Path(s) | 3i=0.V j=i.w() € Sat(a) } = 1
- P.,[FGa]

if and only if

- T < Sat(a) for all BSCCs T reachable from s

Examples:

So # P.1 [FG (bve) ]
So E P.; [ FG (bvcvd) ]
s, =P.; [FG (cvd) ]

28



Repeated reachability + persistence

- Repeated reachability and persistence are dual requirements
— GF a = —=(FG —a), FG a = —(GF —a)

- Hence, for example:
— Prob(s, GF a) = 1 - Prob(s, FG —a)

- Prob(s, GF a) + Prob(s, FG —a)

= Prob(s, F T¢g,) + Prob(s, F Tec_,)
— Tcra = union of BSCCs T with TnSat(a)=@ (T intersects Sat(a))
— Trc-a = union of BSCCs T with T<(S\Sat(a)) (no intersection)

= Prob(s, F (T, U Tec22)) = 1 (fundamental DTMC property)

- Can we generalise this statement to MDPs?

29



End components of MDPs

- Consider an MDP M = (§,s;,i;,Steps,L)

- A sub-MDP of M is a pair (T,Steps’) where:
— T =S is a (hon-empty) subset of M’s states
— Steps’(s) < Steps(s) foreachs €T

— (T,Steps’) is closed under probabilistic
branching, i.e. the set of states
{s’ | u(s’)>0 for some (a,u)eSteps’(s) }
is a subset of T

- An end component of M is a
strongly connected sub-MDP

Notes:
. action labels omitted
. probabilities omitted where =1

30



End components - Examples

- Sub-MDPs
— can be formed from state sets such as:
— {52,55,57,58}, {50,52,55,57,58}, {S5,57,Ss},
— {51,53,54}, {51,53,54,56}, {53,584}, ...

- End components
— can be formed from state sets:

— {S3,54}, {51,53,54}, {S6}, {S5,57,58}

- Note that

— state sets do not necessarily
uniquely identify end components

— e.g. {51,53,54}

31



Fundamental property of MDPs

For finite MDPs...

— (analogue of fundamental property
of finite DTMCs)

. For every end component, there

is a (finite—-memory) adversary o
which, with probability 1, forces

the MDP starting in the end
component to remain there and visit
all its states infinitely often

. Under any adversary o, with
probability 1 an end component will
be reached

32



Qualitative repeated reachability - MDPs

- Repeated reachability (GF) for MDPs
— special case of more general limiting properties
— need to distinguish between max and min
— consider first the case of maximum probabilities...
— Pmax(S, GF a)

- First, a simple qualitative property:
— Prob°(s, GF a) > O for some adversary g, i.e. pmax(s, GFa) > 0

=

— T n Sat(a) # @ for some end component T reachable from s

- Can reason via reachability (F T¢g, ), as earlier for DTMCs
— see next slide for justification...
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Repeated reachability - MDPs (max)

For the qualitative property given earlier:
— Prob°(s, GF a) > O for some adversary o
Pmax(s, GFa) > 0
Pmax(S, F Tgra) > 0
Probo(s, F Tcra) > O for some adversary o
s = EF Tcr,
T N Sat(a) # @ for some E.C. T reachable from s

0

g ¢ 010

- Another qualitative property:

— Prob°(s, GF a) = 1 for some adversary o
< Pmax(s, GFa) =1
And pmax(S, F TGFa) =1
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Repeated reachability - MDPs (min)

- Repeated reachability for MDPs — minimum probabilities

o pmin(s’ GF a)

- First, a useful qualitative property:

— Prob(s, GF a) = 1 for all adversaries o
=

=

— T n Sat(a) = @ for all end components T reachable from s
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Summing up...

Nondeterminism

— concurrency, unknown environments/parameters, abstraction

Markov decision processes (MDPs)
— discrete-time + probability and nondeterminism
— nondeterministic choice between multiple distributions
Adversaries
— resolution of nondeterminism only
— induced set of paths and (infinite state DTMC)
— induces DTMC yields probability measure for adversary
— best-/worst-case analysis: minimum/maximum probabilities
— memoryless adversaries
Long-run behaviour
— Limiting properties via reachability of end components
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