Probabilistic Model Checking

Lecture 10 Markov Decision Processes

Alessandro Abate

Department of Computer Science University of Oxford

Overview

- Nondeterminism
- Markov decision processes (MDPs)
- Paths, probabilities and adversaries
- End components: long-run behaviour

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
 - discrete state space, transitions are discrete timesteps
 - from each state, choice of successor state (i.e. which transition) is determined by a discrete probability distribution

- DTMCs are fully probabilistic
 - well suited to modelling, for example, simple random algorithm or synchronous probabilistic system where components move in lock-step

Nondeterminism

- But, some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling/composition of parallel components
 - e.g. randomised distributed algorithm- multiple probabilistic processes operating asynchronously
- Unknown environments
 - e.g. probabilistic security protocols unknown adversary
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
- Abstraction
 - e.g. partition DTMC into similar (but not identical) states
- Planning/Strategy Synthesis
 - Nondeterminism as action choices for an agent

Probability vs. nondeterminism

- Labelled transition system
 - (S,s₀,R,L) where $R \subseteq S \times S$
 - choice is nondeterministic

- (S,s₀,P,L) where P : S×S→[0,1]
- choice is probabilistic

• How to combine the two?

Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs allowing nondeterministic choices
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states

Markov decision processes

- Formally, an MDP M is a tuple (S,s_{init},Steps,L) where:
 - S is a finite set of states ("state space")
 - $s_{\text{init}} \in S$ is the initial state
 - Steps : $S \rightarrow 2^{Act \times Dist(S)}$ is the transition probability function, where Act is a set of actions and Dist(S) is the set of discrete probability distributions over the set S
 - L : S \rightarrow 2^{AP} is a labelling with atomic propositions
- Notes:
 - Steps(s) is always non-empty,
 i.e. no deadlocks
 - the use of actions to label distributions can be omitted

Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts trying to send a message
 - with probability 0.01, channel unready so wait a step
 - with probability 0.98, send message successfully and stop
 - with probability 0.01, message sending fails, restart

Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart

Simple MDP example 2

- Another simple MDP example with four states
 - from state s_0 , move directly to s_1 (action a)
 - in state s_1 , nondeterministic choice between actions **b** and **c**
 - action **b** gives a probabilistic choice: self-loop or return to s_0
 - action **c** gives a 0.5/0.5 random choice between heads/tails

Simple MDP example 2

$$\begin{split} \mathsf{M} &= (\mathsf{S},\mathsf{s}_{\text{init}},\mathsf{Steps},\mathsf{L}) & \mathsf{AP} &= \{\mathsf{init},\mathsf{heads},\mathsf{tails}\} \\ \mathsf{L}(\mathsf{s}_0) &= \{\mathsf{init}\}, \\ \mathsf{L}(\mathsf{s}_1) &= \emptyset, \\ \mathsf{L}(\mathsf{s}_1) &= \emptyset, \\ \mathsf{L}(\mathsf{s}_2) &= \{\mathsf{heads}\}, \\ \mathsf{L}(\mathsf{s}_3) &= \{\mathsf{tails}\} \end{split}$$

The transition probability function

- It is often useful to think of the function Steps as a matrix
 - non-square matrix with |S| columns and $\Sigma_{s\in S}\left|\textbf{Steps}(s)\right|$ rows
- Example (for clarity, we omit actions from the matrix)

Steps(s₀) = { (a, s₁
$$\mapsto$$
1) }
Steps(s₁) = { (b, [s₀ \mapsto 0.7,s₁ \mapsto 0.3]), (c, [s₂ \mapsto 0.5,s₃ \mapsto 0.5]) }
Steps(s₂) = { (a, s₂ \mapsto 1) }
Steps(s₃) = { (a, s₃ \mapsto 1) }

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

module M1
s : [0..2] init 0;
[] s=0 -> (s'=1);
[] s=1 -> 0.5:(s'=0) + 0.5:(s'=2);
[] s=2 -> (s'=2);
endmodule

module M2 = M1 [s=t] endmodule

Note: no actions needed for each DTMC/module

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Actions now needed in composition (action labels omitted here)

Paths and probabilities

- A (finite or infinite) path through an MDP
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - such that $(a_i,\mu_i)\in \textbf{Steps}(s_i)$ and $\mu_i(s_{i+1})>0$ for all $i{\geq}0$
 - represents an execution (i.e. one possible behaviour) of the system that the MDP is modelling
- Path(s) = set of all paths through MDP starting in state s
 - $Path_{fin}(s) = set of all finite paths from s$
- Paths resolve both nondeterministic and probabilistic choices
 - how to reason about probabilities?

Adversaries

- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - this results in a DTMC, for which we can define a probability measure over paths
- An adversary resolves nondeterministic choice in an MDP
 - also known as "scheduler", "policy", "strategy", "controller"
- Formally:
 - an adversary σ for an MDP M is a function mapping every finite path $\omega = s_0(a_0,\mu_0)s_1...s_n$ to an element $\sigma(\omega)$ of Steps(s_n)
 - i.e. resolves nondeterminism based on execution history
- Adv (or Adv_M) denotes the set of all adversaries

Adversaries – Examples

- Consider the previous example MDP
 - note that s_1 is the only state for which |Steps(s)| > 1
 - i.e. s_1 is the only state for which an adversary makes a choice
 - let μ_b and μ_c denote the probability distributions associated with actions b and c in state s_1
- Adversary σ_1
 - picks action c the first time
 - $\sigma_1(s_0s_1) = (c, \mu_c)$
- Adversary σ_2
 - picks action b the first time, then c
 - $\sigma_2(s_0s_1) = (b,\mu_b), \sigma_2(s_0s_1s_1) = (c,\mu_c), \sigma_2(s_0s_1s_0s_1) = (c,\mu_c), \dots$

(note: actions/distributions omitted from paths for clarity) 17

Adversaries and paths

- $Path^{\sigma}(s) \subseteq Path(s)$
 - (infinite) paths from s where nondeterminism resolved by $\boldsymbol{\sigma}$
 - i.e. paths $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - for which $\sigma(s_0(a_0,\mu_0)s_1...s_n)) = (a_n,\mu_n)$, for any n
- Adversary σ_1
 - (picks action c the first time)
 - $Path^{\sigma_1}(s_0) = \{ s_0 s_1 s_2^{\omega}, s_0 s_1 s_3^{\omega} \}$

- Adversary σ_2
 - (picks action b the first time, then c)
 - $Path^{\sigma_{2}}(s_{0}) = \{ s_{0}s_{1}s_{0}s_{1}s_{2}^{\omega}, s_{0}s_{1}s_{0}s_{1}s_{3}^{\omega}, s_{0}s_{1}s_{1}s_{2}^{\omega}, s_{0}s_{1}s_{1}s_{3}^{\omega} \}$

Induced DTMCs

- Adversary σ for MDP induces an infinite-state DTMC D^{σ}
- $D^{\sigma} = (Path^{\sigma}_{fin}(s), s, P^{\sigma}_{s})$ where:
 - states of the DTMC are the finite paths of σ starting in state s
 - initial state is s (the path starting in s of length 0)
 - $\mathbf{P}_{\sigma_s}(\omega, \omega') = \mu(s')$ if $\omega' = \omega(a, \mu)s'$ and $\sigma(\omega) = (a, \mu)$
 - $\mathbf{P}^{\sigma}_{s}(\omega, \omega') = 0$ otherwise
 - (labels omitted for simplicity)
- + 1-to-1 correspondence between Path $^{\sigma}(s)$ and paths of D^{σ}
- This gives us a probability measure Pr_{s}^{σ} over $Path^{\sigma}(s)$
 - from probability measure over paths of D^σ

Adversaries – Examples

- Fragment of induced DTMC for adversary σ_1
 - σ_{1} picks action c the first time

Adversaries – Examples

MDPs and probabilities

- $Prob^{\sigma}(s, \psi) = Pr^{\sigma}_{s} \{ \omega \in Path^{\sigma}(s) \mid \omega \vDash \psi \}$
 - for some path formula $\boldsymbol{\psi}$
 - e.g. Prob^o(s, F tails)
- MDP provides best-/worst-case analysis
 - based on lower/upper bounds on probabilities
 - over all possible adversaries

$$p_{\min}(s,\psi) = \inf_{\sigma \in Adv} \operatorname{Prob}^{\sigma}(s,\psi)$$
$$p_{\max}(s,\psi) = \sup_{\sigma \in Adv} \operatorname{Prob}^{\sigma}(s,\psi)$$

Examples

- $Prob^{\sigma 1}(s_0, F tails) = 0.5$
- $Prob^{\sigma 2}(s_0, F tails) = 0.5$
 - (where σ_i picks b i–1 times then c)
- ...
- $p_{max}(s_0, F \text{ tails}) = 0.5$
- $p_{min}(s_0, F \text{ tails}) = 0$
- $Prob^{\sigma 1}(s_0, F tails) = 0.5$
- $Prob^{\sigma_2}(s_0, F \text{ tails})$ = 0.3+0.7.0.5 = 0.65
- Prob^{σ 3}(s₀, F tails) = 0.3+0.7.0.3+0.7.0.7.0.5 = 0.755
- ...
- $p_{max}(s_0, F \text{ tails}) = 1$
- $p_{min}(s_0, F \text{ tails}) = 0.5$

Memoryless adversaries

- Memoryless adversaries always pick same choice in a state
 - also known as: Markov, simple, positional, stationary
 - formally, $\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
 - can write as a mapping from states, i.e. $\sigma(s)$ for each $s\in S$
 - induced DTMC can be mapped to a |S|-state DTMC
- From previous example:
 - adversary σ_1 (picks c in s_1) is memoryless; σ_2 is not

Other classes of adversaries

- Finite-memory adversary
 - finite number of modes, which can govern choices made
 - formally defined by a *deterministic finite automaton*
 - induced DTMC (for finite MDP) again mapped to finite DTMC
- Randomised adversary
 - maps finite paths $s_0(a_1,\mu_1)s_1...s_n$ in MDP to a probability distribution over element of Steps(s_n)
 - generalises deterministic schedulers
 - still induces a (possibly infinite-state) DTMC
- Fair adversary
 - fairness assumptions on resolution of nondeterminism

Recall: fundamental property of DTMCs

- Strongly connected component (SCC)
 - maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
 - SCC T from which no state outside T is reachable from T
- With probability 1, a BSCC will be reached and all of its states visited infinitely often

• Formally:

 $\begin{array}{l} - \Pr_{s} \{ \ \omega \in Path(s) \mid \exists \ i \geq 0, \ \exists \ BSCC \ T \ such \ that \\ \forall \ j \geq i \ \omega(j) \in T \ and \\ \forall \ s' \in T \ \omega(k) = s' \ for \ infinitely \ many \ k \ \} = 1 \end{array}$

Qualitative repeated reachability: DTMCs

- $Pr_s \{ \omega \in Path(s) \mid \forall i \ge 0 . \exists j \ge i . \omega(j) \in Sat(a) \} = 1$
- $P_{\geq 1}$ [GF a] PCTL* if and only if
- $T \cap Sat(a) \neq \emptyset$ for all BSCCs T reachable from s

Examples:

$$\begin{split} s_0 &\vDash P_{\geq 1} \text{ [GF (b \lor c)]} \\ s_0 &\nvDash P_{\geq 1} \text{ [GF b]} \\ s_2 &\vDash P_{\geq 1} \text{ [GF c]} \end{split}$$

Qualitative persistence: DTMCs

- $Pr_s \{ \omega \in Path(s) \mid \exists i \ge 0 . \forall j \ge i . \omega(j) \in Sat(a) \} = 1$
- P_{≥1} [FG a]
 - if and only if
- $T \subseteq Sat(a)$ for all BSCCs T reachable from s

Examples:

$$\begin{split} s_0 &\nvDash P_{\geq 1} \ [\ FG \ (b \lor c) \] \\ s_0 &\vDash P_{\geq 1} \ [\ FG \ (b \lor c \lor d) \] \\ s_2 &\vDash P_{\geq 1} \ [\ FG \ (c \lor d) \] \end{split}$$

Repeated reachability + persistence

- Repeated reachability and persistence are dual requirements
 - GF a $\equiv \neg$ (FG \neg a), FG a $\equiv \neg$ (GF \neg a)
- Hence, for example:
 - Prob(s, GF a) = 1 Prob(s, FG \neg a)
- Prob(s, GF a) + Prob(s, FG \neg a)
- = Prob(s, F T_{GFa}) + Prob(s, F T_{FG¬a})
 - T_{GFa} = union of BSCCs T with T∩Sat(a)≠Ø (T intersects Sat(a))
 - $T_{FG\neg a} =$ union of BSCCs T with T \subseteq (S \Sat(a)) (no intersection)
- = Prob(s, F ($T_{GFa} \cup T_{FG\neg a}$)) = 1 (fundamental DTMC property)
- Can we generalise this statement to MDPs?

End components of MDPs

- Consider an MDP M = (S,s_{init},**Steps**,L)
- A sub-MDP of M is a pair (T, Steps') where:
 - $T \subseteq S$ is a (non-empty) subset of M's states
 - Steps'(s) \subseteq Steps(s) for each s \in T
 - (T,Steps') is closed under probabilistic branching, i.e. the set of states { s' | μ (s')>0 for some (a, μ) \in Steps'(s) } is a subset of T
- An end component of M is a strongly connected sub-MDP

Notes:

- action labels omitted
- probabilities omitted where =1

End components - Examples

- Sub-MDPs
 - can be formed from state sets such as:
 - $\{s_2, s_5, s_7, s_8\}, \{s_0, s_2, s_5, s_7, s_8\}, \{s_5, s_7, s_8\},\$
 - $\{s_1, s_3, s_4\}, \{s_1, s_3, s_4, s_6\}, \{s_3, s_4\}, \dots$
- End components
 - can be formed from state sets:
 - $\{s_3, s_4\}, \{s_1, s_3, s_4\}, \{s_6\}, \{s_5, s_7, s_8\}$
- Note that
 - state sets do not necessarily uniquely identify end components
 - e.g. $\{s_1, s_3, s_4\}$

Fundamental property of MDPs

- For finite MDPs...
 - (analogue of fundamental property of finite DTMCs)
- 1. For every end component, there is a (finite-memory) adversary σ which, with probability 1, forces the MDP starting in the end component to remain there and visit all its states infinitely often
- 2. Under any adversary σ , with probability 1 an end component will be reached

Qualitative repeated reachability - MDPs

- Repeated reachability (GF) for MDPs
 - special case of more general limiting properties
 - need to distinguish between max and min
 - consider first the case of maximum probabilities...
 - $p_{max}(s, GF a)$
- First, a simple qualitative property:
 - Prob^{σ}(s, GF a) > 0 for some adversary σ , i.e. $p_{max}(s, GF a) > 0$ \Leftrightarrow
 - $T \cap Sat(a) \neq \emptyset$ for some end component T reachable from s
- Can reason via reachability (F $T_{\rm GFa}$), as earlier for DTMCs
 - see next slide for justification...

Repeated reachability - MDPs (max)

- For the qualitative property given earlier:
 - Prob σ (s, GF a) > 0 for some adversary σ
 - $\Leftrightarrow \ p_{max}(s,\,GF\,a) > 0$
 - $\Leftrightarrow p_{max}(s, F T_{GFa}) > 0$
 - $\Leftrightarrow \text{ Prob}^{\sigma}(s, \ F \ T_{GFa}) > 0 \ \text{for some adversary } \sigma$
 - $\Leftrightarrow \ \mathsf{s} \models \mathsf{EF} \ \mathsf{T}_{\mathsf{GFa}}$
 - \Leftrightarrow T \cap Sat(a) $\neq \emptyset$ for some E.C. T reachable from s
- Another qualitative property:
 - Prob σ (s, GF a) = 1 for some adversary σ
 - $\Leftrightarrow p_{max}(s, GF a) = 1$
 - $\Leftrightarrow \ p_{max}(s, \ F \ T_{GFa}) = 1$

Repeated reachability – MDPs (min)

- Repeated reachability for MDPs minimum probabilities
 - $p_{min}(s, GF a)$
- First, a useful qualitative property:
 - Prob^{σ}(s, GF a) = 1 for all adversaries σ \Leftrightarrow - s \models P_{≥ 1} [GF a] \Leftrightarrow - T \cap Sat(a) $\neq \emptyset$ for all end components T reachable from s

Summing up...

- Nondeterminism
 - concurrency, unknown environments/parameters, abstraction
- Markov decision processes (MDPs)
 - discrete-time + probability and nondeterminism
 - nondeterministic choice between multiple distributions
- Adversaries
 - resolution of nondeterminism only
 - induced set of paths and (infinite state DTMC)
 - induces DTMC yields probability measure for adversary
 - best-/worst-case analysis: minimum/maximum probabilities
 - memoryless adversaries
- Long-run behaviour
 - Limiting properties via reachability of end components