Laurea Magistrale in Ingegneria Meccatronica Dipartimetno di Tecnica e Gestione dei Sistemi Industriali Università degli Studi di Padova A.A. 2023/2024

TEORIA DEI SISTEMI e CONTROLLO OTTIMO

Giacomo Baggio giacomo.baggio@unipd.it Giulia Michieletto giulia.michieletto@unipd.it

Indice

1	мо	DELLIZZAZIONE DI SISTEMI DINAMICI	1
	1.1	Definizione di sistema dinamico	1
	1.2	Classificazione di sistemi	1
	1.3	Rappresentazione di sistemi	2
		1.3.1 Rappresentazione di sistemi lineari	3
		1.3.2 Rappresentazione di sistemi non-lineari	7
	1.4	Linearizzazione di sistemi dinamici	8
		1.4.1 Punti di equilibrio	8
		1.4.2 Stabilità semplice e asintotica	9
		1.4.3 Procedura di linearizzazione	10
	1.5	Modellizzazione di un sistema dinamico reale	11
		1.5.1 Modello del quadrotor	13
2	DIN	IAMICA DEI SISTEMI DINAMICI	18
	2.1	Dinamica dei sistemi a tempo continuo	18
		2.1.1 Evoluzione nel dominio del tempo	18
		2.1.2 Evoluzione nel dominio della frequenza	22
	2.2	Dinamica dei sistemi a tempo discreto	23
		2.2.1 Evoluzione nel dominio del tempo	23
		2.2.2 Evoluzione nel dominio della frequenza	26
	2.3	Analisi della stabilità	27
		2.3.1 Stabilità dei sistemi lineari	27
		2.3.2 Stabilità dei sistemi non lineari	28
3	RAC	GGIUNGIBILITÀ E CONTROLLABILITÀ DEI SISTEMI DINAMICI	30
	31	Raggiungihilità di sistemi a tempo discreto	21
	J. 1		21
	5.1	3.1.1 Criterio di raggiungibilità del rango	33
	5.1	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima	33 34
	5.1	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità	33 34 35
	5.1	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità	31 33 34 35 37
	3.2	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità Controllabilità di sistemi a tempo discreto	 31 33 34 35 37 38
	3.2	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità Controllabilità di sistemi a tempo discreto 3.2.1 Criterio di controllabilità	 31 33 34 35 37 38 39
	3.2	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità	 31 33 34 35 37 38 39 40
	3.2	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità	 31 33 34 35 37 38 39 40 41
	3.2	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Raggiungibilità	 31 33 34 35 37 38 39 40 41 41
	3.2 3.3 3.4	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità 3.1.2 Controllabilità di sistemi a tempo discreto 3.1.4 Test PBH di raggiungibilità 3.1.5 Controllabilità di sistemi a tempo discreto 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo	 31 33 34 35 37 38 39 40 41 41 42
4	3.2 3.3 3.4 RET	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità Controllabilità di sistemi a tempo discreto 3.2.1 Criterio di controllabilità S.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo	 31 33 34 35 37 38 39 40 41 41 42 44
4	3.2 3.3 3.4 RET 4.1	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità 3.1.4 Test PBH di raggiungibilità Controllabilità di sistemi a tempo discreto 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo RodziONE DALLO STATO Controllo in retroazione statica	 31 33 34 35 37 38 39 40 41 41 42 44 45
4	3.2 3.3 3.4 RET 4.1 4.2	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità 3.1.4 Test PBH di raggiungibilità Controllabilità di sistemi a tempo discreto 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo controllabilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo controllabilità di sistemi lineari a tempo continuo Controllo in retroazione statica controllo in retroazione statica	 31 33 34 35 37 38 39 40 41 41 42 44 45 47
4	3.2 3.3 3.4 RET 4.1 4.2	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di controllabilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo Controllo in retroazione statica Controllo in retroazione statica Controllo in retroazione statica 4.2.1 Controllo di sistemi a singolo ingresso	 31 33 34 35 37 38 39 40 41 41 42 44 45 47 47
4	3.2 3.3 3.4 RET 4.1 4.2	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di raggiungibilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo controllabilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo controllo in retroazione statica Controllo in retroazione statica dallo stato 4.2.1 Controllo di sistemi a singolo ingresso 4.2.2 4.2.2 Controllo di sistemi con più ingressi	 31 33 34 35 37 38 39 40 41 41 42 44 45 47 47 50
4	3.2 3.3 3.4 RET 4.1 4.2 4.3	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di controllabilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo Controllo in retroazione statica Controllo in retroazione statica Controllo in retroazione statica dallo stato 4.2.1 Controllo di sistemi a singolo ingresso 4.2.2 Stabilizzabilità dei sistemi lineari Stabilizzabilità dei sistemi lineari	 31 33 34 35 37 38 39 40 41 42 44 45 47 47 50 51
4	3.2 3.3 3.4 RET 4.1 4.2 4.3 OSS	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di controllabilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo FROAZIONE DALLO STATO Controllo in retroazione statica Controllo in retroazione statica dallo stato 4.2.1 Controllo di sistemi a singolo ingresso 4.2.2 Controllo di sistemi con più ingressi Stabilizzabilità dei sistemi lineari SERVABILITÀ E RICOSTRUIBILITÀ DEI SISTEMI DINAMICI	 31 33 34 35 37 38 39 40 41 42 44 45 47 47 50 51 53
4	3.2 3.3 3.4 RET 4.1 4.2 4.3 OSS 5.1	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di controllabilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo Controllo in retroazione statica Controllo in retroazione statica 4.2.1 Controllo di sistemi a singolo ingresso 4.2.2 Controllo di sistemi con più ingressi Stabilizzabilità dei sistemi lineari Stabilizzabilità dei sistemi lineari Osservabilità e ricostruibilità di sistemi a tempo discreto	 31 33 34 35 37 38 39 40 41 42 44 45 47 47 50 51 53 54
4	3.2 3.3 3.4 RET 4.1 4.2 4.3 OSS 5.1	3.1.1 Criterio di raggiungibilità del rango 3.1.2 Controllo a energia minima 3.1.3 Forma canonica di raggiungibilità 3.1.4 Test PBH di controllabilità 3.2.1 Criterio di controllabilità 3.2.2 Controllabilità e forma canonica di raggiungibilità 3.2.3 Test PBH di controllabilità 3.2.3 Test PBH di controllabilità Raggiungibilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo Controllabilità di sistemi lineari a tempo continuo Controllo in retroazione statica Controllo in retroazione statica dallo stato 4.2.1 Controllo di sistemi a singolo ingresso 4.2.2 Controllo di sistemi con più ingressi Stabilizzabilità dei sistemi lineari SERVABILITÀ E RICOSTRUIBILITÀ DEI SISTEMI DINAMICI Osservabilità e ricostruibilità di sistemi a tempo discreto 5.1.1 spazi non osservabili 1	 31 33 34 35 37 38 39 40 41 42 44 45 47 47 50 51 54 54 54

		5.1.3 spazi non ricostruibili	56
		5.1.4 criterio di ricostruibilità del rango	56
	5.2	Osservabilità e ricostruibilità di sistemi a tempo continuo	57
		5.2.1 osservabilità	57
		5.2.2 ricostruibilità	58
	5.3	Sistemi duali	59
6	STI	MA DELLO STATO	62
	6.1	Rivelabilità dei sistemi lineari	63
	6.2	Sintesi del regolatore	64
7	CON	NTROLLO OTTIMO	66
	7.1	Controllo ottimo LQ di sistemi a tempo continuo	68
	7.2	Controllo ottimo LQ di sistemi a tempo continuo a orizzonte finito	70
		7.2.1 teorema principale	71
		7.2.2 soluzione della EDR tramite matrice Hamiltoniana	76
	7.3	Controllo ottimo LQ di sistemi a tempo continuo a orizzonte infinito	79
		7.3.1 teorema principale	80
		7.3.2 proprietà stabilizzanti della legge di controllo	84
		7.3.3 soluzione della EAR tramite matrice Hamiltoniana	85
	7.4	Controllo ottimo LQ di sistemi a tempo discreto	88
	7.5	Controllo ottimo LQ di sistemi a tempo discreto a orizzonte finito	89
		7.5.1 teorema principale	90
	7.6	Controllo ottimo LQ di sistemi a tempo discreto a orizzonte infinito	92
		7.6.1 teorema principale	92
		7.6.2 proprietà stabilizzanti della legge di controllo	93
	7.7	Implementazione del controllore ottimo LQ	94
		7.7.1 generalizzazione al caso con termini misti	94
		7.7.2 progettazione del controllore: scelta dei parametri	95
Α	RIC	HIAMI E APPROFONDIMENTI DI ALGEBRA LINEARE	A 1
	A.1	Spazi vettoriali e trasformazioni lineari	A1
	A.2	Principali proprietà e operazioni matriciali	A2

1 MODELLIZZAZIONE DI SISTEMI DINAMICI

1.1 Definizione di sistema dinamico

sistema: un qualunque oggetto (fisico o artificiale) costituito da diversi elementi reciprocamente interconnessi e interagenti tra loro o con l'ambiente esterno in relazioni di causa-effetto che determinano l'evoluzione temporale del tutto

Gli elementi di un sistema sono generalmente associati ad attributi misurabili, denominati comunemente *variabili*, che descrivono l'andamento temporale del sistema stesso mediante modelli matematici.

• variabili di uscita/output y (effetto)

Perché studiare Σ e le sue proprietà? Perché usare la matematica? è necessario **capire** il funzionamento di Σ per poi (eventualmente) **controllarlo**. La matematica sembra essere il linguaggio "naturale" per descrivere fenomeni fisici e ingegneristici, infatti fornisce gli strumenti che permettono di descrivere e analizzare in maniera **quantitativa** il comportamento di Σ

1.2 Classificazione di sistemi

Un sistema Σ può essere classificato in vari modi a seconda delle sue caratteristiche:

- deterministico: il comportamento del sistema è descritto da leggi deterministiche
- stocastico: il comportamento del sistema è descritto da leggi probabilistiche
- dinamico: il valore assunto dalle variabili d'interesse ad un certo istante temporale t dipende dall'evoluzione delle stesse in determinati intervalli
- **statico:** il valore assunto dalle variabili di interesse ad un certo istante temporale *t* dipende solo dal valore assunto dalle stesse in *t*

Un sistema Σ dinamico può essere ulteriormente classificato come

- causale: il valore assunto da y(t) dipende dal valore assunto da y(s) e/o u(s) per $s \le t$
- non causale: il valore assunto da y(t) dipende dal valore assunto da y(s) e/o u(s) per s > t
- tempo invariante: la legge che lega le variabili di interesse è indipendente da t
- tempo variante: la legge che lega le variabili di interesse è dipendente da t
- lineare: la legge che lega le variabili di interesse è di tipo lineare
- non lineare: la legge che lega le variabili di interesse è non di tipo lineare
- tempo continuo: il comportamento del sistema è descritto dalla variabile temporale $t \in \mathbb{R}$
- tempo discreto: il comportamento del sistema è descritto dalla variabile temporale $t \in \mathbb{Z}$
- autonomo: il sistema non è caratterizzato da variabili di ingresso (u = 0)
- non autonomo: il sistema è caratterizzato da variabili di ingresso $(u \neq 0)$

1.3 Rappresentazione di sistemi

Esistono due modi di rappresentare un sistema Σ dinamico:

rappresentazione esterna o ingresso-uscita (I/O)

Ingredienti della rappresentazione esterna di un sistema sono

- gli insiemi di funzioni del tempo che rappresentano le variabili di ingresso e uscita;
- una trasformazione fra questi insiemi (mappa ingresso/uscita) che riflette i legami e i rapporti di causalità tra le variabili fisiche.

 Σ a tempo continuo: la rappresentazione esterna nel dominio del tempo si basa su equazioni differenziali $\rightarrow h\left(y^{(n)}\dots\dot{y}(t),y(t),u^{(m)}(t)\dots\dot{u}(t),u(t),t\right) = 0 + c.i.$

 Σ a tempo continuo lineare tempo invariante: la rappresentazione esterna nel dominio della frequenza si basa sulla trasformata di Laplace

$$\rightarrow$$
 F.d.T. $W(s) = Y(s)/U(s)$

 Σ a tempo discreto: la rappresentazione esterna nel dominio del tempo si basa su equazioni alle differenze $\rightarrow h(y(t-t_n)\dots y(t-1), y(t), u(t-t_m)\dots u(t-1), u(t), t) = 0 + c.i.$

 Σ a tempo discreto lineare tempo invariante: la rappresentazione esterna nel dominio della frequenza si basa sulla trasformata Zeta

 \rightarrow F.d.T. W(z) = Y(z)/U(z)

rappresentazione interna o di stato

Gli ingredienti della rappresentazione interna di un sistema comprendono oltre agli insiemi delle funzioni di ingresso e di uscita,

- l'insieme delle funzioni che descrivono l'evoluzione temporale delle variabili di stato


```
x(t): variabili di stato (memoria interna)
```

proprietà di separazione: ad ogni istante di tempo t, i valori assunti in t dalle variabili di stato forniscono tutta l'informazione sulla storia passata del sistema necessaria per valutare l'andamento futuro delle variabili di stato e delle uscite, noto l'andamento degli ingressi per tempi successivi a t.

e due mappe:

- la mappa di transizione di stato, che dà conto di come si aggiornano le variabili di stato da un istante iniziale t_0 ad uno successivo t per effetto dei valori assunti dalle variabili di stato all'istante iniziale t_0 e degli andamenti delle variabili di ingresso nell'intervallo $[t_0, t)$ compreso fra i due istanti;
- la mappa di uscita, che esprime il legame statico fra i valori ad un certo istante t delle variabili di stato (ed eventualmente di ingresso) ed i valori assunti al medesimo istante t dalle variabili di uscita.

$$\Sigma$$
 a tempo continuo:
$$\begin{cases} \dot{x}(t) = f(x(t), u(t), t), & x(t_0) = x_0 \\ y(t) = h(x(t), u(t), t) \end{cases} \quad f = mappa \text{ di transizione di stato} \\ h = mappa \text{ di uscita} \end{cases}$$

$$\Sigma \text{ a tempo discreto:} \quad \begin{cases} x(t+1) = f(x(t), u(t), t), & x(t_0) = x_0 \\ y(t) = h(x(t), u(t), t) \end{cases} \quad f = \text{mappa di transizione di stato} \\ h = \text{mappa di uscita} \end{cases}$$

1.3.1 Rappresentazione di sistemi lineari

Si consideri il caso generale di un sistema Σ caratterizzato da

- *n* variabili di stato $x_1(t), \ldots x_n(t)$: $\mathbf{x}(t) = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ vettore di stato
- *m* variabili di ingresso $u_1(t), \ldots u_m(t)$: $\mathbf{u}(t) = \begin{bmatrix} u_1 & \ldots & u_m \end{bmatrix}^\top \in \mathbb{R}^m$ vettore degli ingressi
- p variabili di uscita $y_1(t), \ldots y_n(t)$: $\mathbf{y}(t) = \begin{bmatrix} y_1 & \ldots & y_p \end{bmatrix}^\top \in \mathbb{R}^p$ vettore delle uscite

Sia Σ un sistema lineare tempo-invariante (LTI) allora la sua rappresentazione in spazio di stato è la seguente

 Σ a tempo continuo:

$$\begin{cases} \dot{x}_{1}(t) = f_{11}x_{1}(t) + f_{12}x_{2}(t) + \ldots + f_{1n}x_{n}(t) + g_{11}u_{1}(t) + g_{12}u_{2}(t) + \ldots + g_{1m}u_{m}(t) \\ \dot{x}_{2}(t) = f_{21}x_{1}(t) + f_{22}x_{2}(t) + \ldots + f_{2n}x_{n}(t) + g_{21}u_{1}(t) + g_{22}u_{2}(t) + \ldots + g_{2m}u_{m}(t) \\ \vdots \\ \dot{x}_{n}(t) = f_{n1}x_{1}(t) + f_{n2}x_{2}(t) + \ldots + f_{nn}x_{n}(t) + g_{n1}u_{1}(t) + g_{n2}u_{2}(t) + \ldots + g_{nm}u_{m}(t) \\ y_{1}(t) = h_{11}x_{1}(t) + h_{12}x_{2}(t) + \ldots + h_{1n}x_{n}(t) + j_{11}u_{1}(t) + j_{12}u_{2}(t) + \ldots + j_{1m}u_{m}(t) \\ y_{2}(t) = h_{21}x_{1}(t) + h_{22}x_{2}(t) + \ldots + h_{2n}x_{n}(t) + j_{21}u_{1}(t) + j_{22}u_{2}(t) + \ldots + j_{2m}u_{m}(t) \\ \vdots \\ y_{p}(t) = h_{p1}x_{1}(t) + h_{p2}x_{2}(t) + \ldots + h_{pn}x_{n}(t) + j_{p1}u_{1}(t) + j_{p2}u_{2}(t) + \ldots + j_{pm}u_{m}(t) \end{cases}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), & \mathbf{x}(t_0) = \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) \end{cases} \qquad \mathbf{F} \in \mathbb{R}^{n \times n}, \mathbf{G} \in \mathbb{R}^{n \times m} \\ \mathbf{H} \in \mathbb{R}^{p \times n}, \mathbf{J} \in \mathbb{R}^{p \times m} \end{cases}$$

₩

 Σ a tempo discreto:

$$\begin{cases} x_{1}(t+1) = f_{11}x_{1}(t) + f_{12}x_{2}(t) + \ldots + f_{1n}x_{n}(t) + g_{11}u_{1}(t) + g_{12}u_{2}(t) + \ldots + g_{1m}u_{m}(t) \\ x_{2}(t+1) = f_{21}x_{1}(t) + f_{22}x_{2}(t) + \ldots + f_{2n}x_{n}(t) + g_{21}u_{1}(t) + g_{22}u_{2}(t) + \ldots + g_{2m}u_{m}(t) \\ \vdots \\ x_{n}(t+1) = f_{n1}x_{1}(t) + f_{n2}x_{2}(t) + \ldots + f_{nn}x_{n}(t) + g_{n1}u_{1}(t) + g_{n2}u_{2}(t) + \ldots + g_{nm}u_{m}(t) \\ y_{1}(t) = h_{11}x_{1}(t) + h_{12}x_{2}(t) + \ldots + h_{1n}x_{n}(t) + j_{11}u_{1}(t) + j_{12}u_{2}(t) + \ldots + j_{1m}u_{m}(t) \\ y_{2}(t) = h_{21}x_{1}(t) + h_{22}x_{2}(t) + \ldots + h_{2n}x_{n}(t) + j_{21}u_{1}(t) + j_{22}u_{2}(t) + \ldots + j_{2m}u_{m}(t) \\ \vdots \\ y_{p}(t) = h_{p1}x_{1}(t) + h_{p2}x_{2}(t) + \ldots + h_{pn}x_{n}(t) + j_{p1}u_{1}(t) + j_{p2}u_{2}(t) + \ldots + j_{pm}u_{m}(t) \end{cases}$$

∜

$$\begin{cases} \mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), & \mathbf{x}(t_0) = \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) \end{cases} \qquad \mathbf{F} \in \mathbb{R}^{n \times n}, \mathbf{G} \in \mathbb{R}^{n \times m} \\ \mathbf{H} \in \mathbb{R}^{p \times n}, \mathbf{J} \in \mathbb{R}^{p \times m} \end{cases}$$

Proposizione (principio di sovrapposizione degli effetti)

Dato il sistema Σ LTI, siano

• $\mathbf{x}'(\cdot)$, $\mathbf{y}'(\cdot)$ gli andamenti dello stato e dell'uscita corrispondenti allo stato iniziale \mathbf{x}'_0 e all'ingresso $\mathbf{u}'(\cdot)$ • $\mathbf{x}''(\cdot)$, $\mathbf{y}''(\cdot)$ quelli relativo allo stato iniziale \mathbf{x}''_0 e all'ingresso $\mathbf{u}''(\cdot)$

allora, scelte arbitrariamente le costanti α_1 e α_2 , le evoluzioni di stato e uscita in corrispondenza allo stato iniziale $\mathbf{x}_0 = \alpha_1 \mathbf{x}'_0 + \alpha_2 \mathbf{x}''_0$ e all'ingresso $\mathbf{u} = \alpha_1 \mathbf{u}' + \alpha_2 \mathbf{u}''$ sono date rispettivamente da $\mathbf{x} = \alpha_1 \mathbf{x}' + \alpha_2 \mathbf{x}''$ e $\mathbf{y} = \alpha_1 \mathbf{y}' + \alpha_2 \mathbf{y}''$.

Perché lo spazio di stato?

- Rappresentazione "naturale" per molti sistemi fisici (meccanici/elettrici)
- Si lavora direttamente nel dominio temporale evitando trasformate/antitrasformate
- Si gestiscono più facilmente sistemi MIMO (multi-input multi-output)
- Problemi di analisi e controllo diventano più facili da un punto di vista numerico
- La teoria dei controlli "moderna" si basa sullo spazio di stato

esempio: sistema elettrico - circuito RLC

$$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, x_1 = v, x_2 = i_L, \quad u = u_i, y = x_1 = v$$
$$\mathbf{F} = \begin{bmatrix} -\frac{1}{RC} & -\frac{1}{C} \\ \frac{1}{L} & 0 \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} \frac{1}{C} \\ 0 \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \mathbf{J} = J = 0$$

 \boxtimes

esempio: sistema meccanico - massa, molla, smorzatore

f(t) = input, z(t) = output

$$m\ddot{z} + \beta\dot{z} + kz - f = 0$$

F.d.T.
$$G(s) = \frac{1}{ms^2 + \beta s + k}$$

Rappresentazione interna $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, x_1 = z, \ x_2 = \dot{x}, \quad u = f, \ y = x_1 = z$ $\mathbf{F} = \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{\beta}{m} \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} 0\\ \frac{1}{m} \end{bmatrix}$ $\mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad \qquad \mathbf{J} = J = 0$

 \boxtimes

esempio: sistema compartimentale - magazzino merci

Rappresentazione esterna

Rappresentazione interna

$$y(t+1) - y(t) - u_1(t-1) + u_2(t) = 0$$

F.d.T. $G_1(z) = \frac{z^{-1}}{z-1}, \ G_2(z) = -\frac{1}{z-1}$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, x_1(t) = y(t), x_2(t) = u_1(t-1), \quad \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$\mathbf{F} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \mathbf{J} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

esempio: sistema finanziario - estinzione debito

pagamento rata/aggiornamento debito t-1 t t+1 t+2 y(t) = debito al mese <math>t = output u(t) = rata al mese <math>t = inputI = tasso di interesse (decimale)

Rappresentazione esterna

$$y(t+1) - (1+I)y(t) + u(t+1) = 0$$

F.d.T. $G(z) = -\frac{z}{z - (1+I)}$

Rappresentazione interna

$$x(t) = y(t) + u(t)$$

$$F = 1 + I \quad G = -1 - I$$
$$H = 1 \qquad J = -1$$

 \boxtimes

 \boxtimes

Come scegliere le variabili di stato?

Nel caso di sistemi fisici, in generale, conviene scegliere come variabili di stato grandezze legate all'energia accumulata dal sistema:

- sistemi elettrici: nel caso di circuiti elettrici RLC è possibile derivare modelli lineari selezionando come variabili di stato l'insieme di tutte le correnti che attraversano le induttanze e di tutte le tensioni ai capi dei condensatori (se il circuito è composto di k induttanze e h condensatori si otterrà un modello lineare di ordine h + k);
- sistemi meccanici: è possibile derivare modelli lineari selezionando come variabili di stato l'insieme di tutte le posizioni e le velocità delle masse in gioco o, nel caso di masse vincolate a un moto circolare, le posizioni angolari e le velocità angolari;
- sistemi termici: è possibile derivare modelli lineari selezionando come variabili di stato l'insieme di tutte le temperature dei componenti del sistema.

1.3.2 Rappresentazione di sistemi non-lineari

$$\mathbf{u}(t) \longrightarrow \Sigma_{\mathbf{x}(t)} \longrightarrow \mathbf{y}(t)$$

Si consideri il caso generale di un sistema Σ caratterizzato da

- *n* variabili di stato $x_1(t), \ldots x_n(t)$: $\mathbf{x}(t) = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix}^\top \in \mathbb{R}^n$ vettore di stato
- m variabili di ingresso $u_1(t), \ldots u_m(t)$: $\mathbf{u}(t) = \begin{bmatrix} u_1 & \ldots & u_m \end{bmatrix}^\top \in \mathbb{R}^m$ vettore degli ingressi
- p variabili di uscita $y_1(t), \ldots y_n(t)$: $\mathbf{y}(t) = \begin{bmatrix} y_1 & \ldots & y_p \end{bmatrix}^\top \in \mathbb{R}^p$ vettore delle uscite

Sia Σ un sistema **non** lineare tempo-invariante allora qual è la sua rappresentazione esterna ed interna?

esempio: sistema meccanico - pendolo semplice con attrito

Rappresentazione esterna

$$m\ell^2\ddot{\theta} + \nu\dot{\theta} + mq\ell\sin\theta - f\ell\cos\theta = 0$$

Rappresentazione interna $x_1 = \theta, \ x_2 = \dot{\theta}, \quad u = f, y = \theta$ $\begin{cases} \dot{x}_1 = x_2\\ \dot{x}_2 = -\frac{g}{\ell} \sin x_1 - \frac{\nu}{m\ell^2} x_2 + \frac{1}{ml} \cos x_1 u\\ y = x_1 \end{cases}$

 \boxtimes

esempio: sistema compartimentale - popolazioni prede-predatori

 $\begin{array}{l} n_1(t) = \mbox{numero di prede al tempo } t \\ n_2(t) = \mbox{numero di predatori al tempo } t \\ \alpha = \mbox{tasso crescita prede, se isolate} \\ \beta = \mbox{tasso decrescita prede causato da predatori} \\ \gamma = \mbox{tasso crescita predatori per la presenza di prede} \\ \delta = \mbox{tasso decrescita predatori, se isolati} \end{array}$

Rappresentazione esternaRappresentazione interna $x_1 = n_1, x_2 = n_2$?? $\begin{cases} \dot{x}_1 = \alpha x_1 - \beta x_1 x_2 \\ \dot{x}_2 = \gamma x_1 x_2 - \delta x_2 \end{cases}$

 \boxtimes

1.4 Linearizzazione di sistemi dinamici

linearizzazione: approssimazione di un sistema non lineare con un sistema lineare intorno a una determinata condizione operativa

Dato il sistema LTI scalare ($f \in \mathbb{R}$)

$\dot{x}(t) = fx(t)$,	$t \in \mathbb{R}_+$	(t.c.)	allora	$x(t) = e^{ft}x_0$
x(t+1) = fx(t),	$t \in \mathbb{Z}_+$	(t.d.)	allora	$x(t) = f^t x_0$

si dice

- *traiettoria di stato* del sistema relativa a c.i. $x(0) = x_0$ l'insieme $\{x(t) \in \mathbb{R}^n, t \ge 0\}$
- *ritratto di fase* del sistema l'insieme delle traiettorie di stato $\forall x_0 \in \mathbb{R}^n$

intorno a quale condizione operativa/stato linearizzare il sistema? specie se si tratta di un sistema non scalare?

1.4.1 Punti di equilibrio

sistemi autonomi

punto di equilibrio: $\bar{\mathbf{x}} \in \mathbb{R}^n$ è detto punto di equilibrio del sistema $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t)), t \in \mathbb{R}_+$ (o analogamente $\mathbf{x}(t+1) = f(\mathbf{x}(t)), t \in \mathbb{Z}_+$) se l'evoluzione dello stato corrispondente allo stato iniziale $\mathbf{x}_0 = \bar{\mathbf{x}}$, è la costante $\mathbf{x}(t) = \bar{\mathbf{x}}, \forall t \ge 0$.

Dato il sistema TI

$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$,	$t \in \mathbb{R}_+$	(t.c.)	allora	$\bar{\mathbf{x}} \in \mathbb{R}^n$ equilibrio $\Leftrightarrow f(\bar{\mathbf{x}}) = 0$
$\mathbf{x}(t+1) = f(\mathbf{x}(t)),$	$t \in \mathbb{Z}_+$	(t.d.)	allora	$ar{\mathbf{x}} \in \mathbb{R}^n$ equilibrio $\Leftrightarrow ar{\mathbf{x}} = f(ar{\mathbf{x}})$

Dato il sistema LTI

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{F}\mathbf{x}(t), \qquad t \in \mathbb{R}_+ \quad (\text{t.c.}) \quad \text{allora} \quad \bar{\mathbf{x}} \in \mathbb{R}^n \text{ eq. } \Leftrightarrow \bar{\mathbf{x}} \in \ker \mathbf{F} = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{F}\mathbf{x} = \mathbf{0}\} \\ \mathbf{x}(t+1) &= \mathbf{F}\mathbf{x}(t), \quad t \in \mathbb{Z}_+ \quad (\text{t.d.}) \quad \text{allora} \quad \bar{\mathbf{x}} \in \mathbb{R}^n \text{ eq. } \Leftrightarrow \bar{\mathbf{x}} \in \ker(\mathbf{F}-\mathbf{I}) = \{\mathbf{x} \in \mathbb{R}^n | (\mathbf{F}-\mathbf{I})\mathbf{x} = \mathbf{0}\} \end{split}$$

esempio: punti di equilibrio

1. $\dot{x} = x(1-x) \implies \text{due equilibri: } \bar{x} = \{0, 1\}$

2. $\dot{x} = x^2 + 1 \implies$ nessun equilibrio

3.
$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \\ -1 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{x} \implies$$
 unico equilibrio: $\bar{\mathbf{x}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
4. $\dot{\mathbf{x}} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{x} \implies$ infiniti equilibri: $\bar{\mathbf{x}} = \begin{bmatrix} 0 \\ \alpha \end{bmatrix}$, $\alpha \in \mathbb{R}$

sistemi con ingresso costante

punto di equilibrio: $\bar{\mathbf{x}} \in \mathbb{R}^n$ è detto punto di equilibrio del sistema $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t)), t \in \mathbb{R}_+$ (o analogamente $\mathbf{x}(t+1) = f(\mathbf{x}(t), \mathbf{u}(t)), t \in \mathbb{Z}_+$) se l'evoluzione dello stato corrispondente allo stato iniziale $\mathbf{x}_0 = \bar{\mathbf{x}}$ e all'ingresso costante $\mathbf{u}(t) = \bar{\mathbf{u}}, \forall t \ge 0$, è la costante $\mathbf{x}(t) = \bar{\mathbf{x}}, \forall t \ge 0$.

Dato il sistema TI

$$\begin{split} \dot{\mathbf{x}}(t) &= f(\mathbf{x}(t), \mathbf{u}(t)), \qquad t \in \mathbb{R}_+ \quad (\mathsf{t.c.}) \qquad \text{allora} \qquad \bar{\mathbf{x}} \in \mathbb{R}^n \text{ equilibrio} \Leftrightarrow f(\bar{\mathbf{x}}, \bar{\mathbf{u}}) = 0 \\ \mathbf{x}(t+1) &= f(\mathbf{x}(t), \mathbf{u}(t)), \quad t \in \mathbb{Z}_+ \quad (\mathsf{t.d.}) \qquad \text{allora} \qquad \bar{\mathbf{x}} \in \mathbb{R}^n \text{ equilibrio} \Leftrightarrow \bar{\mathbf{x}} = f(\bar{\mathbf{x}}, \bar{\mathbf{u}}) \end{split}$$

Dato il sistema LTI

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), \qquad t \in \mathbb{R}_+ \quad (\mathsf{t.c.}) \qquad \text{allora} \qquad \bar{\mathbf{x}} \in \mathbb{R}^n \text{ equilibrio} \Leftrightarrow \mathbf{F}\bar{\mathbf{x}} = -\mathbf{G}\bar{\mathbf{u}} \\ \mathbf{x}(t+1) &= \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), \quad t \in \mathbb{Z}_+ \quad (\mathsf{t.d.}) \qquad \text{allora} \qquad \bar{\mathbf{x}} \in \mathbb{R}^n \text{ equilibrio} \Leftrightarrow (\mathbf{F} - \mathbf{I})\bar{\mathbf{x}} = -\mathbf{G}\bar{\mathbf{u}} \end{split}$$

esempio: punti di equilibrio

 \boxtimes

1.4.2 Stabilità semplice e asintotica

stabilità

semplice: un punto di equilibrio $ar{\mathbf{x}} \in \mathbb{R}^n$ è detto semplicemente stabile se

$$\forall \varepsilon > 0, \ \exists \, \delta > 0 \text{ tale che } \|\mathbf{x}_0 - \bar{\mathbf{x}}\| \le \delta \implies \|\mathbf{x}(t) - \bar{\mathbf{x}}\| \le \varepsilon, \ \forall t \ge 0$$

asintotica: un punto di equilibrio $ar{\mathbf{x}} \in \mathbb{R}^n$ è detto asintoticamente stabile se

- 1. $\bar{\mathbf{x}}$ è semplicemente stabile e
- 2. $\lim_{t\to\infty} \mathbf{x}(t) = \bar{\mathbf{x}}$ per ogni $\mathbf{x}_0 \in \mathbb{R}^n$ "sufficientemente vicino" a $\bar{\mathbf{x}}$

 \boxtimes

- Le definizioni di stabilità semplice/asintotica hanno carattere locale. Se però la condizione 2 della stabilità asintotica vale per ogni x₀ ∈ ℝⁿ allora si parla di stabilità asintotica globale.
- Per sistemi lineari si può parlare di stabilità del sistema invece che del punto di equilibrio.
 Infatti, con un opportuno cambio di variabile, si può sempre "spostare" l'equilibrio in x
 = 0.

1.4.3 Procedura di linearizzazione

sistemi autonomi

Sia

• $\dot{x} = f(x), t \in \mathbb{R}_+$ sistema scalare con $\bar{x} \in \mathbb{R}$ punto di equilibrio • $\delta_x \triangleq x - \bar{x}$

allora
$$f(x) = f(\bar{x}) + \frac{d}{dx}f(\bar{x})\delta_x + \frac{1}{2}\frac{d^2}{dx^2}f(\bar{x})\delta_x^2 + \dots \approx f(\bar{x}) + \frac{d}{dx}f(\bar{x})\delta_x$$

sistema linearizzato attorno a \bar{x} : $\dot{\delta}_x = \frac{d}{dx}f(\bar{x})\delta_x$

Sia

• $\dot{\mathbf{x}} = f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{bmatrix}$, $t \in \mathbb{R}_+$ sistema **multivariato** con $\bar{\mathbf{x}} \in \mathbb{R}^n$ punto di equilibrio • $\delta_x \triangleq \mathbf{x} - \bar{\mathbf{x}}$ allora $f(\mathbf{x}) = f(\bar{\mathbf{x}}) + \mathbf{J}_f(\bar{\mathbf{x}})\delta_x + \ldots \approx f(\bar{\mathbf{x}}) + \mathbf{J}_f(\bar{\mathbf{x}})\delta_x$ con $\mathbf{J}_f(\mathbf{x}) = \left[\frac{\partial f_i(\mathbf{x})}{\partial x_j}\right]_{\substack{i=1...n \ j=1...n}} \in \mathbb{R}^{n \times n}$

sistema linearizzato attorno a $ar{\mathbf{x}}$: $\dot{oldsymbol{\delta}}_x = \mathbf{J}_f(ar{\mathbf{x}})\,oldsymbol{\delta}_x$

esempio: linearizzazione di sistemi autonomi

1. $\dot{x} = \sin x$ $\bar{x} = 0$ $\bar{x} = \pi$ $\dot{\delta}_x = \delta_x, \quad \delta_x \triangleq x$ $\dot{\delta}_x = -\delta_x, \quad \delta_x \triangleq x - \pi$

2. $\dot{x} = \alpha x^3$, $\alpha \in \mathbb{R}$ $\bar{x} = 0 \implies \dot{\delta}_x = 0$

3.
$$\begin{cases} \dot{x}_1 = -x_2 + x_1 x_2^2 \\ \dot{x}_2 = x_1 + x_2^5 \end{cases} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \dot{\delta}_x = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \delta x, \quad \delta x \triangleq \mathbf{x}$$

sistemi con ingresso costante

Sia

•
$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} f_1(\mathbf{x}, \mathbf{u}) \\ \vdots \\ f_n(\mathbf{x}, \mathbf{u}) \end{bmatrix}$$
, $t \in \mathbb{R}_+$ sistema **multivariato** con $\bar{\mathbf{x}} \in \mathbb{R}^n$ punto di equilibrio
relativo all'ingresso costante $\bar{\mathbf{u}} \in \mathbb{R}^m$
• $\delta_x \triangleq \mathbf{x} - \bar{\mathbf{x}}$
• $\delta_u \triangleq \mathbf{u} - \bar{\mathbf{u}}$
allora $f(\mathbf{x}, \mathbf{u}) = f(\bar{\mathbf{x}}, \bar{\mathbf{u}}) + \mathbf{J}_f^{(x)}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) \delta_x + \mathbf{J}_f^{(u)}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) \delta_u + \dots$ con $\mathbf{J}_f^{(x)}(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} \frac{\partial f_i(\mathbf{x})}{\partial x_j} \end{bmatrix}_{\substack{i=1...n\\j=1...n}} \in \mathbb{R}^{n \times n}$
 $\mathbf{J}_f^{(u)}(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} \frac{\partial f_i(\mathbf{x})}{\partial u_j} \end{bmatrix}_{\substack{i=1...n\\j=1...m}} \in \mathbb{R}^{n \times m}$

 \boxtimes

 $]_{\substack{i=1...n\\j=1...m}}$

sistema linearizzato attorno a
$$\bar{\mathbf{x}}$$
 e $\bar{\mathbf{u}}$: $\dot{\boldsymbol{\delta}}_x = \mathbf{J}_f^{(x)}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) \, \boldsymbol{\delta}_x + \mathbf{J}_f^{(u)}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) \, \boldsymbol{\delta}_u$

Fino a che il sistema si mantiene in un intorno del punto di equilibrio, la dinamica degli scostamenti può essere approssimata da un sistema lineare. Questa possibilità è molto importante perché:

- 1. i sistemi lineari sono molto più agevoli da trattare dei sistemi non lineari;
- 2. nella pratica ingegneristica accade di frequente che ingresso e stato di un sistema non lineare rimangano confinati in un intorno di un punto di equilibrio.

1.5 Modellizzazione di un sistema dinamico reale

processo

P - processo

sistema dinamico rappresentato tramite equazioni integro-differenziali, non necessariamente lineari o tempo invarianti (TI)

S - sensore

dispositivo atto a convertire una grandezza (fisica) di interesse in un segnale (elettrico) compatibile con il sistema di controllo

• modello ideale $\mathbf{y}(t)$ \mathbf{K}_S $\tilde{\mathbf{y}}(t)$ $\tilde{\mathbf{y}}(t) = \mathbf{K}_S \mathbf{y}(t)$

(modello super ideale: $\mathbf{K}_S = \mathbf{I}$, altrimenti: $\mathbf{K}_S = diag(k_i)\mathbf{I}$ fattore di scala \sim cambio di unità di misura)

• modello reale
$$\mathbf{y}(t)$$

 $\mathbf{y}(t)$
 $\mathbf{y}(t)$
 $\mathbf{y}(t)$
 $\mathbf{y}(t)$
 $\mathbf{y}(t)$
 $\mathbf{y}(t) = H(s)\mathbf{K}_{S}\mathbf{y}(t) + \mathbf{d}_{y}(t)$
 $\mathbf{y}(t) = H(s)\mathbf{x}_{S}\mathbf{y}(t) + \mathbf{d}_{y}(t)$
 $\mathbf{y}(t) = H(s)\mathbf{x}_{S}\mathbf{y}(t) + \mathbf{d}_{y}(t)$

A - attuatore

dispositivo atto a convertire il segnale (elettrico) di controllo in una grandezza (fisica) compatibile con il processo

controllore

C: controllore digitale

ADC: convertitore analogico-digitale, che trasforma un segnale continuo in un segnale a valori finiti (bits) e campionato con uno specifico periodo di campionamento

DAC: convertitore digitale-analogico (simile a un interpolatore) che trasforma un segnale digitale in un segnale analogico continuo

1.5.1 Modello del quadrotor

quadrotor/quadrirotore o quadcopter/quadricottero Unmanned Aerial Vehicle (**UAV**) - veicolo aereo caratterizzato dall'assenza del pilota a bordo

- corpo rigido principale struttura a croce/a X
- 4 attuatori 4 propellers : motori brushless + eliche

modello cinematico e dinamico

Dal punto di vista cinematico e dinamico, un quadrotor è modellabile come un *corpo rigido nello spazio 3D* con

- massa $m \in \mathbb{R}$
- inerzia $\mathbf{J} = \operatorname{diag}(J_x, J_y, J_z) \in \mathbb{R}^{3 \times 3}$

Si introducono due sistemi di riferimento:

 $\begin{aligned} \mathscr{F}_W &= \{0_W, (\mathbf{x}_W, \mathbf{y}_W, \mathbf{z}_W)\} & \textit{world frame} \quad (\text{globale e fisso}) \\ \mathscr{F}_B &= \{0_B, (\mathbf{x}_B, \mathbf{y}_B, \mathbf{z}_B)\} & \textit{body frame} \quad (\text{locale e centrato nel centro di massa del vivolo}) \end{aligned}$

di conseguenza, la posa (posizione + orientamento) del quadrotor è definita da

$$\begin{split} \mathbf{p} \in \mathbb{R}^3 & \text{posizione di } O_B \text{ in } \mathscr{F}_W \\ \mathbf{R} \in SO(3) & \text{orientamento di } \mathscr{F}_B \text{ rispetto a } \mathscr{F}_W \\ & \left(SO(3) = \{ \mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R} \mathbf{R}^\top = \mathbf{I}, \det(\mathbf{R}) = 1 \} \text{ gruppo Speciale Ortogonale} \right) \end{split}$$

convenzione

$$\mathbf{R} = {}^{W} \mathbf{R}_{B} = \mathbf{R}_{Z}(\psi) \mathbf{R}_{Y}(\theta) \mathbf{R}_{X}(\phi)$$

$$= \begin{bmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta\\ 0 & 1 & 0\\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos \phi & -\sin \phi\\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

$$= \begin{bmatrix} \cos \psi \cos \theta & -\sin \psi \cos \phi + \cos \psi \sin \theta \sin \phi & \sin \psi \sin \phi + \cos \psi \sin \theta \cos \phi\\ \sin \psi \cos \theta & \cos \psi \cos \phi + \sin \psi \sin \theta \sin \phi & -\cos \psi \sin \phi + \sin \psi \sin \theta \cos \phi\\ -\sin \theta & \cos \theta \sin \phi & \cos \theta \cos \phi \end{bmatrix}$$

$$\mathbf{\delta} = \begin{bmatrix} \phi & \theta & \psi \end{bmatrix}^{\top} \text{: angoli di roll, pitch, yaw}$$

$$\mathbf{R} = \mathbf{R}(\mathbf{\delta})$$

modello cinematico

Siano

 $\begin{array}{ll} \mathbf{p} \in \mathbb{R}^3 & \text{posizione di } O_B \text{ in } \mathscr{F}_W \\ \boldsymbol{\delta} \in \mathbb{R}^3 & \text{orientamento di } \mathscr{F}_B \text{ rispetto a } \mathscr{F}_W \\ \mathbf{v} \in \mathbb{R}^3 & \text{velocità lineare in } \mathscr{F}_W \end{array}$

 $oldsymbol{\omega} \in \mathbb{R}^3$ velocità angolare in \mathscr{F}_B

allora

$\dot{\mathbf{p}} = \mathbf{v}$					
		Γ1	$\sin\phi\tan\theta$	$\cos\phi\tan\theta$	
$\dot{oldsymbol{\delta}} = \mathbf{T} oldsymbol{\omega}$	$\mathbf{T} =$	0	$\cos\phi$	$-\sin\phi$	
			$\sin\phi$	$\cos \phi$	
		Lo	$\cos heta$	$\cos \theta$]	

 \rightarrow la definizione della matrice ${\bf T}$ è legata alla scelta della convenzione ZYX per la rappresentazione delle rotazioni

modello dinamico

Ogni *i*-esimo attuatore è caratterizzato da un asse di spinning $\mathbf{z}_{P_i} \in \mathbb{R}^3$ e una velocità di spinning $\omega_i \ge 0$. L'asse di spinning, in particolare, è supposto avere orientamento costante in \mathscr{F}_B parallelo all'asse \mathbf{z}_B per cui $\mathbf{z}_{P_i} = \mathbf{e}_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^\top$ e passare per il centro di massa del propeller la cui posizione in \mathscr{F}_B è definita dal vettore $\mathbf{p}_i = \begin{bmatrix} p_{i,x} & p_{i,y} & p_{i,z} \end{bmatrix}^\top$. Ruotando con velocità ω_i attorno al suo asse, ogni *i*-esimo attuatore genera

- forza di thrust:
$$\mathbf{f}_i = c_f \omega_i^2 \, \mathbf{e}_3 = \begin{bmatrix} 0 & 0 & c_f \omega_i^2 \end{bmatrix}^\top$$

- coppia di thrust:
$$\boldsymbol{\tau}_{i}^{t} = c_{f}\omega_{i}^{2}(\mathbf{p}_{i}\times\mathbf{e}_{3}) = \begin{bmatrix} c_{f}\omega_{i}^{2}p_{i,y} & -c_{f}\omega_{i}^{2}p_{i,x} & 0 \end{bmatrix}^{\top}$$

- coppia di drag: $\boldsymbol{\tau}_{i}^{d} = \pm c_{\tau}\omega_{i}^{2}\mathbf{e}_{3} = \begin{bmatrix} 0 & 0 & \pm c_{\tau}\omega_{i}^{2} \end{bmatrix}^{\top}$

con $c_f, c_\tau > 0$ parametri che dipendono dalle caratteristiche aerodinamiche e geometriche dell'attuatore (tutti gli attuatori sono supposti uguali sotto questo punto di vista).

Considerando i contributi di tutti gli attuatori, nel centro di massa del veivoli sono esercitate una forza e una coppia di controllo, ovvero

$$\mathbf{f}_{c} \in \mathbb{R}^{3}, \quad \mathbf{f}_{c} = \sum_{i=1}^{4} \mathbf{f}_{i} = \begin{bmatrix} 0\\0\\c_{f}\sum_{i=1}^{4}\omega_{i}^{2} \end{bmatrix} = \begin{bmatrix} 0\\0\\F \end{bmatrix}$$

$$\tau_{c} \in \mathbb{R}^{3}, \quad \tau_{c} = \sum_{i=1}^{4} (\tau_{i}^{t} + \tau_{i}^{d}) = \begin{bmatrix} c_{f}\sum_{i=1}^{4}\omega_{i}^{2}p_{i,y}\\-c_{f}\sum_{i=1}^{4}\omega_{i}^{2}p_{i,x}\\c_{\tau}\sum_{i=1}^{4}\pm\omega_{i}^{2} \end{bmatrix} = \begin{bmatrix} \tau_{1}\\\tau_{2}\\\tau_{3} \end{bmatrix}$$

$$world frame$$

$$\mathcal{F}_{W}$$

Di conseguenza, considerando il modello di Eulero-Newton (privo di effetti del secondo ordine), vale che

$$\dot{\mathbf{v}} = -g\mathbf{e}_3 + m^{-1}\mathbf{R}(\boldsymbol{\delta})\mathbf{f}_c$$
$$\dot{\boldsymbol{\omega}} = J^{-1}(-\boldsymbol{\omega} \times J\boldsymbol{\omega} + \boldsymbol{\tau}_c)$$

ovvero

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} = -\begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix} + \frac{1}{m} \begin{bmatrix} * & * & \sin\psi\sin\phi + \cos\psi\sin\theta\cos\phi \\ * & * & -\cos\psi\sin\phi + \sin\psi\sin\theta\cos\phi \\ * & * & \cos\theta\cos\phi \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ F \end{bmatrix}$$
$$\begin{bmatrix} \dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z \end{bmatrix} = \begin{bmatrix} J_x^{-1} & 0 & 0 \\ 0 & J_y^{-1} & 0 \\ 0 & 0 & J_z^{-1} \end{bmatrix} \left(\begin{bmatrix} 0 & -J_z\omega_z & J_y\omega_y \\ J_z\omega_z & 0 & -J_x\omega_x \\ -J_y\omega_y & J_x\omega_x & 0 \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} + \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \right)$$

da cui

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} = \begin{bmatrix} \frac{1}{m} \left(\sin \psi \sin \phi + \cos \psi \sin \theta \cos \phi \right) F \\ \frac{1}{m} \left(-\cos \psi \sin \phi + \sin \psi \sin \theta \cos \phi \right) F \\ -g + \frac{1}{m} \left(\cos \theta \cos \phi \right) F \end{bmatrix}$$
$$\begin{bmatrix} \dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z \end{bmatrix} = \begin{bmatrix} \frac{J_y - J_z}{J_x} \omega_y \omega_z + \frac{1}{J_x} \tau_1 \\ \frac{J_x - J_z}{J_y} \omega_x \omega_z + \frac{1}{J_y} \tau_2 \\ \frac{J_x - J_y}{J_z} \omega_x \omega_y + \frac{1}{J_z} \tau_3 \end{bmatrix}$$

modello linearizzato in spazio di stato in condizione di hovering statico

condizione di hovering statico: volo in posizione fissa con orientamento costante e velocità lineare e angolare nulla

Si consideri

• vettore di stato: $\mathbf{x} = \begin{bmatrix} \mathbf{p} \ \boldsymbol{\delta} \ \mathbf{v} \ \boldsymbol{\omega} \end{bmatrix}^{\top} = \begin{bmatrix} x \ y \ z \ \boldsymbol{\phi} \ \boldsymbol{\theta} \ \psi \ \dot{x} \ \dot{y} \ \dot{z} \ \omega_x \ \omega_y \ \omega_z \end{bmatrix}^{\top} \in \mathbb{R}^{12}$ • vettore di ingresso di controllo: $\mathbf{u} = \begin{bmatrix} \|\mathbf{f}_c\| \ \boldsymbol{\tau}_c \end{bmatrix}^{\top} = \begin{bmatrix} F \ \tau_1 \ \tau_2 \ \tau_3 \end{bmatrix}^{\top} \in \mathbb{R}^4$

allora cinematica e dinamica del quadrotor sono descritte dal modello non lineare

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\mathbf{p}} \\ \dot{\boldsymbol{\delta}} \\ \dot{\mathbf{v}} \\ \dot{\boldsymbol{\omega}} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \mathbf{T}\boldsymbol{\omega} \\ -g\mathbf{e}_3 + m^{-1}\mathbf{R}(\boldsymbol{\delta})\mathbf{f}_c \\ J^{-1}(-\boldsymbol{\omega} \times J\boldsymbol{\omega} + \boldsymbol{\tau}_c) \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \mathbf{T}\boldsymbol{\omega} \\ -g\mathbf{e}_3 \\ J^{-1}(-\boldsymbol{\omega} \times J\boldsymbol{\omega}) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{3\times 1} \\ \mathbf{0}_{3\times 1} \\ m^{-1}\mathbf{R}(\boldsymbol{\delta})\mathbf{f}_c \\ J^{-1}\boldsymbol{\tau}_c \end{bmatrix} = f_1(\mathbf{x}) + f_2(\mathbf{x}, \mathbf{u})$$

 $\operatorname{\mathsf{dove}}$

$$f_{1}(\mathbf{x}) = \begin{bmatrix} \dot{x} & & \\ \dot{y} & & \\ \dot{z} & & \\ \omega_{x} + (\sin\phi \tan\theta)\omega_{y} + (\cos\phi \tan\theta)\omega_{z} \\ \cos\phi \omega_{y} - \sin\phi \omega_{z} \\ (\sin\phi \tan\theta)\omega_{y} + \frac{\cos\phi}{\cos\theta}\omega_{z} \\ & 0 \\ (\sin\phi \tan\theta)\omega_{y} + \frac{\cos\phi}{\cos\theta}\omega_{z} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & -g \\ & \frac{J_{y} - J_{z}}{J_{x}}\omega_{y}\omega_{z} \\ & \frac{J_{x} - J_{z}}{J_{y}}\omega_{x}\omega_{z} \\ & \frac{J_{x} - J_{z}}{J_{y}}\omega_{x}\omega_{z} \\ & \frac{J_{x} - J_{z}}{J_{z}}\omega_{x}\omega_{y} \end{bmatrix}$$

$$f_{2}(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{m}(\sin\psi\sin\phi + \cos\psi\sin\theta\cos\phi) F \\ \frac{1}{m}(-\cos\psi\sin\phi + \sin\psi\sin\theta\cos\phi) F \\ \frac{1}{m}(\cos\theta\cos\phi) F \\ \frac{1}{J_{x}}\tau_{1} \\ \frac{1}{J_{y}}\tau_{2} \\ \frac{1}{J_{x}}\tau_{3} \end{bmatrix}$$

e in particolare,

Di coseguenza, considerando il punto di equilibrio (corrispondente alla condizione di hovering statico)

$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{x} & \bar{y} & \bar{z} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{\top} \\ \bar{\mathbf{u}} = \begin{bmatrix} mg & 0 & 0 & 0 \end{bmatrix}^{\top}$$

e procedendo alla linearizzazione standard del modello non lineare, ovvero calcolando

$$\mathbf{F} = \mathbf{J}_{f}^{(x)}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) = \frac{df_{1}(\mathbf{x})}{d\mathbf{x}}_{\substack{\mathbf{x} = \bar{\mathbf{x}} \\ \mathbf{u} = \bar{\mathbf{u}}}} + \frac{df_{2}(\mathbf{x}, \mathbf{u})}{d\mathbf{x}}_{\substack{\mathbf{x} = \bar{\mathbf{x}} \\ \mathbf{u} = \bar{\mathbf{u}}}} = \begin{bmatrix} \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{I}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{I}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3}$$

$$\mathbf{G} = \mathbf{J}_{f}^{(u)}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) = \frac{df_{1}(\mathbf{x})}{d\mathbf{u}} \underset{\mathbf{u}=\bar{\mathbf{u}}}{\overset{\mathbf{x}=\bar{\mathbf{x}}}{\mathbf{u}=\bar{\mathbf{u}}}} + \frac{df_{2}(\mathbf{x}, \mathbf{u})}{d\mathbf{u}} \underset{\mathbf{u}=\bar{\mathbf{u}}}{\overset{\mathbf{x}=\bar{\mathbf{x}}}{\mathbf{u}=\bar{\mathbf{u}}}} = \mathbf{0}_{12\times4} + \mathbf{F}_{2}(\bar{\mathbf{x}})$$
$$= \begin{bmatrix} \mathbf{0}_{3\times4} \\ \mathbf{0}_{3\times4} \\ \mathbf{G}_{3} \\ \mathbf{G}_{4} \end{bmatrix} \quad \text{con} \quad \mathbf{G}_{3} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{m} & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{G}_{4} = \begin{bmatrix} 0 & \frac{1}{J_{x}} & 0 & 0 \\ 0 & 0 & \frac{1}{J_{y}} & 0 \\ 0 & 0 & 0 & \frac{1}{J_{z}} \end{bmatrix}$$

si ottiene il modello linearizzato

$$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{u}$$

$$\mathbf{F} = \begin{bmatrix} \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{I}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{I}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{F}_{32} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \end{bmatrix}, \ \mathbf{F}_{32} = \begin{bmatrix} \mathbf{0} & g & \mathbf{0} \\ -g & \mathbf{0} & \mathbf{0} \\ 0 & 0 & \mathbf{0} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{0}_{3\times4} \\ \mathbf{G}_{3} \\ \mathbf{G}_{4} \end{bmatrix}, \ \mathbf{G}_{3} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \frac{1}{m} & \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \mathbf{G}_{4} = \begin{bmatrix} \mathbf{0} & \frac{1}{J_{x}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \frac{1}{J_{y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \frac{1}{J_{z}} \end{bmatrix}$$

2 DINAMICA DEI SISTEMI DINAMICI

dinamica: evoluzione temporale di un sistema, ovvero come le sue variabili cambiano rispetto al tempo e/o in relazione al comportamento di altre variabili indipendenti

In accordo con la meccanica newtoniana, *l'evoluzione dei sistemi dinamici è implicitamente definita* da una relazione che proietta lo stato del sistema *solo per un breve intervallo nel futuro*. Prima dell'avvento dei calcolatori veloci, risolvere un sistema dinamico richiedeva l'impiego di tecniche matematiche sofisticate e poteva essere realizzato solo per una limitata categoria di sistemi dinamici.

2.1 Dinamica dei sistemi a tempo continuo

Si consideri il sistema LTI a tempo continuo

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), & \mathbf{x}(t_0) = \mathbf{x}_0 & \mathbf{F} \in \mathbb{R}^{n \times n}, \mathbf{G} \in \mathbb{R}^{n \times m} \\ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) & \mathbf{H} \in \mathbb{R}^{p \times n}, \mathbf{J} \in \mathbb{R}^{p \times m} \end{cases}$$

2.1.1 Evoluzione nel dominio del tempo

Nel caso di un sistema **autonomo** scalare ($x(t) \in \mathbb{R}, u(t) = 0$)

$$\dot{x}(t) = fx(t), \ x(0) = x_0$$
 allora $x(t) = e^{ft}x_0$

 \rightarrow risoluzione dell'equazione differenziale

Analogamente, nel caso di un sistema **autonomo** ma multidimensionale ($\mathbf{x}(t) \in \mathbb{R}^n, \mathbf{u}(t) = \mathbf{0}$)

 $\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t), \ \mathbf{x}(0) = \mathbf{x}_0$ allora $\mathbf{x}(t) = e^{\mathbf{F}t}\mathbf{x}_0$

Come calcolare $e^{\mathbf{F}t}$, $\mathbf{F} \in \mathbb{R}^{n \times n}$?

- calcolo diretto (utile in casi "semplici" e/o "strutturati")
 - ▶ in base alla definizione

$$e^{\mathbf{F}t} \triangleq \sum_{k \ge 0} \frac{\mathbf{F}^k t^k}{k!} \triangleq \left(\mathbf{I} + \mathbf{F}t + \frac{\mathbf{F}^2 t^2}{2!} + \dots + \frac{\mathbf{F}^k t^k}{k!} + \dots \right)$$

esempio

1.
$$\mathbf{F} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

 $(\mathbf{F}t)^n = \underbrace{\mathbf{F} \cdot \mathbf{F} \cdots \mathbf{F}}_{n \text{ volte}} t^n = \begin{bmatrix} t^n & 0 \\ 0 & (2t)^n \end{bmatrix} \implies e^{\mathbf{F}t} = \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix}$

in generale
per matrici diagonali
$$\mathbf{F} = \begin{bmatrix} f_1 & 0 & \cdots & 0 \\ 0 & f_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & f_n \end{bmatrix} \implies e^{\mathbf{F}t} = \begin{bmatrix} e^{f_1t} & 0 & \cdots & 0 \\ 0 & e^{f_2t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & e^{f_nt} \end{bmatrix}$$

2.
$$\mathbf{F} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \mathbf{I} + \mathbf{N}, \quad \mathbf{N} \triangleq \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

(*i*) $\mathbf{N}^0 = \mathbf{I}, \ \mathbf{N}^1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \mathbf{N}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \ \mathbf{N}^3 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \dots$
(*ii*) $e^{\mathbf{I} + \mathbf{N}} = e^{\mathbf{I}}e^{\mathbf{N}} \qquad \qquad \implies \qquad e^{\mathbf{F}t} = \begin{bmatrix} e^t & te^t \\ 0 & e^t \end{bmatrix}$

$$\mathbf{3. \ F} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I} + \mathbf{N}, \quad \mathbf{N} \triangleq \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$(i) \ \mathbf{N}^{0} = I, \ N^{1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \ \mathbf{N}^{2} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \mathbf{N}^{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \dots$$
$$(ii) \ e^{\mathbf{I} + \mathbf{N}} = e^{\mathbf{I}} e^{\mathbf{N}} \qquad \qquad \implies \qquad e^{\mathbf{F}t} = \begin{bmatrix} e^{t} & te^{t} & \frac{t^{2}}{2!}e^{t} \\ 0 & e^{t} & te^{t} \\ 0 & 0 & e^{t} \end{bmatrix}$$

$$\begin{array}{ccc} \text{in generale} \\ \text{per mtrici quasi-diagonali} \\ \end{array} \quad \mathbf{F} = \begin{bmatrix} f & 1 & \cdots & 0 \\ 0 & f & \ddots & \vdots \\ \vdots & \ddots & f & 1 \\ 0 & \cdots & 0 & f \end{bmatrix} \implies e^{\mathbf{F}t} = \begin{bmatrix} e^{ft} & te^{ft} & \cdots & \frac{t^{n-1}}{(n-1)!}e^{ft} \\ 0 & e^{ft} & \ddots & \vdots \\ \vdots & \ddots & \ddots & te^{ft} \\ 0 & \cdots & 0 & e^{ft} \end{bmatrix}$$

4.
$$\mathbf{F} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

 $\mathbf{F}^0 = \mathbf{I}, \ \mathbf{F}^1 = \mathbf{F}, \ \mathbf{F}^2 = -\mathbf{I}, \ \mathbf{F}^3 = -\mathbf{F}, \ \mathbf{F}^4 = \mathbf{I}, \dots \implies e^{\mathbf{F}t} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$

 \boxtimes

- diagonalizzazione di ${\bf F}$ (utile in casi "più complessi")
 - \blacktriangleright trovare una matrice $\mathbf{T} \in \mathbb{R}^{n \times n}$ tale che $\mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \mathbf{F}_J$

$$e^{\mathbf{F}t} = \mathbf{T}e^{\mathbf{F}_J t}\mathbf{T}^{-1}$$

Si noti che

$$\mathbf{1.} \ \mathbf{F}_{J} = \begin{bmatrix} \mathbf{J}_{\lambda_{1}} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{J}_{\lambda_{2}} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{J}_{\lambda_{k}} \end{bmatrix} \implies e^{\mathbf{F}_{J}t} = \begin{bmatrix} \frac{e^{\mathbf{J}_{\lambda_{1}}t} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & e^{\mathbf{J}_{\lambda_{2}}t} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{J}_{\lambda_{i,2}} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{J}_{\lambda_{i,2}} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{J}_{\lambda_{i,n}g}^{T} \end{bmatrix} \implies e^{\mathbf{J}_{\lambda_{i}t}} = \begin{bmatrix} \frac{e^{\mathbf{J}_{\lambda_{1}t}} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & e^{\mathbf{J}_{\lambda_{k}t}} \\ \hline \mathbf{0} & e^{\mathbf{J}_{\lambda_{i}t}} \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{J}_{\lambda_{i,n}g}^{T} \end{bmatrix}$$

$$\mathbf{3.} \ \mathbf{J}_{\lambda_{i,j}} = \begin{bmatrix} \lambda_{i} & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ 0 & \lambda_{i} & \mathbf{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \lambda_{i} & \mathbf{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \lambda_{i} & \mathbf{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \lambda_{i} & \mathbf{1} & \ddots & \vdots \\ \hline \mathbf{0} & e^{\mathbf{J}_{\lambda_{i},j}t} \\ \mathbf{0} & e^{\lambda_{i}t} & te^{\lambda_{i}t} & te^{\lambda_{i}t} \\ \hline \mathbf{0} & e^{\lambda_{i}t} & te^{\lambda_{i}t} \\ \hline \mathbf{0} & e^{\lambda_{i}t} & te^{\lambda_{i}t} \\ \hline \mathbf{0} & e^{\lambda_{i}t} \\ \hline \mathbf{0} & e^{\lambda_{i}t} \\ \mathbf{0} & \cdots & \mathbf{0} & e^{\lambda_{i}t} \end{bmatrix}$$

$$e^{\lambda_i t}, te^{\lambda_i t}, rac{t^2}{2}e^{\lambda_i t}, \dots, rac{t^{m_{ij}^r-1}}{(m_{ii}^r-1)!}e^{\lambda_i t}$$
 modi elementari del sistema

si verifica che

- 1. il numero di modi distinti associati a λ_i è uguale alla dimensione del più grande miniblocco di \mathbf{J}_{λ_i}
- 2. se ${f F}$ è diagonalizzabile allora i modi elementari sono esponenziali *puri* $(e^{\lambda_i t})$
- 3. se $\lambda = \sigma + i\omega \in \mathbb{C}$ è un autovalore di \mathbf{F} allora anche $\overline{\lambda} = \sigma i\omega \in \mathbb{C}$ è un autovalore di \mathbf{F} i modi associati a $\lambda \in \mathbb{C}$ sono *reali* ($t^k e^{\sigma t} \cos(\omega t)$, $t^k e^{\sigma t} \sin(\omega t)$)

in particolare per $\lambda_i \in \mathbb{C}$ si ha che $t^{k_i} e^{\lambda_i t} = t^{k_i} e^{(\sigma_i + i\omega_i)t} = t^{k_i} e^{\sigma_i t} (\cos(\omega_i t) + i \sin(\omega_i t))$ con (carattere dei modi)

Dato il sistema LTI autonomo multidimensionale ($\mathbf{x}(t) \in \mathbb{R}^n, \mathbf{u}(t) = \mathbf{0}$)

$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t), \ \mathbf{x}(0) = \mathbf{x}_0$	allora	$\mathbf{x}(t) = \mathbf{x}_l(t) = e^{\mathbf{F}t}\mathbf{x}_0$	$\mathbf{x}_l(t)$: evoluzione libera
$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t)$	allora	$ \begin{aligned} \mathbf{y}(t) &= \mathbf{y}_l(t) = \mathbf{H}\mathbf{x}_l(t) = \mathbf{H}e^{\mathbf{F}t}\mathbf{x} \\ &= \text{combinatione line} \end{aligned} $	o eare di vettori dei modi elementari

in particolare, sia $\mathbf{F} \in \mathbb{R}^{n imes n}$ con autovalori $\{\lambda_i\}_{i=1}^k$, allora (*comportamento asintotico del sistema*)

$$\begin{split} \Re[\lambda_i] < 0, \forall i & \iff e^{\mathbf{F}t} \xrightarrow{t \to \infty} 0 & \implies \mathbf{y}(t) = \mathbf{H}e^{\mathbf{F}t}\mathbf{x}_0 \xrightarrow{t \to \infty} \mathbf{0} \\ \Re[\lambda_i] \le 0, \forall i \in \\ m_i^a = m_i^g \text{ se } \Re[\lambda_i] = 0 & \iff e^{\mathbf{F}t} \text{ limitata} & \implies \mathbf{y}(t) = \mathbf{H}e^{\mathbf{F}t}\mathbf{x}_0 \text{ limitata} \\ \exists \lambda_i \text{ tale che } \Re[\lambda_i] > 0 \\ o \ \Re[\lambda_i] = 0 \in m_i^a > m_i^g & \iff e^{\mathbf{F}t} \text{ non limitata} & \implies \mathbf{y}(t) = \mathbf{H}e^{\mathbf{F}t}\mathbf{x}_0 ? \\ \text{dipendente da } \mathbf{H}, \mathbf{x}_0 \end{split}$$

Dato il sistema LTI NON autonomo multidimensionale ($\mathbf{x}(t) \in \mathbb{R}^n, \mathbf{u}(t) \neq \mathbf{0}$)

$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), \ \mathbf{x}(0) = \mathbf{x}_0$	allora	$\mathbf{x}(t) = \mathbf{x}_l(t) + \mathbf{x}_f(t)$	$\mathbf{x}_f(t)$: evoluzione forzata
$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t)$	allora	$\mathbf{y}(t) = \mathbf{y}_l(t) + \mathbf{y}_f(t)$	

in particolare,

$$\begin{split} \dot{\mathbf{x}}(\tau) &= \mathbf{F}\mathbf{x}(\tau) + \mathbf{G}\mathbf{u}(\tau) \quad \Leftrightarrow \quad e^{-\mathbf{F}\tau} \dot{\mathbf{x}}(\tau) = e^{-\mathbf{F}\tau} \mathbf{F}\mathbf{x}(\tau) + e^{-\mathbf{F}\tau} \mathbf{G}\mathbf{u}(\tau) \\ \Leftrightarrow \quad e^{-\mathbf{F}\tau} \dot{\mathbf{x}}(\tau) - e^{-\mathbf{F}\tau} \mathbf{F}\mathbf{x}(\tau) = e^{-\mathbf{F}\tau} \mathbf{G}\mathbf{u}(\tau) \quad \Leftrightarrow \quad \frac{d}{d\tau} \left(e^{-\mathbf{F}\tau} \mathbf{x}(\tau) \right) = e^{-\mathbf{F}\tau} \mathbf{G}\mathbf{u}(\tau) \end{split}$$

allora

$$\begin{split} \int_0^t \frac{d}{d\tau} \left(e^{-\mathbf{F}\tau} \mathbf{x}(\tau) \right) d\tau &= \int_0^t e^{-\mathbf{F}\tau} \mathbf{G} \mathbf{u}(\tau) d\tau \quad \Leftrightarrow \quad e^{-\mathbf{F}t} \mathbf{x}(t) - e^{-\mathbf{F}0} \mathbf{x}(0) = \int_0^t e^{-\mathbf{F}\tau} \mathbf{G} \mathbf{u}(\tau) d\tau \\ \Leftrightarrow \quad e^{-\mathbf{F}t} \mathbf{x}(t) = \mathbf{x}(0) + \int_0^t e^{-\mathbf{F}\tau} \mathbf{G} \mathbf{u}(\tau) d\tau \\ \Leftrightarrow \quad e^{\mathbf{F}t} e^{-\mathbf{F}t} \mathbf{x}(t) = e^{\mathbf{F}t} \mathbf{x}(0) + e^{\mathbf{F}t} \int_0^t e^{-\mathbf{F}\tau} \mathbf{G} \mathbf{u}(\tau) d\tau \end{split}$$

da cui si conclude che

$$\mathbf{x}(t) = e^{\mathbf{F}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{F}(t-\tau)}\mathbf{G}\mathbf{u}(\tau)d\tau = \mathbf{x}_l(t) + \mathbf{x}_f(t)$$

Di conseguenza

$$\begin{aligned} \mathbf{y}(t) &= \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) = \mathbf{H}e^{\mathbf{F}t}\mathbf{x}(0) + \int_0^t \mathbf{H}e^{\mathbf{F}(t-\tau)}\mathbf{G}\mathbf{u}(\tau)d\tau + \mathbf{J}\mathbf{u}(t) \\ &= \mathbf{H}e^{\mathbf{F}t}\mathbf{x}(0) + \int_0^t \left(\mathbf{H}e^{\mathbf{F}(t-\tau)}\mathbf{G} + \mathbf{J}\delta(t-\tau)\right)\mathbf{u}(\tau)d\tau = \mathbf{y}_l(t) + \mathbf{y}_f(t) \end{aligned}$$

dove $\delta(\cdot)$ rappresenta la *delta di Dirac* per cui si ha che

$$\mathbf{y}_{f}(t) = (\mathbf{w} * \mathbf{u})(t) = \int_{-\infty}^{+\infty} \mathbf{w}(t-\tau)\mathbf{u}(\tau)d\tau \quad \text{con} \quad \mathbf{w}(t) = \mathbf{H}e^{\mathbf{F}(t)}\mathbf{G} + \mathbf{J}\delta(t) \quad \text{risposta impulsiva del sistema}$$

2.1.2 Evoluzione nel dominio della frequenza

Si consideri la *trasformata di Laplace* $\left(V(s) \triangleq \mathcal{L}[v(t)] = \int_{0^{-}}^{\infty} v(t)e^{-st} dt\right)$ di un sistema LTI multidimensionale si ha che

$$\begin{cases} \mathcal{L}[\dot{\mathbf{x}}(t)] = \mathbf{F}\mathcal{L}[\mathbf{x}(t)] + \mathbf{G}\mathcal{L}[\mathbf{u}(t)] \\ \mathcal{L}[\mathbf{y}(t)] = \mathbf{H}\mathcal{L}[\mathbf{x}(t)] + \mathbf{J}\mathcal{L}[\mathbf{u}(t)] \end{cases} \Leftrightarrow \begin{cases} s\mathbf{X}(s) - \mathbf{x}_0 = \mathbf{F}\mathbf{X}(s) + \mathbf{G}\mathbf{U}(s) \\ \mathbf{Y}(s) = \mathbf{H}\mathbf{X}(s) + \mathbf{J}\mathbf{U}(s) \end{cases} \Leftrightarrow \begin{cases} (s\mathbf{I} - \mathbf{F})\mathbf{X}(s) = \mathbf{x}_0 + \mathbf{G}\mathbf{U}(s) \\ \mathbf{Y}(s) = \mathbf{H}\mathbf{X}(s) + \mathbf{J}\mathbf{U}(s) \end{cases}$$

da cui

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{F})^{-1}\mathbf{x}_0 + (s\mathbf{I} - \mathbf{F})^{-1}\mathbf{GU}(s) = \mathbf{X}_l(s) + \mathbf{X}_f(s)$$

е

$$\begin{aligned} \mathbf{Y}(s) &= \mathbf{H}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{x}_0 + \mathbf{H}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G}\mathbf{U}(s) + \mathbf{J}\mathbf{U}(s) \\ &= \mathbf{H}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{x}_0 + (\mathbf{H}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G} + \mathbf{J})\mathbf{U}(s) \\ &= \mathbf{H}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{x}_0 + \mathbf{W}(s)\mathbf{U}(s) = \mathbf{Y}_l(s) + \mathbf{Y}_f(s) \end{aligned}$$

DOMINIO DEL TEMPO vs. DOMINIO DELLA FREQUENZA

- 1. $\mathbf{W}(s) = \mathcal{L}[\mathbf{w}(t)] = \mathbf{H}(s\mathbf{I} \mathbf{F})^{-1}\mathbf{G} + \mathbf{J}$: matrice di trasferimento, corrispondente alla trasformata di Laplace della risposta impulsiva
- 2. $\mathcal{L}[e^{\mathbf{F}t}] = (s\mathbf{I} \mathbf{F})^{-1}$: metodo alternativo per calcolare $e^{\mathbf{F}t}$

Dato il sistema

$$\Sigma : \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), & \mathbf{x}(0) = \mathbf{x}_0\\ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) \end{cases}$$

sia $\mathbf{z} \triangleq \mathbf{T}^{-1}\mathbf{x}$ dove $\mathbf{T} \in \mathbb{R}^{n \times n}$ rappresenta una matrice di cambio di base allora è possibile riscrivere le equazioni dei sistema nella nuova base

$$\Sigma': \begin{cases} \dot{\mathbf{z}}(t) = \mathbf{T}^{-1} \mathbf{F} \mathbf{T} \mathbf{z}(t) + \mathbf{T}^{-1} \mathbf{G} \mathbf{u}(t), & \mathbf{z}(0) = \mathbf{T}^{-1} \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{H} \mathbf{T} \mathbf{z}(t) + \mathbf{J} \mathbf{u}(t) \end{cases}$$

ovvero

$$\Sigma' : \begin{cases} \dot{\mathbf{z}}(t) = \mathbf{F}' \mathbf{z}(t) + \mathbf{G}' \mathbf{u}(t), & \mathbf{z}(0) = \mathbf{T}^{-1} \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{H}' \mathbf{z}(t) + \mathbf{J}' \mathbf{u}(t) \end{cases} \qquad \qquad \mathbf{F}' = \mathbf{T}^{-1} \mathbf{F} \mathbf{T}, \mathbf{G}' = \mathbf{T}^{-1} \mathbf{G} \\ \mathbf{H}' = \mathbf{H} \mathbf{T}, \mathbf{J}' = \mathbf{J} \end{cases}$$

Si verifica che

$$\mathbf{W}'(s) = \mathbf{H}'(s\mathbf{I} - \mathbf{F}')^{-1}\mathbf{G}' + \mathbf{J}' = \mathbf{H}\mathbf{T}(s\mathbf{I} - \mathbf{T}^{-1}\mathbf{F}\mathbf{T})^{-1}\mathbf{T}^{-1}\mathbf{G} + \mathbf{J}$$

= $\mathbf{H}\mathbf{T}\mathbf{T}^{-1}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{T}\mathbf{T}^{-1}\mathbf{G} + \mathbf{J} = \mathbf{H}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G} + \mathbf{J} = \mathbf{W}(s)$

 \Rightarrow i sistemi Σ e Σ' sono algebricamente equivalenti in quanto hanno la stessa matrice di trasferimento, ovvero lo stesso comportamento I/O

Si osserva che

$$\mathbf{W}(s) = \mathbf{H}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G} + \mathbf{J} = \mathbf{H}\frac{\mathsf{adj}(s\mathbf{I} - \mathbf{F})}{\det(s\mathbf{I} - \mathbf{F})}\mathbf{G} + \mathbf{J} = \begin{bmatrix} W_{11}(s) & \cdots & W_{1m}(s) \\ \vdots & \ddots & \vdots \\ W_{p1}(s) & \cdots & W_{pm}(s) \end{bmatrix} \in \mathbb{R}^{p \times m}$$

con $W_{ij}(s) = \frac{N_{ij}(s)}{D_{ij}(s)}$: funzioni razionali proprie (ovvero tali che $\deg D_{ij}(s) \ge \deg N_{ij}(s)$) di conseguenza, $p \in \mathbb{C}$ è un polo di $\mathbf{W}(s)$ se $p \in \mathbb{C}$ è un polo di almeno un $W_{ij}(s)$

$$(s\mathbf{I} - \mathbf{F})^{-1} = \frac{\operatorname{adj}(s\mathbf{I} - \mathbf{F})}{\det(s\mathbf{I} - \mathbf{F})} \implies \{\operatorname{poli} \mathbf{W}(s)\} \subseteq \{\operatorname{autovalori} \mathbf{F}\}$$

2.2 Dinamica dei sistemi a tempo discreto

Si consideri il sistema LTI a tempo discreto

$$\begin{cases} \mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), & \mathbf{x}(t_0) = \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) \end{cases} \qquad \mathbf{F} \in \mathbb{R}^{n \times n}, \mathbf{G} \in \mathbb{R}^{n \times m} \\ \mathbf{H} \in \mathbb{R}^{p \times n}, \mathbf{J} \in \mathbb{R}^{p \times m} \end{cases}$$

2.2.1 Evoluzione nel dominio del tempo

Nel caso di un sistema **autonomo** scalare $(x(t) \in \mathbb{R}, u(t) = 0)$

$$x(t+1) = fx(t), \ x(0) = x_0$$
 allora $x(t) = f^t x_0$

 \rightarrow risoluzione dell'equazione alle differenze

Analogamente, nel caso di un sistema **autonomo** ma multidimensionale ($\mathbf{x}(t) \in \mathbb{R}^n, \mathbf{u}(t) = \mathbf{0}$)

 $\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t), \ \mathbf{x}(0) = \mathbf{x}_0$ allora $\mathbf{x}(t) = \mathbf{F}^t\mathbf{x}_0$

Come calcolare \mathbf{F}^t , $\mathbf{F} \in \mathbb{R}^{n imes n}$?

- diagonalizzazione di F
 - \blacktriangleright trovare una matrice $\mathbf{T} \in \mathbb{R}^{n \times n}$ tale che $\mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \mathbf{F}_J$

$$\mathbf{F}^t = \mathbf{T} \mathbf{F}_J^t \mathbf{T}^{-1}$$

Si noti che

$$\mathbf{1.} \ \mathbf{F}_{J} = \begin{bmatrix} \mathbf{J}_{\lambda_{1}} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{J}_{\lambda_{2}} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \cdots & \mathbf{0} & \mathbf{J}_{\lambda_{k}} \end{bmatrix} \implies \mathbf{F}_{J}^{t} = \begin{bmatrix} \mathbf{J}_{\lambda_{1}}^{t} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{J}_{\lambda_{2}}^{t} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \cdots & \mathbf{0} & \mathbf{J}_{\lambda_{k}}^{t} \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{J}_{\lambda_{i}} = \begin{bmatrix} \mathbf{J}_{\lambda_{i},1} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{J}_{\lambda_{i},2} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{J}_{\lambda_{i},m_{i}}^{t} \end{bmatrix} \implies \mathbf{J}_{\lambda_{i}}^{t} = \begin{bmatrix} \mathbf{J}_{\lambda_{i},1}^{t} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{J}_{\lambda_{i},2}^{t} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{J}_{\lambda_{i},m_{i}}^{t} \end{bmatrix}$$

$$\mathbf{3(i).} \ \mathbf{J}_{\lambda_{i},j} = \begin{bmatrix} \lambda_{i} & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \lambda_{i} & \mathbf{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \mathbf{0} \\ \vdots & \ddots & \ddots & \ddots & \mathbf{0} \\ \vdots & \ddots & \ddots & \ddots & \mathbf{1} \\ \mathbf{0} & \cdots & \mathbf{0} & \lambda_{i} \end{bmatrix} \xrightarrow{\lambda_{i}\neq\mathbf{0}} \mathbf{J}_{\lambda_{i},j}^{t} = (\lambda_{i}\mathbf{I} + \mathbf{N})^{t}, \ \mathbf{N} = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\Rightarrow \mathbf{J}_{\lambda_{i},j}^{t} = \begin{bmatrix} (_{0}^{t})\lambda_{i}^{t} & (_{1}^{t})\lambda_{i}^{t-1} & (_{2}^{t})\lambda_{i}^{t-2} & \cdots & (_{m_{ij}-1}^{t})\lambda_{i}^{t-m_{ij}+1} \\ \mathbf{0} & (_{0}^{t})\lambda_{i}^{t} & (_{1}^{t})\lambda_{i}^{t-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & (_{1}^{t})\lambda_{i}^{t-2} \\ \vdots & \ddots & \ddots & (_{1}^{t})\lambda_{i}^{t-1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

siano A, B
$$\in \mathbb{R}^{n \times n}$$
 con AB = BA
allora $(\mathbf{A} + \mathbf{B})^t = \sum_{k=0}^t {t \choose k} \mathbf{A}^{t-k} \mathbf{B}^k = \sum_{k=0}^t \frac{t!}{(t-k)!k!} \mathbf{A}^{t-k} \mathbf{B}^k$ (binomio di Newton)
 $\Rightarrow \mathbf{J}_{\lambda_i,j}^t = (\lambda_i \mathbf{I} + \mathbf{N})^t = \sum_{k=0}^t {t \choose k} (\lambda_i \mathbf{I})^{t-k} \mathbf{N}^k$
 $= (t \ge m_{ij}^r) = {t \choose 0} \lambda_i^t + {t \choose 1} \lambda_i^{t-1} \mathbf{N} + {t \choose 2} \lambda_i^{t-1} \mathbf{N}^2 + \dots + {t \choose m_{ij}^r} \lambda_i^{t-(m_{ij}^r-1)} \mathbf{N}^{m_{ij}^r-1}$
 $\mathbf{N} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix}, \mathbf{N}^2 = \begin{bmatrix} 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix}, \dots, \mathbf{N}^{m_{ij}^r-1} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix}, \mathbf{N}^k = 0$
3(ii). $\mathbf{J}_{\lambda_i,j} = \begin{bmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_i \end{bmatrix} \xrightarrow{\lambda_{i=0}} \mathbf{J}_{\lambda_i,j}^t = \mathbf{N}^t, \quad \mathbf{N} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix}$
 $\Rightarrow \mathbf{J}_{\lambda_i,j}^t = \begin{bmatrix} \delta(t) & \delta(t-1) & \delta(t-2) & \cdots & \delta(t-m_{ij}^r+1) \\ 0 & \delta(t) & \delta(t-1) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \delta(t-2) \\ \vdots & \ddots & \ddots & \delta(t-2) \\ \vdots & \ddots & \ddots & \delta(t-1) \\ 0 & \cdots & \cdots & 0 & \delta(t) \end{bmatrix}$

 $\begin{pmatrix} t \\ 0 \end{pmatrix} \lambda_i^t, \begin{pmatrix} t \\ 1 \end{pmatrix} \lambda_i^{t-1}, \begin{pmatrix} t \\ 2 \end{pmatrix} \lambda_i^{t-2}, \dots, \begin{pmatrix} t \\ m_{ij}^r - 1 \end{pmatrix} \lambda_i^{t-m_{ij}^r+1}$ $\delta(t), \delta(t-1), \delta(t-2), \dots, \delta(t-m_{ij}^r+1)$

modi elementari del sistema

si verifica che

- 1. se $\lambda_i \neq 0$ allora $\binom{t}{k} \lambda_i^{t-k} \sim t^k \lambda_i^t = t^k e^{t(\ln \lambda_i)}$ dove $\ln(\cdot)$ indica il logaritmo naturale complesso
- 2. se $\lambda_i = 0$ allora i modi elementari si annullano dopo un numero finito di passi (e non esiste la controparte modale a tempo continuo)
- 3. se $\lambda_i = \sigma_i + i\omega_i \in \mathbb{C}$ è un autovalore di \mathbf{F} allora
 - nel caso $\lambda_i \neq 0$ il modo corrispondente è $\binom{t}{k_i} \lambda_i^{t-k_i} \sim t^{k_i} \lambda_i^t = t^{k_i} e^{t(\ln \lambda_i)} = t^{k_i} e^{t(\ln |\lambda_i| + i \arg(\lambda_i))}$
 - nel caso $\lambda_i = 0$ il modo corrispondente è $\delta(t k_i)$

in particolare (carattere dei modi)

Dato il sistema LTI autonomo multidimensionale ($\mathbf{x}(t) \in \mathbb{R}^n, \mathbf{u}(t) = \mathbf{0}$)

$$\begin{split} \mathbf{x}(t+1) &= \mathbf{F}\mathbf{x}(t), \ \mathbf{x}(0) = \mathbf{x}_0 & \text{allora} & \mathbf{x}(t) = \mathbf{x}_l(t) = \mathbf{F}^t \mathbf{x}_0 & \mathbf{x}_l(t): \text{ evolutione libera} \\ \mathbf{y}(t) &= \mathbf{H}\mathbf{x}(t) & \text{allora} & \mathbf{y}(t) = \mathbf{y}_l(t) = \mathbf{H}\mathbf{x}_l(t) = \mathbf{H}\mathbf{F}^t \mathbf{x}_0 \\ &= \text{combinatione lineare di vettori dei modi elementari} \end{split}$$

in particolare, sia $\mathbf{F} \in \mathbb{R}^{n imes n}$ con autovalori $\{\lambda_i\}_{i=1}^k$, allora (*comportamento asintotico del sistema*)

$$\begin{aligned} |\lambda_i| < 1, \forall i \qquad \iff \mathbf{F}^t \xrightarrow{t \to \infty} 0 \implies \mathbf{y}(t) = \mathbf{H} \mathbf{F}^t \mathbf{x}_0 \xrightarrow{t \to \infty} \mathbf{0} \\ \mathbf{F}^t = \mathbf{0} \text{ per } t \text{ finito se } \lambda_i = 0 \end{aligned}$$

 $\begin{array}{ll} |\lambda_i| \leq 1, \ \forall i \ \mathsf{e} \\ m_i^a = m_i^g \ \mathsf{se} \ |\lambda_i| = 1 \end{array} & \Longleftrightarrow \quad \mathbf{F}^t \ \mathsf{limitata} \qquad \Longrightarrow \ \mathbf{y}(t) = \mathbf{H} \mathbf{F}^t \mathbf{x}_0 \ \mathsf{limitata} \end{array}$

 $\begin{array}{l} \exists \, \lambda_i \text{ tale che } |\lambda_i| > 1 \\ \mathsf{o} \, |\lambda_i| = 1 \, \mathsf{e} \, \, m_i^a > m_i^g \end{array} \iff \begin{array}{l} \mathbf{F}^t \text{ non limitata} \end{array} \implies \begin{array}{l} \mathbf{y}(t) = \mathbf{H} \mathbf{F}^t \mathbf{x}_0 \ ? \\ \text{dipendente da } \mathbf{H}, \mathbf{x}_0 \end{array}$

Dato il sistema LTI NON autonomo multidimensionale ($\mathbf{x}(t) \in \mathbb{R}^n, \mathbf{u}(t) \neq \mathbf{0}$)

$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), \ \mathbf{x}(0) = \mathbf{x}_0$	allora	$\mathbf{x}(t) = \mathbf{x}_l(t) + \mathbf{x}_f(t)$	$\mathbf{x}_f(t)$: evoluzione forzata
$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t)$	allora	$\mathbf{y}(t) = \mathbf{y}_l(t) + \mathbf{y}_f(t)$	

in particolare,

$$\begin{aligned} \mathbf{x}(1) &= \mathbf{F}\mathbf{x}(0) + \mathbf{G}\mathbf{u}(0) \\ \mathbf{x}(2) &= \mathbf{F}\mathbf{x}(1) + \mathbf{G}\mathbf{u}(1) = \mathbf{F}(\mathbf{F}\mathbf{x}(0) + \mathbf{G}\mathbf{u}(0)) + \mathbf{G}\mathbf{u}(1) = \mathbf{F}^{2}\mathbf{x}_{0} + \mathbf{F}\mathbf{G}\mathbf{u}(0) + \mathbf{G}\mathbf{u}(1) \\ \mathbf{x}(3) &= \mathbf{F}\mathbf{x}(2) + \mathbf{G}\mathbf{u}(2) = \mathbf{F}(\mathbf{F}^{2}\mathbf{x}_{0} + \mathbf{F}\mathbf{G}\mathbf{u}(0) + \mathbf{G}\mathbf{u}(1)) + \mathbf{G}\mathbf{u}(2) = \mathbf{F}^{3}\mathbf{x}_{0} + \mathbf{F}^{2}\mathbf{G}\mathbf{u}(0) + \mathbf{F}\mathbf{G}\mathbf{u}(1) + \mathbf{G}\mathbf{u}(2) \\ \vdots \end{aligned}$$

$$\mathbf{x}(t) = \mathbf{F}^{t}\mathbf{x}(0) + \sum_{k=0}^{t-1} \mathbf{F}^{t-1-k}\mathbf{G}\mathbf{u}(k) = \mathbf{F}^{t}\mathbf{x}(0) + \underbrace{\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \mathbf{F}^{2}\mathbf{G} & \dots & \mathbf{F}^{t-1}\mathbf{G} \end{bmatrix}}_{\mathcal{R}_{t} \in \mathbb{R}^{n \times mt}} \underbrace{\begin{bmatrix} \mathbf{u}(t-1) \\ \mathbf{u}(u-2) \\ \vdots \\ \mathbf{u}(0) \end{bmatrix}}_{\mathbf{u}_{t} \in \mathbb{R}^{mt}}$$

da cui si conclude che

$$\mathbf{x}(t) = \mathbf{F}^{t}\mathbf{x}(0) + \mathcal{R}_{t}\mathbf{u}_{t} = \mathbf{x}_{l}(t) + \mathbf{x}_{f}(t)$$

Di conseguenza

$$\begin{aligned} \mathbf{y}(t) &= \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) = \mathbf{H}\mathbf{F}^{t}\mathbf{x}(0) + \sum_{k=0}^{t-1}\mathbf{H}\mathbf{F}^{t-1-k}\mathbf{G}\mathbf{u}(k) + \mathbf{J}\mathbf{u}(t) \\ &= \mathbf{H}\mathbf{F}^{t}\mathbf{x}(0) + (\mathbf{H}\mathcal{R}_{t}\mathbf{u}_{t} + \mathbf{J}\mathbf{u}(t)) = \mathbf{y}_{l}(t) + \mathbf{y}_{f}(t) \end{aligned}$$

dove

$$\begin{split} \mathbf{y}_f(t) &= \left(\mathbf{w} * \mathbf{u}\right)(t) = \sum_{-\infty}^{+\infty} \mathbf{w}(t-k) \mathbf{u}(k) \\ &= \left(\mathbf{u}(k) = \mathbf{w}(k) = \mathbf{0}, k < 0\right) = \sum_{0}^{t} \mathbf{w}(t-k) \mathbf{u}(k) \\ &\quad \text{con} \quad \mathbf{w}(t) = \begin{cases} \mathbf{J} & t = 0 \\ \mathbf{H}\mathbf{F}^{t-1}\mathbf{G} & t > 0 \end{cases} \quad \text{risposta impulsiva del sistema} \end{split}$$

2.2.2 Evoluzione nel dominio della frequenza

Si consideri la *trasformata Zeta* $\left(V(z) \triangleq \mathcal{Z}[v(t)] = \sum_{0}^{\infty} v(t)z^{-t}\right)$ di un sistema LTI multidimensionale si ha che

$$\begin{cases} \mathcal{Z}[\mathbf{x}(t+1)] = \mathbf{F}\mathcal{Z}[\mathbf{x}(t)] + \mathbf{G}\mathcal{Z}[\mathbf{u}(t)] \\ \mathcal{Z}[\mathbf{y}(t)] = \mathbf{H}\mathcal{Z}[\mathbf{x}(t)] + \mathbf{J}\mathcal{Z}[\mathbf{u}(t)] \end{cases} \Leftrightarrow \begin{cases} z\mathbf{X}(z) - z\mathbf{x}_0 = \mathbf{F}\mathbf{X}(z) + \mathbf{G}\mathbf{U}(z) \\ \mathbf{Y}(z) = \mathbf{H}\mathbf{X}(z) + \mathbf{J}\mathbf{U}(z) \end{cases} \Leftrightarrow \begin{cases} (z\mathbf{I} - \mathbf{F})\mathbf{X}(z) = z\mathbf{x}_0 + \mathbf{G}\mathbf{U}(s) \\ \mathbf{Y}(z) = \mathbf{H}\mathbf{X}(z) + \mathbf{J}\mathbf{U}(z) \end{cases}$$

da cui

е

$$\begin{split} \mathbf{X}(z) &= (z\mathbf{I} - \mathbf{F})^{-1} z\mathbf{x}_0 + (z\mathbf{I} - \mathbf{F})^{-1} \mathbf{G} \mathbf{U}(z) = \mathbf{X}_l(z) + \mathbf{X}_f(z) \\ \mathbf{Y}(z) &= \mathbf{H}(z\mathbf{I} - \mathbf{F})^{-1} z\mathbf{x}_0 + \mathbf{H}(z\mathbf{I} - \mathbf{F})^{-1} \mathbf{G} \mathbf{U}(z) + \mathbf{J} \mathbf{U}(z) \\ &= \mathbf{H}(z\mathbf{I} - \mathbf{F})^{-1} z\mathbf{x}_0 + (\mathbf{H}(z\mathbf{I} - \mathbf{F})^{-1} \mathbf{G} + \mathbf{J}) \mathbf{U}(z) \\ &= \mathbf{H}(z\mathbf{I} - \mathbf{F})^{-1} z\mathbf{x}_0 + \mathbf{W}(z) \mathbf{U}(z) = \mathbf{Y}_l(z) + \mathbf{Y}_f(z) \end{split}$$

DOMINIO DEL TEMPO vs. DOMINIO DELLA FREQUENZA

- 1. $\mathbf{W}(z) = \mathcal{Z}[\mathbf{w}(t)] = \mathbf{H}(z\mathbf{I} \mathbf{F})^{-1}\mathbf{G} + \mathbf{J}$: matrice di trasferimento, corrispondente alla trasformata Zeta della risposta impulsiva
- 2. $\mathcal{Z}[\mathbf{F}^t] = z(z\mathbf{I} \mathbf{F})^{-1}$: metodo alternativo per calcolare \mathbf{F}^t

2.3 Analisi della stabilità

stabilità: proprietà legata al concetto di ritornare o rimanere in una certo stato entro certi limiti o condizioni desiderate nel tempo, nonostante le perturbazioni o le variazioni interne o esterne

In generale, si distingue tra

- stabilità di un punto (di equilibrio): proprietà che indica come il sistema risponde alle perturbazioni intorno a quel punto stesso in cui le sue variabili di stato rimangono costanti nel tempo, cioè dove le equazioni del sistema sono soddisfatte senza alcuna variazione nel tempo,
- stabilità di un sistema: proprietà che dipende dall'insieme di tutti i punti di equilibrio di un sistema e dalla loro interazione dinamica → la stabilità di un sistema può coinvolgere non solo la stabilità dei suoi punti di equilibrio, ma anche la stabilità delle traiettorie che il sistema può seguire nel suo spazio di stato.

2.3.1 Stabilità dei sistemi lineari

stabilità

- asintotica: un sistema lineare è asintoticamente stabile se, partendo da una condizione iniziale arbitraria, nel limite temporale infinito, le sue soluzioni si avvicinano progressivamente allo stato di equilibrio
- semplice: un sistema lineare è semplicemente (o strettamente) stabile se, partendo da una condizione iniziale arbitraria, le sue soluzioni possono avvicinarsi all'equilibrio nel tempo senza oscillazioni significative, ma potrebbero non convergere all'equilibrio nel limite temporale infinito
- BIBO (Bounded-Input Bounded-Output): un sistema lineare è BIBO-stabile se, quando l'ingresso è limitato in ampiezza (bounded), l'uscita rimane limitata in ampiezza, indipendentemente dallo stato iniziale del sistema.

sistemi a tempo continuo

sia $\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t)$, $\mathbf{F} \in \mathbb{R}^{n imes n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

- se $\Re[\lambda_i] < 0, \forall i$ allora il sistema è asintoticamente stabile
- se $\Re[\lambda_i] \le 0$, $\forall i \in m_i^a = m_i^g$ se $\Re[\lambda_i] = 0$ allora il sistema è semplicemente stabile
- $\exists \lambda_i$ tale che $\Re[\lambda_i] > 0$ o $\Re[\lambda_i] = 0$ e $m_i^a > m_i^g$ allora il sistema è instabile

sistemi a tempo discreto

sia $\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t)$, $\mathbf{F} \in \mathbb{R}^{n imes n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

- se $|\lambda_i| < 1, \forall i$ allora il sistema è asintoticamente stabile
- se $|\lambda_i| \leq 1$, $\forall i \in m_i^a = m_i^g$ se $|\lambda_i| = 1$ allora il sistema è semplicemente stabile
- $\exists \lambda_i$ tale che $|\lambda_i| > 1$ o $|\lambda_i| = 1$ e $m_i^a > m_i^g$ allora il sistema è instabile

sistemi a tempo continuo o discreto

sia

 $\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), & \mathbf{x}(t_0) = \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) \end{cases} \qquad \begin{cases} \mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), & \mathbf{x}(t_0) = \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{J}\mathbf{u}(t) \end{cases}$

allora il sistema si dice BIBO stabile se per ogni vettore d'ingresso $\mathbf{u}(t)$ con componenti limitate in t la corrispondente uscita forzata $\mathbf{y}_f(t) = \int_0^t \left(\mathbf{H} e^{\mathbf{F}(t-\tau)} \mathbf{G} + \mathbf{J} \delta(t-\tau) \right) \mathbf{u}(\tau) d\tau / \mathbf{y}_f(t) = \sum_{k=0}^{t-1} \mathbf{H} \mathbf{F}^{t-1-k} \mathbf{G} \mathbf{u}(k) + \mathbf{J} \mathbf{u}(t)$ ha componenti limitate in t.

Proposizione Siano $\{p_i\}_{i=1}^r$ i poli della matrice di trasferimento del sistema ridotta ai minimi termini, *cioè dopo tutte le possibili cancellazioni zero-polo dei suoi elementi*. Il sistema è BIBO stabile se e solo se $\Re[p_i] < 0$ per ogni i = 1, 2, ..., r.

dal momento che i poli della matrice sono un sottoinsieme proprio degli autovalori di F, si ha che

stabilità asintotica \implies BIBO stabilità

2.3.2 Stabilità dei sistemi non lineari

sistemi a tempo continuo

Teorema Sia $\dot{\delta}_x(t) = \mathbf{F} \delta_x(t)$ il sistema linearizzato di $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$ attorno al punto di equilibrio $\bar{\mathbf{x}}$ e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di \mathbf{F} . Allora

- 1. se il sistema linearizzato è asintoticamente stabile ($\Re[\lambda_i] < 0, \forall i$), allora $\bar{\mathbf{x}}$ è un punto di equilibrio asintoticamente stabile per il sistema non lineare
- 2. se il sistema linearizzato ha un autovalore con parte reale positiva ($\exists i$ tale che $\Re[\lambda_i] > 0$), allora $\bar{\mathbf{x}}$ è un punto di equilibrio instabile per il sistema non lineare.

► caso critico: $\Re[\lambda_i] \leq 0$, $\forall i$, $e \exists i$: $\Re[\lambda_i] = 0$

esempio

1. $\dot{x} = \sin x$

$$\begin{array}{lll} \bar{x} = 0: & \dot{\delta}_x = \cos(\bar{x})\delta_x \to \dot{\delta}_x = \delta_x & \lambda = 1 & \Longrightarrow \ \bar{x} = 0 \ \text{instabile} \\ \bar{x} = \pi: & \dot{\delta}_x = \cos(\bar{x})\delta_x \to \dot{\delta}_x = -\delta_x & \lambda = -1 & \Longrightarrow \ \bar{x} = \pi \ \text{stabile} \end{array}$$

$$\begin{aligned} \mathbf{2.} & \begin{cases} \dot{x}_1 = f_1(x_1, x_2) = x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = f_2(x_1, x_2) = x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{cases} \\ & \bar{\mathbf{x}} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; \quad \mathbf{F} = \begin{bmatrix} \frac{\partial f_1(x_1, x_2)}{\partial x_1} & \frac{\partial f_1(x_1, x_2)}{\partial x_2} \\ \frac{\partial f_2(x_1, x_2)}{\partial x_2} & \frac{\partial f_2(x_1, x_2)}{\partial x_2} \end{bmatrix}_{\substack{x_1 = 0 \\ x_2 = 0}} = \begin{bmatrix} 1 - 3x_1^2 - x_2^2 & -1 - 2x_1x_2 \\ 1 - 2x_1x_2 & 1 - x_1^2 - 3x_2^2 \end{bmatrix}_{\substack{x_1 = 0 \\ x_2 = 0}} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \\ & \Delta_{\mathbf{F}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{F}) = \det\left(\begin{bmatrix} \lambda - 1 & 1 \\ -1 & \lambda - 1 \end{bmatrix}\right) = \lambda^2 - 2\lambda + 2 = 0 \quad \leftrightarrow \quad \lambda_{1,2} = 1 \pm i \\ & \Re[\lambda_{1,2}] > 0 \implies \bar{\mathbf{x}} \text{ instabile} \end{aligned}$$

$$\begin{array}{lll} \textbf{3.} & \dot{x} = \alpha x^3, \quad \alpha \in \mathbb{R} \\ & \bar{x} = 0: \quad \dot{\delta}_x = 3\alpha \bar{x}^2 \delta_x \ \rightarrow \ \dot{\delta}_x = 0 \ \lambda = 0 & \Longrightarrow \end{array} \begin{array}{ll} \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} & \textbf{2.5} \\ & \textbf{2.5} & \textbf{2.5}$$

 \boxtimes

sistemi a tempo discreto

Teorema Sia $\delta_x(t+1) = \mathbf{F}\delta_x(t)$ il sistema linearizzato di $\mathbf{x}(t+1) = f(\mathbf{x}(t))$ attorno al punto di equilibrio $\bar{\mathbf{x}}$ e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di \mathbf{F} . Allora

- 1. se il sistema linearizzato è asintoticamente stabile ($|\lambda_i| < 1$, $\forall i$), allora $\bar{\mathbf{x}}$ è un punto di equilibrio asintoticamente stabile per il sistema non lineare
- 2. se il sistema linearizzato ha un autovalore con parte reale positiva ($\exists i$ tale che $|\lambda_i| > 1$), allora $\bar{\mathbf{x}}$ è un punto di equilibrio instabile per il sistema non lineare.
- ▶ caso critico: $|\lambda_i| \leq 1$, $\forall i$, e $\exists i$: $|\lambda_i| = 1$

3 RAGGIUNGIBILITÀ E CONTROLLABILITÀ DEI SISTEMI DINAMICI

raggiungibilità di un sistema \sim possibilità di raggiungere un <u>qualsiasi</u> stato desiderato \mathbf{x}^* a partire da uno stato \mathbf{x}_0 <u>fissato</u> agendo su $\mathbf{u}(t)$

- stato raggiungibile: lo stato \mathbf{x}^* è raggiungibile dallo stato \mathbf{x}_0 al tempo t^* se esiste un ingresso $\mathbf{u}(t)$, $t_0 \le t \le t^*$, tale che $\mathbf{x}(t_0) = \mathbf{x}_0$ e $\mathbf{x}(t^*) = \mathbf{x}^*$
- spazio raggiungibile: spazio raggiungibile al tempo $t X_R(t)$ è l'insieme di tutti gli stati \mathbf{x}^* raggiungibili dallo stato \mathbf{x}_0 al tempo t
- ▶ tipicamente: $\mathbf{x}_0 = \mathbf{0}$, $t_0 = 0$

esempio

modello di stato

$$\dot{x}_1(t) = \dot{v}_{C_1}(t) = \frac{1}{C_1}i_{C_1}(t) = \frac{1}{C_1}i_R(t) = \frac{1}{C_1}\left(\frac{u(t) - v_{C_1}(t)}{R}\right) = \frac{1}{RC_1}u(t) - \frac{1}{RC_1}x_1(t)$$
$$\dot{x}_2(t) = \dot{v}_{C_2}(t) = \frac{1}{C_2}i_{C_2}(t) = \frac{1}{C_2}i_R(t) = \frac{1}{C_2}\left(\frac{u(t) - v_{C_2}(t)}{R}\right) = \frac{1}{RC_2}u(t) - \frac{1}{RC_2}x_2(t)$$

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \qquad \dot{\mathbf{x}}(t) = \begin{bmatrix} -\frac{1}{RC_1} & 0 \\ 0 & -\frac{1}{RC_2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{RC_1} \\ \frac{1}{RC_2} \end{bmatrix} u = \mathbf{F}\mathbf{x} + \mathbf{g}u$$

se $C_1 = C_2 = C$ allora $x_1(t) = x_2(t)$, $\forall u(t), \forall t \ge 0$, infatti

$$\begin{aligned} \mathbf{x}(t) &= e^{\mathbf{F}t} \mathbf{x}_0 + \int_0^t e^{\mathbf{F}(t-\tau)} \mathbf{g} u(\tau) d\tau = \int_0^t \begin{bmatrix} e^{-\frac{1}{RC}(t-\tau)} & 0\\ 0 & e^{-\frac{1}{RC}(t-\tau)} \end{bmatrix} \begin{bmatrix} \frac{1}{RC} \\ \frac{1}{RC} \end{bmatrix} u(\tau) d\tau \\ &= \frac{1}{RC} \int_0^t \begin{bmatrix} e^{-\frac{1}{RC}(t-\tau)} \\ e^{-\frac{1}{RC}(t-\tau)} \end{bmatrix} u(\tau) d\tau \\ &= \frac{1}{RC} \begin{bmatrix} \int_0^t e^{-\frac{1}{RC}(t-\tau)} u(\tau) d\tau \\ \int_0^t e^{-\frac{1}{RC}(t-\tau)} u(\tau) d\tau \end{bmatrix} \end{aligned}$$

da cui

$$X_R(t) = \{x_1 = x_2\}, \ \forall t \ge 0$$

 \boxtimes

controllabilità di un sistema ~ possibilità di raggiungere uno stato desiderato \mathbf{x}^* fissato a partire da un qualsiasi stato \mathbf{x}_0 agendo su $\mathbf{u}(t)$

- stato controllabile: lo stato \mathbf{x}_0 è controllabile allo stato \mathbf{x}^* al tempo t^* se esiste un ingresso $\mathbf{u}(t)$, $t_0 \le t \le t^*$, tale che $\mathbf{x}(t_0) = \mathbf{x}_0$ e $\mathbf{x}(t^*) = \mathbf{x}^*$
- spazio controllabile: spazio controllabile al tempo $t X_C(t)$ è l'insieme di tutti gli stati \mathbf{x}_0 controllabili allo stato \mathbf{x}^* al tempo t

▶ tipicamente: $\mathbf{x}^* = \mathbf{0}$, $t_0 = 0$ (controllabilità a zero)

si noti che se ${\bf x}_0$ è controllabile allo stato ${\bf x}^*$ allora ${\bf x}^*$ è raggiungibile dallo stato ${\bf x}_0$

3.1 Raggiungibilità di sistemi a tempo discreto

dato $\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \operatorname{con} \mathbf{x}(0) = \mathbf{x}_0$, allora $\mathbf{x}^*(t) = \mathbf{x}(t) = \mathbf{F}^t \mathbf{x}_0 + \sum_{k=0}^{t-1} \mathbf{F}^{t-k-1} \mathbf{G}\mathbf{u}(k)$

in particolare, se $\mathbf{x}(0) = \mathbf{0}$ allora $\mathbf{x}^*(t) = \mathbf{x}(t) = \sum_{k=0}^{t-1} \mathbf{F}^{t-k-1} \mathbf{G} \mathbf{u}(k) = \mathcal{R}_t \mathbf{u}_t$

$$\mathcal{R}_t = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{t-1}\mathbf{G} \end{bmatrix} \in \mathbb{R}^{n imes mt}$$

matrice di raggiungibilità in t passi

qual è l'insieme di stati \mathbf{x}^* raggiungibili al tempo t (= in t passi) a partire da $\mathbf{x}(0) = \mathbf{0}$?

 $X_R(t) = im(\mathcal{R}_t)$: spazio raggiungibile in t passi

Proposizione In un sistema di dimensione n, gli spazi raggiungibili in 1, 2, ... passi soddisfano la catena di inclusioni $X_R(1) \subseteq X_R(2) \subseteq ... X_R(t) \subseteq X_R(t+1) \subseteq ...$ La catena è stazionaria (almeno) dal t'-esimo passo in poi, ovvero $X_R(t') = X_R(t''), \forall t'' \ge t'$, con $t' \le n$.

Dimostrazione. Per il *teorema di Cayley-Hamilton*, il polinomio caratteristico $\Delta_{\mathbf{F}}(\lambda) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \ldots + \alpha_1\lambda + \alpha_0$ di $\mathbf{F} \in \mathbb{R}^{n \times n}$ è un polinomio annullatore per \mathbf{F} , ovvero

$$\Delta_{\mathbf{F}}(\mathbf{F}) = \mathbf{F}^n + \alpha_{n-1}\mathbf{F}^{n-1} + \ldots + \alpha_1\mathbf{F} + \alpha_0\mathbf{I} = \mathbf{0}$$

Sia $\mathbf{G} = \left[\mathbf{g}_1 \dots \mathbf{g}_m
ight] \in \mathbb{R}^{n imes m}$, si dimostra allora

1. catena di inclusioni: $X_R(t) \subseteq X_R(t+1) \ \forall t$

$$\mathcal{R}_t = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{t-1}\mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{g}_1 \dots \mathbf{g}_m & \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m & \dots & \mathbf{F}^{t-1}\mathbf{g}_1 \dots \mathbf{F}^{t-1}\mathbf{g}_m \end{bmatrix}$$
$$\mathcal{R}_{t+1} = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^t\mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{g}_1 \dots \mathbf{g}_m & \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m & \dots & \mathbf{F}^{t-1}\mathbf{g}_1 \dots \mathbf{F}^{t-1}\mathbf{g}_m & \mathbf{F}^t\mathbf{g}_1 \dots \mathbf{F}^t\mathbf{g}_m \end{bmatrix}$$

 $\Rightarrow X_R(t) = \operatorname{im}(\mathcal{R}_t) \subseteq \operatorname{im}(\mathcal{R}_{t+1}) = X_R(t+1)$

le colonne della matrice di raggiungibilità in t passi sono un sottoinsieme di quelle della matrice di raggiungibilità in t + 1 passi.

2. stazionarietà della catena

$$\begin{split} X_R(n) &= \operatorname{im}(\mathcal{R}_n) = \operatorname{span}\{\mathbf{g}_1 \dots \mathbf{g}_m, \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m, \dots, \mathbf{F}^{n-1}\mathbf{g}_1 \dots \mathbf{F}^{n-1}\mathbf{g}_m\}\\ X_R(n+1) &= \operatorname{im}(\mathcal{R}_{n+1}) = \operatorname{span}\{\mathbf{g}_1 \dots \mathbf{g}_m, \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m, \dots, \mathbf{F}^{n-1}\mathbf{g}_1 \dots \mathbf{F}^{n-1}\mathbf{g}_m, \mathbf{F}^n\mathbf{g}_1 \dots \mathbf{F}^n\mathbf{g}_m\} \end{split}$$

per il teorema di Cayley-Hamilton

$$\Delta_{\mathbf{F}}(\mathbf{F}) = \mathbf{0} \Rightarrow \mathbf{F}^{n} = -\alpha_{n-1}\mathbf{F}^{n-1} - \dots - \alpha_{1}\mathbf{F} - \alpha_{0}\mathbf{I}$$
$$\Rightarrow \mathbf{F}^{n}\mathbf{g}_{k} = -\alpha_{n-1}\mathbf{F}^{n-1}\mathbf{g}_{k} - \dots - \alpha_{1}\mathbf{F}\mathbf{g}_{k} - \alpha_{0}\mathbf{g}_{k} \quad \forall k \in \{1\dots m\}$$

 $\implies X_R(n+1) = span\{\mathbf{g}_1 \dots \mathbf{g}_m, \mathbf{F}\mathbf{g}_1 \dots \mathbf{F}\mathbf{g}_m, \dots, \mathbf{F}^{n-1}\mathbf{g}_1 \dots \mathbf{F}^{n-1}\mathbf{g}_m\} = X_R(n)$ esiste sicuramente $t' \leq n$ tale che $X_R(t') = X_R(t'+1)$.

Dimostrare poi che $X_R(t') = X_R(t'+1) \Rightarrow X_R(t'+1) = X_R(t'+2)$ equivale a dimostrare che im $(\mathbf{F}^{t'+1}\mathbf{G}) \subseteq$ im $(\begin{bmatrix} \mathbf{G} \quad \mathbf{F}\mathbf{G} \quad \dots \quad \mathbf{F}^{t'}\mathbf{G} \end{bmatrix}) = X_R(t'+1)$ poichè $X_R(t'+2) = \operatorname{im}(\begin{bmatrix} \mathbf{G} \quad \mathbf{F}\mathbf{G} \quad \dots \quad \mathbf{F}^{t'}\mathbf{G} \quad \mathbf{F}^{t'+1}\mathbf{G} \end{bmatrix})$ Per semplicità si consideri il caso m = 1, ovvero $\mathbf{G} = \mathbf{g} \in \mathbb{R}^n$, allora

$$\mathbf{F}^{t'+1}\mathbf{g} = \mathbf{F} \left(\mathbf{F}^{t'}\mathbf{g}\right) = \left(X_R(t'+1) = X_R(t')\right) = \mathbf{F} \left(\sum_{k=0}^{t'-1} \beta_k \mathbf{F}^k \mathbf{g}\right)$$
$$= \mathbf{F} \left(\beta_{t'-1}\mathbf{F}^{t'-1}\mathbf{g} + \sum_{k=0}^{t'-2} \beta_k \mathbf{F}^k \mathbf{g}\right) = \beta_{t'-1}\mathbf{F}^{t'}\mathbf{g} + \sum_{k=0}^{t'-2} \beta_k \mathbf{F}^{k+1}\mathbf{g}$$

si ha che $\beta_{t'-1} \mathbf{F}^{t'} \mathbf{g} \in X_R(t'+1) = X_R(t')$ e $\sum_{k=0}^{t'-2} \beta^k \mathbf{F}^{k+1} \mathbf{g} \in X_R(t') = X_R(t'+1)$

di conseguenza im $(\mathbf{F}^{t'+1}\mathbf{G}) \subseteq X_R(t'+1) \Rightarrow X_R(t'+1) = X_R(t'+2)$

$$t'$$
: indice di raggiungibilità $X_R \triangleq X_R(t')$: (massimo) spazio raggiungibile

3.1.1 Criterio di raggiungibilità del rango

quando è possibile raggiungere tutti i possibili stati $\mathbf{x}^* \in \mathbb{R}^n$?

(completa) raggiungibilità

- un sistema Σ a tempo discreto si dice (completamente) raggiungibile se $X_R = \mathbb{R}^n$
- un sistema Σ a tempo discreto si dice (completamente) raggiungibile in t passi se $X_R(t) = \mathbb{R}^n$, con t indice di raggiungibilità

 $\blacktriangleright \ \mathcal{R} \triangleq \mathcal{R}_n = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{n-1}\mathbf{G} \end{bmatrix}$: matrice di raggiungibilità del sistema

 $\Sigma \text{ raggiungibile } \iff \operatorname{im}(\mathcal{R}) = \mathbb{R}^n \iff \operatorname{rank}(\mathcal{R}) = n$

si noti che $\mathcal{R} \in \mathbb{R}^{n imes mn}$, per cui

- m = 1: Σ raggiungibile $\iff \det(\mathcal{R}) \neq 0$
- m > 1: Σ raggiungibile $\iff \det(\mathcal{RR}^{\top}) \neq 0$

esempio

$$\begin{aligned} \mathbf{1.} \ \mathbf{x}(t+1) &= \begin{bmatrix} \alpha_1 & 0\\ 1 & \alpha_2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0\\ 1 \end{bmatrix} \mathbf{u}(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \\ \mathbf{F} &= \begin{bmatrix} \alpha_1 & 0\\ 1 & \alpha_2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 0\\ 1 \end{bmatrix} \implies \mathcal{R} = \begin{bmatrix} \mathbf{g} & \mathbf{Fg} \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1 & \alpha_2 \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 1 < 2 \\ \implies \Sigma \text{ non raggiungibile } \forall \alpha_1, \alpha_2 \in \mathbb{R} \end{aligned}$$

2.
$$\mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}(t), \ \alpha_1, \alpha_2 \in \mathbb{R}$$

 $\mathbf{F} = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \implies \mathcal{R} = \begin{bmatrix} \mathbf{g} & \mathbf{Fg} \end{bmatrix} = \begin{bmatrix} 1 & \alpha_1 \\ 0 & 1 \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 2$
 $\implies \Sigma \operatorname{raggiungibile}(\operatorname{in} 2 \operatorname{passi}) \forall \alpha_1, \alpha_2 \in \mathbb{R}$

 \Rightarrow \varSigma raggiungibile (in 2 passi) $\forall lpha_1, lpha_2 \in \mathbb{R}$

3.
$$\mathbf{x}(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u}(t)$$
$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{G} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \Rightarrow \qquad X_R(1) = \operatorname{im}(\mathbf{G}) = \operatorname{span}\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
$$X_R(2) = \operatorname{im}(\begin{bmatrix} \mathbf{G} & \mathbf{FG} \end{bmatrix}) = \operatorname{span}\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

 $\implies \Sigma$ raggiungibile (in 2 passi)

Si considerino due sistemi algebricamente equivalenti $\Sigma=({\bf F},{\bf G})$ e $\Sigma'=({\bf F}',{\bf G}')$ tali che

$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \quad \xrightarrow{\mathbf{z}=\mathbf{T}^{-1}\mathbf{x}} \quad \mathbf{z}(t+1) = \mathbf{F}'\mathbf{z}(t) + \mathbf{G}'\mathbf{u}(t)$$
$$\mathbf{F}' = \mathbf{T}^{-1}\mathbf{F}\mathbf{T}, \mathbf{G}' = \mathbf{T}^{-1}\mathbf{G}$$

allora

$$\mathcal{R}' = \begin{bmatrix} \mathbf{G}' & \mathbf{F}'\mathbf{G}' & \cdots & (\mathbf{F}')^{n-1}\mathbf{G}' \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{T}^{-1}\mathbf{G} & \mathbf{T}^{-1}\mathbf{F}\mathbf{T}\mathbf{T}^{-1}\mathbf{G} & \cdots & \mathbf{T}^{-1}\mathbf{F}^{n-1}\mathbf{T}\mathbf{T}^{-1}\mathbf{G} \end{bmatrix}$$
$$= \mathbf{T}^{-1}\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \cdots & \mathbf{F}^{n-1}\mathbf{G} \end{bmatrix}$$
$$= \mathbf{T}^{-1}\mathcal{R}$$

 \implies cambio di base non modifica la raggiungibilità poichè rank (\mathcal{R}') = rank (\mathcal{R})

in particolare, se Σ raggiungibile allora $det(\mathcal{RR}^{\top}) \neq 0$ perciò $\mathcal{R}' = \mathbf{T}^{-1}\mathcal{R} \implies \mathcal{R}'\mathcal{R}^{\top} = \mathbf{T}^{-1}\mathcal{RR}^{\top} \implies \mathbf{T} = \mathcal{RR}^{\top}(\mathcal{R}'\mathcal{R}^{\top})^{-1}$

3.1.2 Controllo a energia minima

se Σ è raggiungibile in t passi, come determinare l'ingresso $\mathbf{u}_t \in \mathbb{R}^{mt}$ che permetta di raggiungere un qualsiasi stato $\mathbf{x}^* \in \mathbb{R}^n$ in t passi?

caso $\mathbf{x}_0 = \mathbf{0}$: si ha che $\mathbf{x}^* = \mathbf{x}(t) = \mathcal{R}_t \mathbf{u}_t$ si introduce l'ingresso ausiliario $\mathbf{v}_t \in \mathbb{R}^{mt}$ tale che $\mathbf{u}_t = \mathcal{R}_t^\top \mathbf{v}_t$, allora $\mathbf{v}_t = (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} \mathbf{x}^*$ di conseguenza, risulta $\mathbf{u}_t = \mathcal{R}_t^\top (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} \mathbf{x}^*$

caso $\mathbf{x}_0 \neq \mathbf{0}$: si ha che $\mathbf{x}^* = \mathbf{x}(t) = \mathbf{F}^t \mathbf{x}_0 + \mathcal{R}_t \mathbf{u}_t$ di conseguenza, risulta $\mathbf{u}_t = \mathcal{R}_t^\top (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} (\mathbf{x}^* - \mathbf{F}^t \mathbf{x}_0)$

si osserva che

- 1. l'ingresso \mathbf{u}_t generalmente non è unico \rightarrow insieme dei possibili ingressi: $\mathcal{U}_t = {\mathbf{u}_t = \mathbf{u}_t + \bar{\mathbf{u}}, \ \bar{\mathbf{u}} \in \ker(\mathcal{R}_t)}$
- 2. esiste un ingresso a **minima "energia"**: $\mathbf{u}_t^* = \arg \min_{\mathbf{u}_t' \in \mathcal{U}_t} \|\mathbf{u}_t'\|^2 = \mathcal{R}_t^\top (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} (\mathbf{x}^* \mathbf{F}^t \mathbf{x}_0)$ \rightarrow l'energia minima per raggiungere \mathbf{x}^* in t passi è pari a $\|\mathbf{u}_t^*\|^2 = (\mathbf{x}^*)^\top \mathcal{W}_t^{-1} \mathbf{x}^*$,
 - con $\mathcal{W}_t \triangleq \mathcal{R}_t \mathcal{R}_t^\top = \sum_{k=0}^{t-1} \mathbf{F}^k \mathbf{G} \mathbf{G}^\top (\mathbf{F}^\top)^k$ Gramiano di raggiungibilità in t passi del sistema gli autovalori di \mathcal{W}_t quantificano l'energia minima richiesta per raggiungere diversi stati $\mathbf{x}(t) = \mathbf{x}^*$

 \boxtimes

esempio

$$\mathbf{x}(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u}(t) \quad \mathbf{x}_0 = \mathbf{0}$$

$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{G} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \Sigma \text{ è raggiungibile in 2 passi}$$

 $\mathbf{b} \text{ si vuole calcolare gli ingressi } \mathbf{u}'(t) \text{ che permettono di raggiungere } \mathbf{x}^* = \begin{bmatrix} 1\\1\\0 \end{bmatrix} \text{ da } \mathbf{x}_0 = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \text{ in 2 passi}$ $\mathbf{u}_2 = \mathcal{R}_2^\top (\mathcal{R}_2 \mathcal{R}_2^\top)^{-1} \mathbf{x}^* = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} \end{bmatrix}^\top \left(\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} \end{bmatrix} \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} \end{bmatrix}^\top \right)^{-1} \mathbf{x}^*$ $= \begin{bmatrix} 0 & 0 & 1 & 0\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0 \end{bmatrix}^\top \left(\begin{bmatrix} 0 & 0 & 1 & 0\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0 \end{bmatrix}^\top \right)^{-1} \begin{bmatrix} 1\\1\\0\\1\\0\\0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1\\1\\0\\0\\0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0\\0\\0\\0\\0\\0 & 0 \end{bmatrix} \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} \mathbf{u}(1)\\1\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix} \text{ ingresso a energia minima}$

da cui

$$\begin{aligned} \mathcal{U}_{2} &= \left\{ \mathbf{u}_{2}^{\prime} = \mathbf{u}_{2} + \bar{\mathbf{u}}, \ \bar{\mathbf{u}} \in \ker(\mathcal{R}_{2}) \right\} = \left\{ \mathbf{u}_{2}^{\prime} = \mathbf{u}_{2} + \bar{\mathbf{u}}, \ \bar{\mathbf{u}} \in \ker\left(\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \right) \right\} \\ &= \left\{ \mathbf{u}_{2}^{\prime} = \mathbf{u}_{2} + \bar{\mathbf{u}}, \ \bar{\mathbf{u}} \in span \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \right\} = \left\{ \mathbf{u}_{2}^{\prime} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\} = \left\{ \mathbf{u}_{2}^{\prime} = \begin{bmatrix} \mathbf{u}^{\prime}(1) \\ \mathbf{u}^{\prime}(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\} \end{aligned}$$

3.1.3 Forma canonica di raggiungibilità

se Σ non è raggiungibile ma è tale che rank(\mathcal{R}) = k < n, allora è possibile determinare un cambio di base **T** in modo da "separare" la parte raggiungibile del sistema da quella non raggiungibile?

si definisce $\mathbf{T} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k & \tilde{\mathbf{v}}_1 & \cdots & \tilde{\mathbf{v}}_{n-k} \end{bmatrix} \in \mathbb{R}^{n \times n}$ dove

- $\{\mathbf{v}_1 \dots \mathbf{v}_k\}$ è l'insieme di vettori linearmente indipendenti che definiscono la base di $X_R = im(\mathcal{R})$
- $\{\mathbf{v}_1 \dots \mathbf{v}_k, \tilde{\mathbf{v}}_1 \dots \tilde{\mathbf{v}}_{n-k}\}$ è un insieme di vettori che definisce una base di \mathbb{R}^n

allora

$$\begin{aligned} \mathbf{F} & \to & \mathbf{F}' = \mathbf{T}^{-1} \mathbf{F} \mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{F}_{21} & \mathbf{F}_{22} \end{bmatrix}, \ \mathbf{F}_{11} \in \mathbb{R}^{k \times k}, \mathbf{F}_{22} \in \mathbb{R}^{(n-k) \times (n-k)} \\ \mathbf{G} & \to & \mathbf{G}' = \mathbf{T}^{-1} \mathbf{G} = \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{G}_2 \end{bmatrix}, \ \mathbf{G}_1 \in \mathbb{R}^{k \times m}, \mathbf{G}_2 \in \mathbb{R}^{(n-k) \times m} \end{aligned}$$

inoltre, premettendo che (conseguentemente al teorema di Cayley-Hamilton) lo spazio raggiungibile X_R contiene im(G) ed è F-invariante, ovvero è tale che $\forall \mathbf{v} \in X_R \implies \mathbf{w} = \mathbf{F} \mathbf{v} \in X_R$, si verifica che

•
$$\mathbf{v} \in X_R \rightarrow \mathbf{v}' = \mathbf{T}^{-1}\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_k & 0 & \dots & 0 \end{bmatrix}^\top = \begin{bmatrix} \mathbf{v}^{(1)} & \mathbf{0} \end{bmatrix}^\top$$

• $\mathbf{w} \in X_R \rightarrow \mathbf{w}' = \mathbf{T}^{-1}\mathbf{w} = \begin{bmatrix} w_1 & \dots & w_k & 0 & \dots & 0 \end{bmatrix}^\top = \begin{bmatrix} \mathbf{w}^{(1)} & \mathbf{0} \end{bmatrix}^\top$
• $\mathbf{w}' = \mathbf{T}^{-1}\mathbf{w} = \mathbf{T}^{-1}\mathbf{F}\mathbf{v} = \mathbf{T}^{-1}\mathbf{F}\mathbf{T}\mathbf{T}^{-1}\mathbf{v} = \mathbf{F}'\mathbf{T}^{-1}\mathbf{v} = \mathbf{F}'\mathbf{v}'$

da cui

$$\begin{bmatrix} \mathbf{w}^{(1)} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{F}_{21} & \mathbf{F}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{(1)} \\ \mathbf{0} \end{bmatrix} \implies \begin{bmatrix} \mathbf{w}^{(1)} = \mathbf{F}_{11} \mathbf{v}^{(1)} \\ \mathbf{0} = \mathbf{F}_{21} \mathbf{v}^{(1)} \end{bmatrix} \forall \mathbf{v}^{(1)} \in \mathbb{R}^k \implies \mathbf{F}_{21} = \mathbf{0}$$

inoltre

 $\mathsf{im}(\mathbf{G}) \subseteq X_R \implies \mathbf{G}_2 = \mathbf{0}$

$$\begin{split} \mathbf{z} &= \mathbf{T}^{-1} \mathbf{x} \triangleq \begin{bmatrix} \mathbf{x}_R \\ \mathbf{x}_{NR} \end{bmatrix} \\ \mathbf{z}(t+1) &= \mathbf{T}^{-1} \mathbf{F} \mathbf{T} \mathbf{z} + \mathbf{T}^{-1} \mathbf{G} \mathbf{u} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix} \mathbf{z}(t) + \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u} & \text{ forma canonica di raggiungibilità} \\ \\ \begin{cases} \mathbf{x}_R(t+1) &= \mathbf{F}_{11} \mathbf{x}_R(t) + \mathbf{F}_{12} \mathbf{x}_{NR}(t) + \mathbf{G}_1 \mathbf{u}(t) & \text{ sottosistema raggiungibile} \\ \mathbf{x}_{NR}(t+1) &= \mathbf{F}_{22} \mathbf{x}_{NR}(t) & \text{ sottosistema non raggiungibile} \end{cases} \end{split}$$

si osserva che

.

$$\operatorname{rank}(\mathcal{R}') = \operatorname{rank}(\mathbf{T}^{-1}\mathcal{R}) = \operatorname{rank}\left(\begin{bmatrix}\mathbf{G}' & \mathbf{F}'\mathbf{G}' & \cdots & (\mathbf{F}')^{n-1}\mathbf{G}'\end{bmatrix}\right)$$
$$= \operatorname{rank}\left(\begin{bmatrix}\mathbf{G}_1 & \mathbf{F}_{11}\mathbf{G}_1 & \cdots & \mathbf{F}_{11}^{n-1}\mathbf{G}_1\\\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0}\end{bmatrix}\right) = \operatorname{rank}\left(\begin{bmatrix}\mathbf{G}_1 & \mathbf{F}_{11}\mathbf{G}_1 & \cdots & \mathbf{F}_{11}^{k-1}\mathbf{G}_1\end{bmatrix}\right) = \operatorname{rank}(\mathcal{R}_R) = k$$

con $\mathcal{R}_R \in \mathbb{R}^{k \times mk}$: matrice di raggiungibilità del sottosistema raggiungibile $\Sigma_R = (\mathbf{F}_{11}, \mathbf{G}_1)$

• poichè
$$\mathbf{F}' \triangleq \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ 0 & \mathbf{F}_{22} \end{bmatrix}$$
, $\mathbf{G}' \triangleq \mathbf{T}^{-1}\mathbf{G} = \begin{bmatrix} \mathbf{G}_1 \\ 0 \end{bmatrix}$, $\mathbf{H}' \triangleq \mathbf{H}\mathbf{T} = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \end{bmatrix}$, $\mathbf{J}' \triangleq \mathbf{J}$

allora

$$\mathbf{W}(z) = \mathbf{H}'(z\mathbf{I} - \mathbf{F}')^{-1}\mathbf{G}' + \mathbf{J}' = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \end{bmatrix} \begin{bmatrix} z\mathbf{I} - \mathbf{F}_{11} & -\mathbf{F}_{12} \\ \mathbf{0} & z\mathbf{I} - \mathbf{F}_{22} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix} + \mathbf{J}$$
$$= \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \end{bmatrix} \begin{bmatrix} (z\mathbf{I} - \mathbf{F}_{11})^{-1} & \star \\ \mathbf{0} & (z\mathbf{I} - \mathbf{F}_{22})^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix} + \mathbf{J} = \mathbf{H}_1(zI - \mathbf{F}_{11})^{-1}\mathbf{G}_1 + \mathbf{J} = \mathbf{W}_R(z)$$

con $\mathbf{W}_R(z) \in \mathbb{R}^{p \times m}$ = matrice di trasferimento del sottosistema raggiungibile $\Sigma_R = (\mathbf{F}_{11}, \mathbf{G}_1)$

esempio

$$\begin{aligned} \mathbf{1.} \ \mathbf{F} &= \begin{bmatrix} 2 & 1 & \frac{1}{2} \\ 0 & 2 & \frac{4}{4} \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{G} &= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{aligned} \quad \text{sistema in forma canonica con } \mathbf{F}_{11} &= \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \ \mathbf{G}_{1} &= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{aligned}$$
$$\begin{aligned} \text{infatti} \\ \text{rank}(\mathcal{R}_{R}) &= \text{rank}\left(\begin{bmatrix} \mathbf{G}_{1} & \mathbf{F}_{11}\mathbf{G}_{1}\end{bmatrix}\right) &= \text{rank}\left(\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}\right) &= 2 \end{aligned}$$
$$\begin{aligned} \mathbf{2.} \ \mathbf{F} &= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{G} &= \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \end{aligned} \quad \text{sistema NON in forma canonica con } \mathbf{F}_{11} &= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \ \mathbf{G}_{1} &= \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{aligned}$$
$$\begin{aligned} \text{infatti} \\ \text{rank}(\mathcal{R}_{R}) &= \text{rank}\left(\begin{bmatrix} \mathbf{G}_{1} & \mathbf{F}_{11}\mathbf{G}_{1}\end{bmatrix}\right) &= \text{rank}\left(\begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}\right) &= 1 \end{aligned}$$
$$\begin{aligned} \text{si verifica che} \\ X_{R} &= \text{im}(\mathcal{R}) &= \text{im}\left(\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \mathbf{F}^{2}\mathbf{G}\end{bmatrix}\right) &= \text{im}\left(\begin{bmatrix} 1 & 2 & 4 \\ 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}\right) &= span \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ \end{bmatrix} \right\} \end{aligned}$$
$$\begin{aligned} \text{da cui} \\ \mathbf{T} &= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{T}^{-1} &= \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$
$$\begin{aligned} \mathbf{F}' &= \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix}$$
$$\end{aligned}$$
$$\end{aligned}$$
$$\begin{aligned} \mathbf{F}' &= \mathbf{T}^{-1}\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 &= \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{1} \\ \mathbf{0} \end{bmatrix} \end{aligned}$$

	`	/	1
н	7	ς.	
		-	

3.1.4 Test PBH di raggiungibilità

Teorema Il sistema a tempo discreto $\Sigma = (\mathbf{F}, \mathbf{G})$ è raggiungibile se e solo se la matrice PBH di raggiungibilità

$$PBH(z) = \begin{bmatrix} z\mathbf{I} - \mathbf{F} & \mathbf{G} \end{bmatrix} \in \mathbb{R}^{n \times (n+m)}$$

ha rango pieno $(\operatorname{rank}(PBH(z)) = n)$ per ogni $z \in \mathbb{C}$.

Se Σ non è raggiungibile, la matrice PBH di raggiungibilità ha rango non pieno (rank(PBH(z)) < n) per tutti e soli gli $z \in \mathbb{C}$ che sono autovalori di \mathbf{F}_{22} (: matrice di stato del sottosistema non raggiungibile di Σ)

Dimostrazione. si dimostra che

• Σ raggiungibile \implies rank $(PBH(z)) = n \forall z \in \mathbb{C}$ si suppone per assurdo che Σ sia raggiungibile (rank $(\mathcal{R}) = n$) ma $\exists \overline{z} \in \mathbb{C}$ tale che rank $(PBH(\overline{z})) < n$ se rank $(PBH(\overline{z})) < n$ allora $PBH(\overline{z})$ ha delle righe linearmente dipendenti:

$$\exists \mathbf{v} \neq \mathbf{0}, \mathbf{v} \in \mathbb{R}^n \quad : \quad \mathbf{v}^\top PBH(\bar{z}) = \mathbf{0} \implies \mathbf{v}^\top \begin{bmatrix} \bar{z}\mathbf{I} - \mathbf{F} & \mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \end{bmatrix} \implies \begin{cases} \mathbf{v}^\top \mathbf{F} = \bar{z}\mathbf{v}^\top \\ \mathbf{v}^\top \mathbf{G} = \mathbf{0} \end{cases}$$

ma allora

$$\begin{split} \mathbf{v}^\top \mathcal{R} &= \mathbf{v}^\top \Big[\mathbf{G} \quad \mathbf{F} \mathbf{G} \quad \cdots \mathbf{F}^{n-1} \mathbf{G} \Big] = \Big[\mathbf{v}^\top \mathbf{G} \quad \mathbf{v}^\top \mathbf{F} \mathbf{G} \quad \cdots \mathbf{v}^\top \mathbf{F}^{n-1} \mathbf{G} \Big] \\ &= \Big[\mathbf{0} \quad \bar{z} \mathbf{v}^\top \mathbf{G} \quad \cdots \bar{z}^{n-1} \mathbf{v}^\top \mathbf{G} \Big] = \Big[\mathbf{0} \quad \mathbf{0} \quad \cdots \mathbf{0} \Big] \qquad \Longrightarrow \quad \mathsf{rank}(\mathcal{R}) < n \end{split}$$

di conseguenza, Σ risulta non raggiungibile: assurdo.

• $\operatorname{rank}(PBH(z)) = n \ \forall z \in \mathbb{C} \implies \Sigma$ raggiungibile TBD

 \blacktriangleright essendo gli autovalori di \mathbf{F}_{22} un sottoinsieme degli autovalori di \mathbf{F} , il rango della matrice PBH può essere valutato solo per gli z che sono autovalori di \mathbf{F}

esempio

1.
$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\mathbf{G} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$
F triangolare: gli autovalori di **F** sono gli elementi sulla diagonale $\rightarrow \lambda_1 = 0, m_1^a =$
 $\operatorname{rank}(PBH(\lambda_1)) = \operatorname{rank}\left(\begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \right) = 3 \implies \Sigma$ raggiungibile
2. $\mathbf{F} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$, $\mathbf{G} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
 $\rightarrow \lambda_1 = 1, m_1^a = 3$
 $\operatorname{rank}(PBH(\lambda_1)) = \operatorname{rank}\left(\begin{bmatrix} 0 & 0 & -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right) = 2 \implies \Sigma$ NON raggiungibile

/		
$^{}$	ν	
2	Ż	

3.2 Controllabilità di sistemi a tempo discreto

dato $\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \operatorname{con} \mathbf{x}(0) = \mathbf{x}_0$, allora $\mathbf{x}^*(t) = \mathbf{x}(t) = \mathbf{F}^t \mathbf{x}_0 + \sum_{k=0}^{t-1} \mathbf{F}^{t-k-1} \mathbf{G}\mathbf{u}(k) = \mathbf{F}^t \mathbf{x}_0 + \mathcal{R}_t \mathbf{u}_t$

qual è l'insieme di stati \mathbf{x}_0 controllabili al tempo t (= in t passi) allo stato $\mathbf{x}^* = \mathbf{0}$? quando è possibile controllare a zero tutti i possibili stati $\mathbf{x}_0 \in \mathbb{R}^n$?

 $X_C(t) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{F}^t \mathbf{x} \in im(\mathcal{R}_t) : \text{ spazio controllabile in } t \text{ passi} \}$

Proposizione In un sistema di dimensione n, gli spazi controllabili in 1, 2, ... passi soddisfano la catena di inclusioni $X_C(1) \subseteq X_C(2) \subseteq ... X_C(t) \subseteq X_C(t+1) \subseteq ...$ La catena è stazionaria (almeno) dal t'-esimo passo in poi, ovvero $X_C(t') = X_C(t''), \forall t'' \ge t'$, con $t' \le n$.

t': indice di controllabilità $X_C riangleq X_C(t')$: (massimo) spazio controllabile

3

3.2.1 Criterio di controllabilità

(completa) controllabilità

- un sistema Σ a tempo discreto si dice (completamente) controllabile se $X_C = \mathbb{R}^n$
- un sistema Σ a tempo discreto si dice (completamente) controllabile in t passi se X_C(t) = ℝⁿ, con t indice di controllabilità
- $\blacktriangleright X_C = X_C(n) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{F}^n \mathbf{x} \in \mathsf{im}(\mathcal{R}_n) \} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{F}^n \mathbf{x} \in X_R \}$

$$\Sigma$$
 controllabile $\iff \mathsf{im}(\mathbf{F}^n) \subseteq \mathsf{im}(\mathcal{R}) = X_R$

si noti che

- Σ raggiungibile $(X_R = \mathbb{R}^n) \Rightarrow \Sigma$ controllabile
- Σ non raggiungibile ma $\mathbf{F} = \mathbf{0} \Rightarrow \Sigma$ controllabile
- Σ controllabile $\not\Rightarrow \Sigma$ raggiungibile

esempio

$$\begin{aligned} \mathbf{1.} \ \mathbf{x}(t+1) &= \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \\ \mathbf{F} &= \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ X_R &= \operatorname{im}(\mathcal{R}) = \operatorname{im}\left(\begin{bmatrix} \mathbf{g} & \mathbf{Fg} \end{bmatrix}\right) = \operatorname{im}\left(\begin{bmatrix} 0 & 0 \\ 1 & \alpha_2 \end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\} \\ \operatorname{span}\left\{\mathbf{0}\right\} \quad \alpha_1 = \alpha_2 = 0 \\ \operatorname{span}\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\} \quad \alpha_1 = 0, \alpha_2 \neq 0 \\ \operatorname{span}\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\} \quad \alpha_1 \neq 0, \alpha_2 = 0 \\ \mathbb{R}^2 \quad \alpha_1 \neq 0, \alpha_2 \neq 0 \end{aligned}$$

 $\implies \Sigma \text{ non raggiungibile } \forall \alpha_1, \alpha_2 \in \mathbb{R}$ $\Sigma \text{ controllabile se } \alpha_1 = 0 \text{ (im}(\mathbf{F}^2) \subseteq X_R)$

2.
$$\mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}(t), \ \alpha_1, \alpha_2 \in \mathbb{R}$$

 $\mathbf{F} = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 $\mathcal{R} = \begin{bmatrix} \mathbf{g} & \mathbf{Fg} \end{bmatrix} = \begin{bmatrix} 1 & \alpha_1 \\ 0 & 1 \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 2$
 $\implies \Sigma$ raggiungibile (in 2 passi) $\forall \alpha_1, \alpha_2 \in \mathbb{R}$

$$\Sigma$$
 controllabile $\forall \alpha_1, \alpha_2 \in \mathbb{R}$

3.
$$\mathbf{x}(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u}(t)$$

$$\begin{split} \mathbf{F} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ \mathcal{R} &= \begin{bmatrix} \mathbf{g} & \mathbf{Fg} & \mathbf{F}^2 \mathbf{g} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 1 \\ X_C(1) &= \begin{pmatrix} \mathbf{x} \in \mathbb{R}^3 : \mathbf{Fx} \in \operatorname{im}(\mathcal{R}_1) \end{pmatrix} \begin{pmatrix} \mathbf{x} \in \mathbb{R}^3 : \mathbf{Fx} \in \operatorname{im}(\mathbf{g}) \end{pmatrix} \\ &= \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \right\} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} x_2 \\ 0 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\} \\ &= \left\{ \begin{bmatrix} \beta \\ 0 \\ \alpha \end{bmatrix}, \alpha, \beta \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \\ X_C(2) &= \begin{pmatrix} \mathbf{x} \in \mathbb{R}^3 : \mathbf{Fx} \in \operatorname{im}(\mathcal{R}_2) \end{pmatrix} \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{F}^2 \mathbf{x} \in \operatorname{im}\left(\begin{bmatrix} \mathbf{g} & \mathbf{Fg} \end{bmatrix} \right)) \} \\ &= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \right\} \\ &= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : \begin{bmatrix} 0 \\ 0 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\} = \mathbb{R}^3 \\ \Longrightarrow \Sigma \text{ non raggiungibile} \end{split}$$

 Σ controllabile (in 2 passi)

 \boxtimes

3.2.2 Controllabilità e forma canonica di raggiungibilità

sia Σ non raggiungibile (rank(\mathcal{R}) = k < n) allora esiste una matrice di cambio base \mathbf{T} che porta il sistema in foma canonica di raggiungibilità:

$$\begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{x}_{NR} \end{bmatrix} = \mathbf{T}^{-1} \mathbf{x}$$

$$\begin{bmatrix} \mathbf{x}_{R}(t+1) \\ \mathbf{x}_{NR}(t+1) \end{bmatrix} = \mathbf{T}^{-1} \mathbf{F} \mathbf{T} \begin{bmatrix} \mathbf{x}_{R}(t) \\ \mathbf{x}_{NR}(t) \end{bmatrix} + \mathbf{T}^{-1} \mathbf{G} \mathbf{u} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{R}(t) \\ \mathbf{x}_{NR}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

$$\begin{cases} \mathbf{x}_{R}(t+1) = \mathbf{F}_{11} \mathbf{x}_{R}(t) + \mathbf{F}_{12} \mathbf{x}_{NR}(t) + \mathbf{G}_{1} \mathbf{u}(t) & \Sigma_{R} \text{ sottosistema raggiungibile} \\ \mathbf{x}_{NR}(t+1) = \mathbf{F}_{22} \mathbf{x}_{NR}(t) & \Sigma_{NR} \text{ sottosistema non raggiungibile} \end{cases}$$

si osserva che

• Σ_R raggiungibile $\Rightarrow \Sigma_R$ controllabile

 Σ_{NR} non raggiungibile $\mathbf{ma}~\Sigma_{NR}$ controllabile

$$\begin{array}{l} \Leftrightarrow \quad \exists \bar{t} \text{ tale che } \mathbf{x}_{NR}(\bar{t}) = \mathbf{F}_{22}^{\bar{t}} \mathbf{x}_{NR}(0) = \mathbf{0} \quad \forall \mathbf{x}_{NR}(0) \in \mathbb{R}^{n-k} \\ \Leftrightarrow \quad \exists \bar{t} \text{ tale che } \mathbf{F}_{22}^{\bar{t}} \mathbf{v} = \mathbf{0} \quad \forall \mathbf{v} \in \mathbb{R}^{n-k} \\ \Leftrightarrow \quad \exists \bar{t} \text{ tale che } \mathbf{F}_{22}^{\bar{t}} = \mathbf{0} \\ \Leftrightarrow \quad \mathbf{F}_{22} \text{ è nilpotente } (\mathbf{F}_{22}^{\bar{t}}) \\ \Leftrightarrow \quad \text{l'unico autovalore di } \mathbf{F}_{22} \text{ è zero} \end{array}$$

 $\Longrightarrow \Sigma$ controllabile $\Leftrightarrow \mathbf{F}_{22}$ è nilpotente

• in generale $X_R = \left\{ \begin{bmatrix} \mathbf{x}_R \\ \mathbf{0} \end{bmatrix}, \mathbf{x}_R \in \mathbb{R}^k \right\} \subseteq X_C$

• \mathbf{F}_{22} invertibile $\Rightarrow \mathbf{x}_{NR}(t) = \mathbf{F}_{22}^t \mathbf{x}_{NR}(0) = \mathbf{0} \Leftrightarrow \mathbf{x}_{NR}(0) = \mathbf{0}$

 $\Rightarrow X_R = X_C \text{ (raggiungibilità } \equiv \text{ controllabilità)}$

 $\mathbf{F} \text{ invertibile} \Leftrightarrow \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix} \text{ invertibile}$

 $\Rightarrow \mathbf{F}_{22}$ invertibile

 $\Rightarrow X_R = X_C \text{ (raggiungibilità } \equiv \text{controllabilità})$

un sistema a tempo discreto in cui la matrice di stato ${\bf F}$ è invertibile se dice reversibile

 \Rightarrow è sempre possibile ricostruire lo stato iniziale $\mathbf{x}(0)$ a partire dalla conoscenza di $\mathbf{x}(t), \mathbf{u}(\cdot)$

 $\mathbf{x}(t) = \mathbf{F}^{t}\mathbf{x}(0) + \mathcal{R}_{t}\mathbf{u}_{t} \rightarrow \mathbf{F}^{t}\mathbf{x}(0) = \mathbf{x}(t) - \mathcal{R}_{t}\mathbf{u}_{t} \rightarrow \mathbf{x}(0) = \mathbf{F}^{-t}\mathbf{x}(t) - \mathbf{F}^{-t}\mathcal{R}_{t}\mathbf{u}_{t}$

3.2.3 Test PBH di controllabilità

Teorema II sistema a tempo discreto $\Sigma = (\mathbf{F}, \mathbf{G})$ è controllabile se e solo se la matrice PBH di raggiungibilità

$$PBH(z) = \begin{bmatrix} z\mathbf{I} - \mathbf{F} & \mathbf{G} \end{bmatrix} \in \mathbb{R}^{n \times (n+m)}$$

ha rango pieno $(\operatorname{rank}(PBH(z)) = n)$ per ogni $z \in \mathbb{C}$ con $z \neq 0$.

se $\operatorname{rank}(PBH(z)) < n$ solo per z = 0

allora l'unico autovalore non raggiungibile (: autovalore di \mathbf{F}_{22}) è $\lambda = 0$ perciò Σ risulta controllabile \blacktriangleright la matrice PBH può essere valutata solo per gli $z \neq 0$ che sono autovalori di \mathbf{F}

3.3 Raggiungibilità di sistemi lineari a tempo continuo

dato $\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \text{ con } \mathbf{x}(0) = \mathbf{x}_0,$ allora $\mathbf{x}^*(t) = \mathbf{x}(t) = e^{\mathbf{F}t}\mathbf{x}_0 + \int_0^t \mathbf{F}^{t-\tau}\mathbf{G}\mathbf{u}(\tau)d\tau$

in particolare, se $\mathbf{x}(0) = \mathbf{0}$ allora $\mathbf{x}^*(t) = \mathbf{x}(t) = \int_0^t \mathbf{F}^{t-\tau} \mathbf{Gu}(\tau) d\tau$

qual è l'insieme di stati \mathbf{x}^* raggiungibili al tempo t (= in t passi) a partire da $\mathbf{x}(0) = \mathbf{0}$? quando è possibile raggiungere tutti i possibili stati $\mathbf{x}^* \in \mathbb{R}^n$?

sia $\mathcal{U}_{[0,t]}$ l'iniseme delle funzioni *m*-dimensionali integrabili nell'intervallo [0,t]

 $X_{R}(t) = \left\{ \mathbf{x}(t) \in \mathbb{R}^{n} : \exists \mathbf{u} \in \mathcal{U}_{[0,t]} \text{ tale che } \mathbf{x}(t) = \int_{0}^{t} \mathbf{F}^{t-\tau} \mathbf{G} \mathbf{u}(\tau) d\tau \right\}: \text{ spazio raggiungibile al tempo } t$ $X_{R}: \text{ (massimo) spazio raggiungibile}$

(completa) raggiungibilità

• un sistema Σ a tempo continuo si dice (completamente) raggiungibile se $X_R = \mathbb{R}^n$

 $\blacktriangleright \ \mathcal{R} \triangleq \mathcal{R}_n = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \dots & \mathbf{F}^{n-1}\mathbf{G} \end{bmatrix}: \text{ matrice di raggiungibilità del sistema}$

$$\Sigma$$
 raggiungibile \iff im $(\mathcal{R}) = \mathbb{R}^n \iff$ rank $(\mathcal{R}) = n$

se un sistema Σ a t.c. è raggiungibile allora $X_R(t) = \mathbb{R}^n$ per ogni t > 0inoltre si nota che *molti dei risultati sulla raggiungibilità a tempo discreto valgono anche a tempo continuo*, in particolare

- X_R è **F**-invariante e contiene im(**G**)
- Forma canonica di raggiungibilità: $\begin{bmatrix} \mathbf{x}_R \\ \mathbf{x}_{NR} \end{bmatrix} \triangleq \mathbf{T}^{-1}\mathbf{x}, \ \mathbf{F}' \triangleq \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix}, \ \mathbf{G}' \triangleq \mathbf{T}^{-1}\mathbf{G} = \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix}$
- Criterio PBH: Σ raggiungibile \iff rank $\begin{bmatrix} z\mathbf{I} \mathbf{F} & \mathbf{G} \end{bmatrix} = n, \quad \forall z \in \mathbb{C}$

esempio

modello di stato

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} v_{C_1}(t) \\ v_{C_2}(t) \end{bmatrix} \qquad \dot{\mathbf{x}}(t) = \begin{bmatrix} -\frac{1}{RC_1} & 0 \\ 0 & -\frac{1}{RC_2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{RC_1} \\ \frac{1}{RC_2} \end{bmatrix} u = \mathbf{F}\mathbf{x} + \mathbf{g}u$$

allora

$$\begin{aligned} \det(\mathcal{R}) &= \det(\begin{bmatrix} \mathbf{g} & \mathbf{F}\mathbf{g} \end{bmatrix}) = \det\left(\begin{bmatrix} \frac{1}{RC_1} & -\frac{1}{R^2C_1^2} \\ \frac{1}{RC_2} & -\frac{1}{R^2C_2^2} \end{bmatrix}\right) \\ &= -\frac{1}{R^3C_1C_2^2} + \frac{1}{R^3C_1^2C_2} = \frac{1}{R^3C_1C_2}\left(-\frac{1}{C_2} + \frac{1}{C_1}\right) = \frac{1}{R^3C_1C_2}\left(\frac{C_2 - C_1}{C_1C_2}\right), \quad R, C_1, C_2 > 0 \end{aligned}$$

da cui si ha che

$$\det(\mathcal{R}) \begin{cases} = 0 \quad C_1 = C_2 \quad \to \quad \Sigma \text{ non raggiungibile} \\ \neq 0 \quad C_1 \neq C_2 \quad \to \quad \Sigma \text{ raggiungibile} \end{cases}$$

 \boxtimes

3.4 Controllabilità di sistemi lineari a tempo continuo

dato $\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \text{ con } \mathbf{x}(0) = \mathbf{x}_0$, allora $\mathbf{x}^*(t) = \mathbf{x}(t) = e^{\mathbf{F}t}\mathbf{x}_0 + \int_0^t \mathbf{F}^{t-\tau}\mathbf{G}\mathbf{u}(\tau)d\tau$

qual è l'insieme di stati \mathbf{x}_0 controllabili al tempo t (= in t passi) allo stato $\mathbf{x}^* = \mathbf{0}$? quando è possibile controllare a zero tutti i possibili stati $\mathbf{x}_0 \in \mathbb{R}^n$? $X_C(t)$: spazio controllabile at tempo t X_C : (massimo) spazio controllabile

(completa) controllabilità

- un sistema Σ a tempo continuo si dice (completamente) controllabile se $X_C = \mathbb{R}^n$
- $\mathbf{b} \ \mathbf{x}_0 \in X_C(t) \ \Leftrightarrow \ \exists \mathbf{u} \in \mathcal{U}_{[0,t]} \ \text{tale che } \mathbf{0} = e^{\mathbf{F}t} \mathbf{x}_0 + \int_0^t \mathbf{F}^{t-\tau} \mathbf{Gu}(\tau) d\tau$ $\Leftrightarrow \ e^{\mathbf{F}t} \mathbf{x}_0 \in X_R(t) = X_R \ (t > 0) \ \Leftrightarrow \ \mathbf{x}_0 \in e^{-\mathbf{F}t} X_R = \{ \mathbf{v} \in \mathbb{R}^n \ : \ \exists \mathbf{w} \in X_R, \mathbf{v} = e^{-\mathbf{F}t} \mathbf{w} \}$ $\Leftrightarrow \ \mathbf{x}_0 \in X_R \ \text{perchè} \ e^{-\mathbf{F}t} X_R = X_R \ \text{essendo } \mathbf{1} \} \ X_R \ \diamond \mathbf{F} \text{-invariante} \ (e \ \text{quindi} \ e^{-\mathbf{F}t} \ \text{invariante}) \\ 2 \ e^{-\mathbf{F}t} \ \text{invertibile} \ \rightarrow \dim(e^{-\mathbf{F}t} X_R) = \dim(X_R)$

$$X_C = X_C(t) = X_R$$

 Σ controllabile $\iff \Sigma$ raggiungibile

4 RETROAZIONE DALLO STATO

Dato il sistema Σ con con stato $\mathbf{x}(t)$, ingresso $\mathbf{u}(t)$ e uscita $\mathbf{y}(t)$

problema di controllo: manipolare il sistema per raggiungere un dato obiettivo agendo sull'ingresso $\mathbf{u}(t)$

- problema di regolazione (regulation): stabilizzare il sistema ad uno stato desiderato (tipicamente zero)
- problema di asservimento (tracking): inseguire un andamento desiderato dell'uscita

soluzione di controllo

- controllo in catena aperta o open-loop o feedforward: la legge di controllo u(t) non dipende dai valori di x(t), y(t)
 - ightarrow approccio semplice, ma non ideale se il sistema è incerto e/o soggetto a disturbi esterni

- controllo in retroazione o closed-loop o feedback: la legge di controllo u(t) dipende dai valori di x(t), y(t)
 - \rightarrow approccio più complesso (richiede sensori di misura), ma robusto a incertezze e/o disturbi esterni

in particolare

- retroazione statica
 - * **dallo stato**: $\mathbf{u}(t) = f(\mathbf{x}(t))$ (allo stesso istante t)
 - * **dall'uscita**: $\mathbf{u}(t) = f(\mathbf{y}(t))$ (allo stesso istante t)
- retroazione dinamica
 - * dallo stato: $\mathbf{u}(t) = f(\mathbf{u}(\tau), \mathbf{x}(\tau)), \ \tau \in [t_0, t], \ t_0 < t$
 - * dall'uscita: $\mathbf{u}(t) = f(\mathbf{u}(\tau), \mathbf{y}(\tau)), \ \tau \in [t_0, t], \ t_0 < t$

4.1 Controllo in retroazione statica

dato

$$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \quad \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t)$$

allora

• controllo in reatroazione statica dallo stato: $\mathbf{u}(t) = \mathbf{K}\mathbf{x}(t) + \mathbf{v}(t)$, $\mathbf{K} \in \mathbb{R}^{m \times n}$

• controllo in reatroazione statica dall'uscita: $\mathbf{u}(t) = \overline{\mathbf{K}}\mathbf{H}\mathbf{x}(t) + \mathbf{v}(t), \ \bar{\mathbf{K}} \in \mathbb{R}^{m \times p}$

esempio: retroazione dall'uscita

problema di controllo: regolare la posizione angolare di un albero meccanico collegato all'asse di un motore in cc \rightarrow determinare una legge di controllo tale da riportare l'albero nella posizione desiderata θ_d il più rapidamente possibile in caso di perturbazione

 \Rightarrow controllo di tipo proporzionale: la coppia esercitata dal motore è proporzionale all'errore $e(t) = \theta_d - \theta(t)$

ipotesi 1) le costanti di tempo di traduttore e motore sono trascurabili rispetto alla costante di tempo meccanica 2) si assume $\theta_d = 0$ per semplicità

equazioni del moto dell'albero

$$\begin{aligned} J\ddot{\theta} &= -\beta\dot{\theta} + u \\ y &= \theta \end{aligned} \qquad \stackrel{\mathbf{\dot{x}}}{\Longrightarrow} \quad \begin{bmatrix} 0 & 1 \\ 0 & -\frac{\beta}{J} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ \frac{1}{J} \end{bmatrix} u = \mathbf{F}\mathbf{x} + \mathbf{g}u \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} \end{aligned}$$
$$\mathbf{y} &= \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x} = \mathbf{h}^\top \mathbf{x} \end{aligned}$$

legge di controllo

$$u = ke = \bar{k}(\theta_d - \theta) = -\bar{k}\theta = -\bar{k}\mathbf{h}^{\top}\mathbf{x} \quad \bar{k} \in \mathbb{R}$$

equazioni del moto controllato dell'albero

$$\dot{\mathbf{x}} = (\mathbf{F} - \mathbf{g}\,\bar{k}\mathbf{h}^{\top})\mathbf{x} = \left(\begin{bmatrix} 0 & 1\\ 0 & -\frac{\beta}{J} \end{bmatrix} - \bar{k} \begin{bmatrix} 0\\ \frac{1}{J} \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \right) \mathbf{x} = \begin{bmatrix} 0 & 1\\ -\frac{\bar{k}}{J} & -\frac{\beta}{J} \end{bmatrix} \mathbf{x} = \mathbf{A}\mathbf{x}$$
$$\mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x} = \mathbf{h}^{\top}\mathbf{x}$$

▶ scegliere $\bar{k} \in \mathbb{R}$ tale che i modi del sistema retroazionato vadano a zero il più rapidamente possibile (la parte reale degli autovalori di A sia la più negativa possibile)

$$\Delta_{\mathbf{A}}(s) = \det(\lambda \mathbf{I} - \mathbf{A}) = \det\left(\begin{bmatrix} \lambda & -1\\ \frac{\bar{k}}{J} & \lambda + \frac{\beta}{J} \end{bmatrix} \right) = \lambda^2 + \frac{\beta}{J}\lambda + \frac{\bar{k}}{J} \quad \Rightarrow \quad \lambda_{1,2} = -\frac{\beta}{2J} \pm \frac{1}{2}\sqrt{\frac{\beta^2}{J^2} - 4\frac{\bar{k}}{J}}$$

 $\forall \bar{k} \in \mathbb{R} : \max_{i=1,2} \Re[\lambda_i] \ge -\frac{\beta}{2J}$: i modi elementari del sistema retroazionato non potranno mai tendere a zero più rapidamente di $e^{-\frac{\beta}{2J}} \rightarrow$ esistono dei vincoli sulla prontezza del sistma retroazionato

 \boxtimes

esempio: retroazione dallo stato

problema di controllo: regolare la posizione angolare di un albero meccanico collegato all'asse di un motore in cc \rightarrow determinare una legge di controllo tale da riportare l'albero nella posizione desiderata θ_d il più rapidamente possibile in caso di perturbazione

 \Rightarrow controllo di tipo proporzionale: la coppia esercitata dal motore è proporzionale all'errore $e(t) = \theta_d - \theta(t)$

ipotesi 1) le costanti di tempo di traduttore e motore sono trascurabili rispetto alla costante di tempo meccanica 2) si assume $\theta_d = 0$ per semplicità

equazioni del moto dell'albero

$$\begin{aligned} J\ddot{\theta} &= -\beta\dot{\theta} + u \\ y &= \theta \end{aligned} \qquad & \Rightarrow \qquad \dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{\beta}{J} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ \frac{1}{J} \end{bmatrix} u = \mathbf{F}\mathbf{x} + \mathbf{g}u \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} \end{aligned}$$
$$\mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x} = \mathbf{h}^\top \mathbf{x} \end{aligned}$$

legge di controllo

$$u = k_1 e + k_2 \dot{\theta} = -k_1 \theta + k_2 \dot{\theta} = -\begin{bmatrix} k_1 & -k_2 \end{bmatrix} \mathbf{x} = -\mathbf{k}^\top \mathbf{x} \quad k_1, k_2 \in \mathbb{R}$$

equazioni del moto controllato dell'albero

$$\dot{\mathbf{x}} = (\mathbf{F} - \mathbf{g} \, \mathbf{k}^{\top}) \mathbf{x} = \left(\begin{bmatrix} 0 & 1 \\ 0 & -\frac{\beta}{J} \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{1}{J} \end{bmatrix} \begin{bmatrix} k_1 & -k_2 \end{bmatrix} \right) \mathbf{x} = \begin{bmatrix} 0 & 1 \\ -\frac{k_1}{J} & -\frac{(\beta-k_2)}{J} \end{bmatrix} \mathbf{x} = \mathbf{A} \mathbf{x}$$
$$\mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

▶ scegliere $\bar{k} \in \mathbb{R}$ tale che i modi del sistema retroazionato vadano a zero il più rapidamente possibile (la parte reale degli autovalori di A sia la più negativa possibile)

$$\Delta_{\mathbf{A}}(s) = \det(\lambda \mathbf{I} - \mathbf{A}) = \det\left(\begin{bmatrix} \lambda & -1\\ \frac{k_1}{J} & \lambda + \frac{(\beta - k_2)}{J} \end{bmatrix} \right) = \lambda^2 + \frac{(\beta - k_2)}{J} \lambda + \frac{k_1}{J} \quad \Rightarrow \quad \lambda_{1,2} = -\frac{(\beta - k_2)}{2J} \pm \frac{1}{2} \sqrt{\frac{(\beta - k_2)^2}{J^2} - 4\frac{k_1}{J}}$$

al variare di $k_1, k_2 \in \mathbb{R}$ è possibile ottenere qualsiasi combinazione di modi elementari del sistema retroazionato \rightarrow non esistono dei vincoli sulla prontezza del sistma retroazionato

 \boxtimes

4.2 Controllo in retroazione statica dallo stato

Dato il sistema retroazionato dallo stato

$$\Sigma_{(\mathbf{K})}: \dot{\mathbf{x}}(t) = (\mathbf{F} + \mathbf{G}\mathbf{K})\mathbf{x}(t) + \mathbf{G}\mathbf{v}(t)$$

sia $\mathbf{z} \triangleq \mathbf{T}^{-1}\mathbf{x}$ dove $\mathbf{T} \in \mathbb{R}^{n \times n}$ rappresenta una matrice di cambio di base allora è possibile riscrivere le equazioni dei sistema nella nuova base

$$\Sigma'_{(\mathbf{K})}: \quad \dot{\mathbf{z}}(t) = \mathbf{T}^{-1}(\mathbf{F} + \mathbf{G}\mathbf{K})\mathbf{T}\mathbf{z}(t) + \mathbf{T}^{-1}\mathbf{G}\mathbf{v}(t)$$

ovvero

$$\Sigma'_{(\mathbf{K})}: \quad \dot{\mathbf{z}}(t) = (\mathbf{F}' + \mathbf{G}'\mathbf{K}')\mathbf{z}(t) + \mathbf{G}'\mathbf{v}(t), \qquad \mathbf{F}' = \mathbf{T}^{-1}\mathbf{F}\mathbf{T}, \mathbf{G}' = \mathbf{T}^{-1}\mathbf{G}, \mathbf{K}' = \mathbf{K}\mathbf{T}$$

è possibile scegliere $\mathbf{T} \in \mathbb{R}^{n \times n}$ si modo che $\mathbf{z} = \mathbf{T}^{-1}\mathbf{x} \triangleq \begin{bmatrix} \mathbf{x}_R \\ \mathbf{x}_{NR} \end{bmatrix}$, $\mathbf{x}_R \in \mathbb{R}^k$ e di conseguenza

$$\mathbf{F}' = \mathbf{T}^{-1}\mathbf{F}\mathbf{T} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix}, \quad \mathbf{G}' = \mathbf{T}^{-1}\mathbf{G} = \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{K}' = \mathbf{K}\mathbf{T} = \begin{bmatrix} \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix}$$

con $\mathbf{F}_{11} \in \mathbb{R}^{k \times k}, \mathbf{F}_{12} \in \mathbb{R}^{k \times (n-k)}, \mathbf{F}_{22} \in \mathbb{R}^{(n-k) \times (n-k)}$, $\mathbf{G}_1 \in \mathbb{R}^{k \times m}, \mathbf{K}_1 \in \mathbb{R}^{m \times n}, \mathbf{K}_2 \in \mathbb{R}^{m \times (n-k)}$ allora si verifica che

$$\mathbf{F}' + \mathbf{G}'\mathbf{K}' = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_1 \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{11} + \mathbf{G}_1\mathbf{K}_1 & \mathbf{F}_{12} + \mathbf{G}_1\mathbf{K}_2 \\ \mathbf{0} & \mathbf{F}_{22} \end{bmatrix}$$

 \rightarrow la retroazione non influenza il sottosistema non raggiungibile non è possibile modificare gli autovalori "non raggiungibili" del sistema

4.2.1 Controllo di sistemi a singolo ingresso

si consideri il sistema a tempo discreto **raggiungibile** con un singolo ingresso (m = 1)

$$\Sigma: \mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{g}u(t), \quad \mathbf{g} \in \mathbb{R}^n$$

e si consideri poi la retroazione della stato

$$\Sigma_{(\mathbf{K})}: \quad \mathbf{x}(t+1) = (\mathbf{F} + \mathbf{g}\mathbf{k}^{\top})\mathbf{x}(t) + \mathbf{g}v(t), \quad \mathbf{g}, \mathbf{k} \in \mathbb{R}^{n}$$

è possibile assegnare a $\mathbf{A} = \mathbf{F} + \mathbf{g} \mathbf{k}^{\top}$ degli autovalori desiderati?

- Σ non raggiungibile $\Longrightarrow \nexists \mathbf{k}^{\top}$ tale che $\Delta_{\mathbf{A}}(\lambda) = p(\lambda)$ in quanto (forma standard di raggiungibilità) $\Delta_{\mathbf{A}}(\lambda) = \Delta_{\mathbf{F}_{11}+\mathbf{g}_1\mathbf{k}_1^{\top}}(\lambda) \cup \Delta_{\mathbf{F}_{22}}(\lambda)$ e non è possibile modificare gli autovalori "non raggiungibili" del sistema tramite retroazione
- Σ raggiungibile $\Longrightarrow \exists \mathbf{k}^{\top}$ tale che $\Delta_{\mathbf{A}}(\lambda) = p(\lambda)$ in quanto

Lemma (Forma canonica di controllo) Il sistema $\Sigma = (\mathbf{F}, \mathbf{g})$ è raggiungibile se e solo se esiste una matrice di cambio di base $\mathbf{T}_c \in \mathbb{R}^{n \times n}$ tale che

$$\mathbf{F}_{c} = \mathbf{T}_{c}^{-1} \mathbf{F} \mathbf{T}_{c} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots \\ -\alpha_{0} & -\alpha_{1} & -\alpha_{2} & \dots & -\alpha_{n-1} \end{bmatrix} \quad \mathbf{g}_{c} = \mathbf{T}_{c}^{-1} \mathbf{g} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

dove $\mathbf{F}_c \in \mathbb{R}^{n \times n}$ è una matrice compagna con polinomio caratteristico $\Delta_{\mathbf{F}_c}(\lambda) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \ldots + \alpha_0$.

sia quindi $\mathbf{k}_c^{\top} = \mathbf{k}^{\top} \mathbf{T}_c = \begin{bmatrix} k_{c,1} & \dots & k_{c,n} \end{bmatrix}, \mathbf{k}_c \in \mathbb{R}^n$ allora

$$\begin{aligned} \mathbf{A}_{c} &= \mathbf{F}_{c} + \mathbf{g}_{c} \mathbf{k}_{c}^{\top} \\ &= \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots \\ -\alpha_{0} & -\alpha_{1} & -\alpha_{2} & \dots & -\alpha_{n-1} \end{bmatrix} + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} k_{c,1} & \dots & k_{c,n} \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots \\ -\alpha_{0} + k_{c,1} & -\alpha_{1} + k_{c,2} & -\alpha_{2} + k_{c,3} & \dots & -\alpha_{n-1} + k_{c,n} \end{bmatrix} \end{aligned}$$

dove $\mathbf{A}_c \in \mathbb{R}^{n \times n}$ è una matrice compagna con polinomio caratteristico $\Delta_{\mathbf{A}_c}(\lambda) = \lambda^n + (\alpha_{n-1} - k_{c,n})\lambda^{n-1} + \dots + (\alpha_0 - k_{c,1})$

di conseguenza, è possibile determinare \mathbf{k}_c^{\top} in modo che $\Delta_{\mathbf{A}_c}(\lambda) = p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \ldots + p_0$ risolvendo il seguente sistema di equazioni

$$\begin{cases} \alpha_{n-1} - k_{c,n} = p_{n-1} \\ \vdots \\ \alpha_0 - k_{c,1} = p_0 \end{cases} \Leftrightarrow \begin{cases} k_{c,n} = \alpha_{n-1} - p_{n-1} \\ \vdots \\ k_{c,1} = \alpha_0 - p_0 \end{cases}$$

per tanto

 $\Sigma \text{ raggiungibile} \Longrightarrow \exists \mathbf{k}^{\top} = \mathbf{k}_c^{\top} \mathbf{T}_c^{-1} \text{ tale che } \Delta_{\mathbf{A}}(\lambda) = p(\lambda) \text{ con } \mathbf{k}_c^{\top} \text{ tale che } \Delta_{\mathbf{A}_c}(\lambda) = p(\lambda)$

Proposizione Per ogni polinomio monico di grado n

 $p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \dots + p_1\lambda + p_0, \ p_i \in \mathbb{R},$

esiste un vettore di retroazione $\mathbf{k} \in \mathbb{R}^n$ tale che $\Delta_{\mathbf{F}+\mathbf{gk}^{\top}}(\lambda) = p(\lambda)$ se e solo se il sistema Σ è raggiungibile.

in generale, se Σ è raggiungibile, come è possibile assegnare a $\mathbf{A} = \mathbf{F} + \mathbf{g} \mathbf{k}^{\top}$ degli autovalori desiderati?

sia $p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \dots + p_1\lambda + p_0$ il polinomio relativo agli autovalori desiderati allora è necessario risolvere nell'incognita $\mathbf{k} = \begin{bmatrix} k_1 & \cdots & k_n \end{bmatrix}^\top$

$$\Delta_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \det(\lambda \mathbf{I} - \mathbf{F} - \mathbf{g}\mathbf{k}^{\top}) = p(\lambda)$$

sistema di equazioni lineari con incognite k_1, \ldots, k_n

esempio

$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{g}u(t) = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u(t)$$

calcolare il vettore di retroazione \mathbf{k}^* tale che il sistema retroazionato abbia un unico autovalore $\lambda = 0$ con $m^a = 3$

esistenza di k*

$$\mathcal{R} = \begin{bmatrix} \mathbf{g} & \mathbf{F}\mathbf{g} & \mathbf{F}^2\mathbf{g} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3\\ 0 & 1 & 0\\ 1 & 0 & 1 \end{bmatrix} \rightarrow \det(\mathcal{R}) = -2 \neq 0 \quad \rightarrow \Sigma = (\mathbf{F}, \mathbf{g}) \text{raggiungibile} \quad \Rightarrow \mathbf{k}^* \text{esiste}$$

• calcolo di
$$\mathbf{k}^* = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}^\top$$

$$\Delta_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \det(\lambda \mathbf{I} - \mathbf{F} - \mathbf{g} \mathbf{k}^\top) = \det\left(\begin{bmatrix} \lambda - 1 - k_1 & -2 - k_2 & -k_3 \\ 0 & \lambda & -1 \\ -k_1 & -1 - k_2 & \lambda - k_3 \end{bmatrix}\right)$$

$$= \lambda^3 + \lambda^2 (-1 - k_1 - k_3) + \lambda (k_3 - 1 - k_2) + (1 - k_1 + k_2)$$

$$= p(\lambda) = \lambda^3$$

$$\rightarrow \begin{cases} -1 - k_1 - k_3 = 0 \\ k_3 - 1 - k_2 = 0 \\ 1 - k_1 + k_2 = 0 \end{cases} \Rightarrow \mathbf{k}^* = \begin{bmatrix} -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \end{bmatrix}^\top$$

 \boxtimes

calcolo del vettore di retroazione tramite allocazione autovalori (caso m = 1)

- Il procedimento permette di allocare gli autovalori di F + gk[⊤] a piacimento L'unico vincolo è la raggiungibilità di ∑ e il fatto che se un autovalore è complesso deve esserci anche il suo complesso coniugato.
- 2. Se il sistema Σ non è raggiungibile allora è possibile cambiare tramite retroazione solo gli autovalori di \mathbf{F}_{11} (matrice di stato del sottosistema raggiungibile).
- **3.** Se tutti gli autovalori vengono allocati in zero $(p(\lambda) = \lambda^n)$ tutti i modi del sistema retroazionato convergono a zero in tempo finito. Il controllore in questo caso viene detto *controllore dead-beat*
- **4.** Il procedimento rimane invariato per sistemi a tempo continuo, ma in questo caso non si possono avere controllori dead-beat.

4.2.2 Controllo di sistemi con più ingressi

si consideri il sistema a tempo discreto **raggiungibile** con più ingressi (m > 1)

$$\Sigma: \mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t), \quad \mathbf{G} \in \mathbb{R}^{n \times m}$$

e si consideri poi la retroazione della stato

$$\Sigma_{(\mathbf{K})}: \quad \mathbf{x}(t+1) = (\mathbf{F} + \mathbf{G}\mathbf{K})\mathbf{x}(t) + \mathbf{G}\mathbf{v}(t), \quad \mathbf{G} \in \mathbb{R}^{n \times m}, \mathbf{K} \in \mathbb{R}^{m \times n}$$

se Σ è raggiungibile, è possibile assegnare a $\mathbf{A} = \mathbf{F} + \mathbf{G}\mathbf{K}$ degli autovalori desiderati?

si osserva che

$$\mathbf{F} + \mathbf{G}\mathbf{K} = \mathbf{F} + \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_m \end{bmatrix} \begin{bmatrix} \mathbf{k}_1^\top \\ \vdots \\ \mathbf{k}_m^\top \end{bmatrix} = \mathbf{F} + \mathbf{g}_1 \mathbf{k}_1^\top + \cdots + \mathbf{g}_m \mathbf{k}_m^\top$$

si potrebbe selezionare un singolo ingresso (una sola riga \mathbf{k}_i^{\top} non nulla) ed usare la procedura vista prima per il caso singolo ingresso (m = 1) ma, anche se il sistema Σ è raggiungibile, non è detto che lo sia usando un singolo ingresso

esempio

$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u}(t) \qquad \mathbf{G} = \begin{bmatrix} \mathbf{g}_1 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Σ raggiungibile

$$\mathcal{R} = \begin{bmatrix} \mathbf{G} & \mathbf{FG} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \longrightarrow \mathsf{rank}(\mathcal{R}) = 2$$

• Σ non raggiungibile con un ingresso

$$\begin{aligned} \mathbf{g}_1 \ : \ \mathcal{R}^{(1)} &= \begin{bmatrix} \mathbf{g}_1 & \mathbf{F} \mathbf{g}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & \rightarrow \mathsf{rank}(\mathcal{R}^{(1)}) = 1 \\ \mathbf{g}_2 \ : \ \mathcal{R}^{(2)} &= \begin{bmatrix} \mathbf{g}_2 & \mathbf{F} \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} & \rightarrow \mathsf{rank}(\mathcal{R}^{(2)}) = 1 \end{aligned}$$

 \boxtimes

se Σ è raggiungibile ma **non** da un ingresso, è possibile assegnare a $\mathbf{A} = \mathbf{F} + \mathbf{GK}$ degli autovalori desiderati? si potrebbe usare una retroazione preliminare che renda Σ raggiungibile da un ingresso

Lemma (Lemma di Heymann) Se (\mathbf{F}, \mathbf{G}) è raggiungibile e se $\mathbf{g}_i \in \mathbb{R}^n$ è una colonna non nulla di \mathbf{G} , esiste una matrice $\mathbf{M} \in \mathbb{R}^{m \times n}$ tale che $(\mathbf{F} + \mathbf{G}\mathbf{M}, \mathbf{g}_i)$ è raggiungibile.

esempio

$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u}(t) \qquad \mathbf{G} = \begin{bmatrix} \mathbf{g}_1 & \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

calcolare la matrice di retroazione ${\bf K}^*$ tale che il sistema retroazionato abbia un unico autovalore $\lambda=1/2$ con $m^a=2$

• esistenza di
$$\mathbf{K}^*$$

 $\mathcal{R} = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \rightarrow \operatorname{rank}(\mathcal{R}) = 2 \rightarrow \Sigma = (\mathbf{F}, \mathbf{G})\operatorname{raggiungibile} \Rightarrow \mathbf{K}^*$ esiste

calcolo di K*

$$\begin{split} \mathbf{g}_{1} &: \mathcal{R}^{(1)} = \begin{bmatrix} \mathbf{g}_{1} & \mathbf{F} \mathbf{g}_{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} &\to \operatorname{rank}(\mathcal{R}^{(1)}) = 1 &\to \Sigma = (\mathbf{F}, \mathbf{g}_{1}) \text{ non raggiungibile} \\ \mathbf{g}_{2} &: \mathcal{R}^{(2)} = \begin{bmatrix} \mathbf{g}_{2} & \mathbf{F} \mathbf{g}_{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} &\to \operatorname{rank}(\mathcal{R}^{(2)}) = 1 &\to \Sigma = (\mathbf{F}, \mathbf{g}_{2}) \text{ non raggiungibile} \\ \\ \operatorname{sia} \mathbf{M} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ allora } \mathbf{F} + \mathbf{G} \mathbf{M} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \\ \mathcal{R}_{pre} = \begin{bmatrix} \mathbf{g}_{1} & (\mathbf{F} + \mathbf{G} \mathbf{M}) \mathbf{g}_{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} &\to \operatorname{rank}(\mathcal{R}_{pre}) = 2 &\to \Sigma_{pre} = (\mathbf{F} + \mathbf{G} \mathbf{M}, \mathbf{g}_{1}) \operatorname{raggiungibile} \\ \\ \operatorname{sia} \mathbf{k} = \begin{bmatrix} k_{1} & k_{2} \end{bmatrix}^{\top}, \ k_{1}, k_{2} \in \mathbb{R}, \ \operatorname{sia} \mathbf{A}_{1} = \mathbf{F} + \mathbf{G} \mathbf{M} + \mathbf{g}_{1} \mathbf{k}^{\top} \\ & \Delta_{\mathbf{A}_{1}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{F} - \mathbf{G} \mathbf{M} - \mathbf{g}_{1} \mathbf{k}^{\top}) = \lambda^{2} - k_{1}\lambda - k_{2} = p(\lambda) = \lambda^{2} - \lambda + 1/4 \\ \\ \\ \operatorname{allora} \mathbf{k} = \begin{bmatrix} k_{1} & k_{2} \end{bmatrix}^{\top} = \begin{bmatrix} 1 & -1/4 \end{bmatrix}^{\top} \\ \\ \operatorname{di \ conseguenza} \end{aligned}$$

$$\mathbf{K}^* = \mathbf{M} + \begin{bmatrix} \mathbf{k}^\top \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & -1/4 \\ 1 & 0 \end{bmatrix}$$

calcolo della matrice di retroazione tramite allocazione autovalori (caso m > 1)

- 1. Esistono algoritmi per trovare la matrice di retroazione preliminare M. Tuttavia, generando una matrice $\mathbf{M} \in \mathbb{R}^{m \times n}$ "a caso" questa renderà Σ raggiungibile da un qualsiasi ingresso quasi certamente (con probabilità 1).
- 2. Un approccio alternativo è usare il metodo diretto (cioè risolvere $\Delta_{\mathbf{F}+\mathbf{GK}}(\lambda) = p(\lambda)$ con incognite gli elementi di **K**) anche nel caso m > 1. In questo caso, però il sistema di equazioni da risolvere potrebbe essere non lineare.
- L'approccio tramite lemma di Heymann ci permette di allocare gli autovalori della matrice F+GK a nostro piacimento anche per m > 1, ma ha delle limitazioni.
 Ad esempio, usando un singolo ingresso non si possono ottenere controllori dead-beat che portano a zero lo stato in un numero di passi < n. Usando più ingressi invece è possibile costruire controllori dead-beat

lo stato in un numero di passi < n. Usando più ingressi invece è possibile costruire controllori dead-beat che portano a zero lo stato in un numero di passi < n. Tramite tecniche di controllo più avanzate che sfruttano tutti gli ingressi di controllo si possono ottenere quindi prestazioni di controllo migliori.

4.3 Stabilizzabilità dei sistemi lineari

stabilizzabilità

• un sistema Σ si dice **stabilizzabile** se esiste un controllo in retroazione dallo stato che rende il sistema asintoticamente stabile

 \boxtimes

sistemi a tempo discreto

$$\Sigma$$
 : $\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t)$

Teorema Per un sistema a tempo discreto Σ , le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile.
- 2. Gli autovalori "non raggiungibili" di ${f F}$ hanno modulo strettamente minore di 1.
- 3. La matrice PBH $[z\mathbf{I} \mathbf{F} \mathbf{G}]$ ha rango $n, \forall z \text{ con } |z| \geq 1$.

sistemi a tempo continuo

$$\Sigma : \dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t)$$

Teorema Per un sistema a tempo continuo Σ , le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile.
- 2. Gli autovalori "non raggiungibili" di ${f F}$ hanno parte reale strettamente negativa.
- 3. La matrice PBH $[z\mathbf{I} \mathbf{F} \mathbf{G}]$ ha rango $n, \forall z \text{ con } \Re[z] \ge 0.$

5 OSSERVABILITÀ E RICOSTRUIBILITÀ DEI SISTEMI DINAMICI

osservabilità di un sistema ~ possibilità di determinare lo stato iniziale $\mathbf{x}_0 = \mathbf{x}(t_0)$ del sistema a partire da misure di ingresso e uscita nell'intervallo $[t_0, t^*]$

- stato indistinguibile: lo stato x₀' si dice indistinguibile dallo stato x₀'' in [t₀, t^{*}] se, per ogni ingresso u(·), l'uscita y'(·) corrispondente allo stato iniziale x(t₀) = x₀' e l'uscita y''(·) corrispondente allo stato iniziale x(t₀) = x₀'' coincidono su [t₀, t^{*}]
- stato non osservabile: lo stato x₀ si dice non osservabile nell'intervallo [t₀, t^{*}] se è indistinguibile dallo stato x(t₀) = 0
- spazio non osservabile: lo spazio non osservabile in [0, t] è l'insieme di tutti gli stati non osservabili nell'intervallo [0, t]
- ▶ tipicamente: $\mathbf{x}_0 = \mathbf{0}$, $t_0 = 0$

esempio

modello di stato

$$\dot{x}_1(t) = \frac{di_{L_1}(t)}{dt} = \frac{v_{L_1}(t)}{L_1} = \frac{1}{L_1}(u(t) - Ri_R(t)) = -\frac{R}{L_1}x_1(t) - \frac{R}{L_1}x_2(t) + \frac{1}{L_1}u(t)$$
$$\dot{x}_2(t) = \frac{di_{L_2}(t)}{dt} = \frac{v_{L_2}(t)}{L_2} = \frac{1}{L_2}(u(t) - Ri_R(t)) = -\frac{R}{L_2}x_1(t) - \frac{R}{L_2}x_2(t) + \frac{1}{L_2}u(t)$$

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \qquad \dot{\mathbf{x}}(t) = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{L_1} \\ \frac{1}{L_2} \end{bmatrix} u = \mathbf{F}\mathbf{x} + \mathbf{g}u$$
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{h}^{\top}\mathbf{x}$$

se $\mathbf{x}_0 \neq 0$ allora $y(t) = \mathbf{h}^\top e^{\mathbf{F}t} \mathbf{x}_0 + \int_0^t \mathbf{h}^\top e^{\mathbf{F}(t-\tau)} \mathbf{gu}(\tau) d\tau$ se $\mathbf{x}_0 = 0$ allora $y_0(t) = \int_0^t \mathbf{h}^\top e^{\mathbf{F}(t-\tau)} \mathbf{gu}(\tau) d\tau$ $\rightarrow \mathbf{x}_0$ è non osservabile in [0,t] se $y(\tau) = y_0(\tau) \ \forall \tau \in [0,t]$ ovvero $\mathbf{h}^\top e^{\mathbf{F}\tau} \mathbf{x}_0 = 0 \ \forall \tau \in [0,t]$

se $L_1 = L_2 = L$ allora

$$\mathbf{F} = -\frac{R}{L} \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad \mathbf{F}' = \mathbf{T} \mathbf{D} \mathbf{T}^{-1} \quad \text{con} \quad \mathbf{T} = \begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix}, \ \mathbf{D} = \begin{bmatrix} 0 & 0\\ 0 & -\frac{2R}{L} \end{bmatrix}, \ \mathbf{T}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix},$$

da cui

$$\mathbf{h}^{\top} e^{\mathbf{F}\tau} \mathbf{x}_0 = \mathbf{h}^{\top} \mathbf{T} e^{\mathbf{D}\tau} \mathbf{T}^{-1} \mathbf{x}_0 = e^{-\frac{2R}{L}\tau} \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x}_0 \quad \forall \tau \in [0, t]$$

$$\rightarrow \mathbf{x}_{0} \text{ è non osservabile in } \begin{bmatrix} 0,t \end{bmatrix} \text{ se } \mathbf{h}^{\top} e^{\mathbf{F} \tau} \mathbf{x}_{0} = 0 \ \forall \tau \in [0,t] \text{ ovvero } e^{-\frac{2R}{L}\tau} \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x}_{0} = 0 \ \forall \tau \in [0,t] \text{ ovvero } \mathbf{x}_{0} \in \ker(\begin{bmatrix} 1 & 1 \end{bmatrix}) = span \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \text{ spazio non osservabile in } \begin{bmatrix} 0,t \end{bmatrix} = \left\{ \mathbf{x}_{0} = \begin{bmatrix} \alpha \\ -\alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\}$$

ricostruibilità di un sistema ~ possibilità di determinare lo stato finale $\mathbf{x}^* = \mathbf{x}(t^*)$ del sistema a partire da misure di ingresso e uscita nell'intervallo $[t_0, t^*]$

5.1 Osservabilità e ricostruibilità di sistemi a tempo discreto

dato
$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \operatorname{con} \mathbf{x}(0) = \mathbf{x}_0,$$

$$\mathbf{y} = \mathbf{H}\mathbf{x}(t)$$

allora

$$\mathbf{y}(t) = \mathbf{H}\mathbf{F}^t\mathbf{x}_0 + \sum_{k=0}^{t-1}\mathbf{H}\mathbf{F}^{t-k-1}\mathbf{G}\mathbf{u}(k) = \mathbf{H}\mathbf{F}^t\mathbf{x}_0 + \mathbf{H}\mathcal{R}_t\mathbf{u}_t$$

5.1.1 spazi non osservabili

qual è l'insieme degli stati iniziali indistinguibili da \mathbf{x}_0 in [0, t-1] (= in t passi)?

sia

$$\mathbf{x}(0) = \mathbf{x}_0: \quad \mathbf{y}(k) = \mathbf{H}\mathbf{F}^k\mathbf{x}_0 + \mathbf{H}\mathcal{R}_k\mathbf{u}_k, \qquad k = 0, 1, \dots, t-1$$
$$\mathbf{x}(0) = \mathbf{x}'_0: \quad \mathbf{y}'(k) = \mathbf{H}\mathbf{F}^k\mathbf{x}'_0 + \mathbf{H}\mathcal{R}_k\mathbf{u}_k, \qquad k = 0, 1, \dots, t-1$$

allora \mathbf{x}'_0 è indistinguibile da \mathbf{x}_0 in [0, t-1] se $\mathbf{y}(k) = \mathbf{y}'(k)$, $k = 0, 1, \dots, t-1$, ovvero

$$\begin{cases} k = 0 & \mathbf{y}'(0) - \mathbf{y}(0) = \mathbf{H}(\mathbf{x}'_0 - \mathbf{x}_0) = \mathbf{0} \\ k = 1 & \mathbf{y}'(1) - \mathbf{y}(1) = \mathbf{HF}(\mathbf{x}'_0 - \mathbf{x}_0) = \mathbf{0} \\ k = 2 & \mathbf{y}'(2) - \mathbf{y}(2) = \mathbf{HF}^2(\mathbf{x}'_0 - \mathbf{x}_0) = \mathbf{0} \\ \vdots \\ k = t - 1 & \mathbf{y}'(t - 1) - \mathbf{y}(t - 1) = \mathbf{HF}^{t-1}(\mathbf{x}'_0 - \mathbf{x}_0) = \mathbf{0} \end{cases} \Leftrightarrow \begin{bmatrix} \mathbf{H} \\ \mathbf{HF} \\ \mathbf{HF}^2 \\ \vdots \\ \mathbf{HF}^{t-1} \end{bmatrix} (\mathbf{x}'_0 - \mathbf{x}_0) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

con

$$\mathcal{O}_t \triangleq \begin{bmatrix} \mathbf{H} \\ \mathbf{HF} \\ \mathbf{HF}^2 \\ \vdots \\ \mathbf{HF}^{t-1} \end{bmatrix} \in \mathbb{R}^{pt \times n} \quad \text{matrice di osservabilità in } t \text{ passi}$$

allora \mathbf{x}_0' è indistinguibile da \mathbf{x}_0 in [0,t-1] se $(\mathbf{x}_0'-\mathbf{x}_0)\in \ker \mathcal{O}_t$

 $\boxed{\mathbf{x}_0 + \ker \mathcal{O}_t = \{\mathbf{x}_0 + \mathbf{x}, \mathbf{x} \in \ker \mathcal{O}_t\}: \text{ insight of indistinguibili in } t \text{ passi da } \mathbf{x}_0}$

 $X_{NO}(t) = \ker(\mathcal{O}_t)$: insieme di stati indistinguibili in t passi da $\mathbf{x}_0 = \mathbf{0}$: insieme di stati non osservabili in t passi : spazio non osservabile in t passi

Proposizione In un sistema di dimensione n, gli spazi non osservabili in 1, 2, ... passi soddisfano la catena di inclusioni $X_{NO}(1) \supseteq X_{NO}(2) \supseteq ... X_{NO}(t) \supseteq X_{NO}(t+1) \supseteq ...$ La catena è stazionaria (almeno) dal t'-esimo passo in poi, ovvero $X_{NO}(t') = X_{NO}(t''), \forall t'' \ge t'$, con $t' \le n$.

 $X_{NO} \triangleq X_{NO}(t')$: (minimo) spazio non osservabile

5.1.2 criterio di osservabilità del rango

quando è possibile distinguere tutti i possibili stati $\mathbf{x}_0 \in \mathbb{R}^n$?

(completa) osservabilità

- un sistema Σ a tempo discreto si dice (completamente) osservabile se $X_{NO} = \{0\}$
- un sistema Σ a tempo discreto si dice (completamente) osservabile in t passi se t è il più piccolo intero tale che X_{NO}(t) = {0}

 $\blacktriangleright \ \mathcal{O} \triangleq \mathcal{O}_n = \begin{bmatrix} \mathbf{H}^\top & (\mathbf{H}\mathbf{F})^\top & \dots & (\mathbf{H}\mathbf{F}^{n-1})^\top \end{bmatrix}^\top : \text{ matrice di osservabilità del sistema}$

 $\Sigma \text{ osservabile } \iff \ker(\mathcal{O}) = \{\mathbf{0}\} \iff \operatorname{rank}(\mathcal{O}) = n$

si noti che $\mathcal{O} \in \mathbb{R}^{pn imes n}$, per cui

- p = 1: Σ osservabile $\iff \det(\mathcal{O}) \neq 0$
- p > 1: Σ osservabile $\iff \det(\mathcal{O}^{\top}\mathcal{O}) \neq 0$

esempio

1.
$$\mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} \mathbf{x}(t), \quad \alpha_1, \alpha_2 \in \mathbb{R}$$

 $y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}(t)$
 $\mathbf{F} = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix}, \mathbf{h} = \begin{bmatrix} 0 & 1 \end{bmatrix} \implies \mathcal{O} = \begin{bmatrix} \mathbf{h}^\top \\ \mathbf{h}^\top \mathbf{F} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & \alpha_2 \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 1 < 2$
 $\implies \Sigma \text{ non osservabile } \forall \alpha_1, \alpha_2 \in \mathbb{R}$

2.
$$\mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} \mathbf{x}(t), \quad \alpha_1, \alpha_2 \in \mathbb{R}$$

 $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$

$$\begin{split} \mathbf{F} &= \begin{bmatrix} \alpha_1 & 1\\ 0 & \alpha_2 \end{bmatrix}, \mathbf{h} = \begin{bmatrix} 1 & 0 \end{bmatrix} \implies \mathcal{O} = \begin{bmatrix} \mathbf{h}^\top\\ \mathbf{h}^\top \mathbf{F} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ \alpha_1 & 1 \end{bmatrix} : \mathsf{rank}(\mathcal{R}) < 2 \\ \implies \Sigma \text{ osservabile (in 2 passi) } \forall \alpha_1, \alpha_2 \in \mathbb{R} \end{split}$$

5.1.3 spazi non ricostruibili

sia

- stato finale: $\mathbf{x}^* = \mathbf{x}(t-1) = \mathbf{F}^{t-1}\mathbf{x}_0 + \mathcal{R}_{t-1}\mathbf{u}_{t-1}$
- misure: $\{\mathbf{u}(k)\}_{k=0}^{t-1}, \{\mathbf{y}(k)\}_{k=0}^{t-1}$

allora

- stati iniziali compatibili con le misure: $\mathbf{x}_0 + X_{NO}(t)$
- stati finali compatibili con le misure: $\mathbf{F}^{t-1}\mathbf{x}_0 + \mathbf{F}^{t-1}X_{NO}(t) + \mathcal{R}_{t-1}\mathbf{u}_{t-1} = \mathbf{x}^* + \mathbf{F}^{t-1}X_{NO}(t)$

 $X_{NR}(t) = \mathbf{F}^{t-1} X_{NO}(t) = \left\{ \mathbf{F}^{t-1} \mathbf{x}, \mathbf{x} \in \ker(\mathcal{O}_t) \right\}: \text{ spazio non ricostruibile in } t \text{ passi}$

Proposizione In un sistema di dimensione n, gli spazi non ricostruibili in 1, 2, ... passi soddisfano la catena di inclusioni $X_{NR}(1) \supseteq X_{NR}(2) \supseteq ... X_{NR}(t) \supseteq X_{NR}(t+1) \supseteq ...$ La catena è stazionaria (almeno) dal t'-esimo passo in poi, ovvero $X_{NR}(t') = X_{NR}(t''), \forall t'' \ge t'$, con $t' \le n$.

 $X_{NR} \triangleq X_{NR}(t')$: (minimo) spazio non ricostruibile

5.1.4 criterio di ricostruibilità del rango

quando è possibile determinare univocamente $\mathbf{x}^* \in \mathbb{R}^n$ dalle misure?

(completa) ricostruibilità

- un sistema Σ a tempo discreto si dice (completamente) ricostruibile se $X_{NR} = \{0\}$
- un sistema Σ a tempo discreto si dice (completamente) ricostruibile in t passi se t è il più piccolo intero tale che X_{NR}(t) = {0}

 $\blacktriangleright X_{NR} = X_{NR}(n) = \mathbf{F}^n X_{NO} = \{\mathbf{F}^n \mathbf{x}, \mathbf{x} \in \ker(\mathcal{O})\}\$

 Σ ricostruibile $\iff \ker(\mathbf{F}^n) \supseteq \ker(\mathcal{O}) = X_{NO}$

si noti che

- Σ osservabile $(X_{NO} = \{0\}) \Rightarrow \Sigma$ ricostruibile
- Σ ricostruibile $\not\Rightarrow \Sigma$ osservabile

 \boxtimes

esempio

$$\begin{aligned} \mathbf{1.} \ \mathbf{x}(t+1) &= \begin{bmatrix} \alpha_{1} & 1 \\ 0 & \alpha_{2} \end{bmatrix} \mathbf{x}(t), \quad \alpha_{1}, \alpha_{2} \in \mathbb{R} \\ y(t) &= \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}(t) \\ \mathbf{F} &= \begin{bmatrix} \alpha_{1} & 1 \\ 0 & \alpha_{2} \end{bmatrix}, \mathbf{h} = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \mathcal{O} = \begin{bmatrix} \mathbf{h}^{\top} \\ \mathbf{h}^{\top} \mathbf{F} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & \alpha_{2} \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 1 < 2 \\ X_{NO} &= \ker \mathcal{O} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \\ & \ker(\mathbf{F}^{2}) &= \ker \left(\begin{bmatrix} \alpha_{1}^{2} & \alpha_{1} + \alpha_{2} \\ 0 & \alpha_{2}^{2} \end{bmatrix} \right) = \begin{cases} \operatorname{span} \left\{ \mathbf{0} \right\} & \alpha_{1} \neq 0, \alpha_{2} \neq 0 \\ \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -\alpha_{1} \end{bmatrix} \right\} & \alpha_{1} \neq 0, \alpha_{2} = 0 \\ \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} & \alpha_{1} = 0, \alpha_{2} \neq 0 \\ \mathbb{R}^{2} & \alpha_{1} = \alpha_{2} = 0 \end{aligned}$$

$$\implies \Sigma \text{ non osservabile } \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\Sigma \text{ ricostribile se } \alpha_1 = 0 \text{ (ker}(\mathbf{F}^2) \supseteq \ker \mathcal{O} \text{)}$$

2.
$$\mathbf{x}(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} \mathbf{x}(t), \quad \alpha_1, \alpha_2 \in \mathbb{R}$$

 $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$
 $\mathbf{F} = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix}, \mathbf{h} = \begin{bmatrix} 1 & 0 \end{bmatrix} \implies \mathcal{O} = \begin{bmatrix} \mathbf{h}^\top \\ \mathbf{h}^\top \mathbf{F} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \alpha_1 & 1 \end{bmatrix} : \operatorname{rank}(\mathcal{R}) = 2$

 $\implies \Sigma \text{ osservabile } \forall \alpha_1, \alpha_2 \in \mathbb{R}$ $\Sigma \text{ ricostruibile } \forall \alpha_1, \alpha_2 \in \mathbb{R}$

-			
I N	۰.		
	-	c	
	/		
v			

5.2 Osservabilità e ricostruibilità di sistemi a tempo continuo

 $\begin{aligned} & \mathsf{dato} \quad \dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \ \mathsf{con} \ \mathbf{x}(0) = \mathbf{x}_0, \\ & \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) \end{aligned}$

allora

$$\mathbf{y}(\tau) = \mathbf{H}e^{\mathbf{F}\tau}\mathbf{x}_0 + \int_0^{\tau} \mathbf{H}e^{\mathbf{F}(t-s)}\mathbf{Gu}(s)ds, \ \tau \in [0,t]$$

5.2.1 osservabilità

quando è possibile determinare univocamente $\mathbf{x}_0 \in \mathbb{R}^n$ dalle misure?

 $X_{NO}(t)$: spazio non osservabile nell'intervallo [0,t] X_{NO} : (minimo) spazio non osservabile

(completa) osservabilità

• un sistema Σ a tempo continuo si dice (completamente) osservabile se $X_{NO} = \{0\}$

$$\blacktriangleright \mathcal{O} \triangleq \mathcal{O}_n = \begin{bmatrix} \mathbf{H}^\top & (\mathbf{H}\mathbf{F})^\top & \dots & (\mathbf{H}\mathbf{F}^{n-1})^\top \end{bmatrix}^\top : \text{ matrice di osservabilità del sistema}$$
$$\Sigma \text{ osservabile } \iff \ker(\mathcal{O}) = \{\mathbf{0}\} \iff \operatorname{rank}(\mathcal{O}) = n$$

Se un sistema Σ a t.c. è osservabile allora $X_{NO}(t)=\{0\}$ per ogni t>0

esempio

modello di stato

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \qquad \dot{\mathbf{x}}(t) = \begin{bmatrix} -\frac{R}{L_1} & -\frac{R}{L_1} \\ -\frac{R}{L_2} & -\frac{R}{L_2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{L_1} \\ \frac{1}{L_2} \end{bmatrix} u = \mathbf{F}\mathbf{x} + \mathbf{g}u$$
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{h}^{\top}\mathbf{x}$$

allora

$$det(\mathcal{O}) = det\begin{pmatrix} \mathbf{h}^{\top} \\ \mathbf{h}^{\top} \mathbf{F} \end{pmatrix} = det\begin{pmatrix} 1 & 1 \\ -\frac{R}{L_1} - \frac{R}{L_2} & -\frac{R}{L_1} - \frac{R}{L_2} \end{pmatrix}$$
$$= -\frac{R}{L_1} - \frac{R}{L_2} + \frac{R}{L_1} + \frac{R}{L_2}$$

da cui si ha che

$$\det(\mathcal{O}) = 0 \quad \rightarrow \quad \Sigma \text{ non osservabile}$$

 \bowtie

5.2.2 ricostruibilità

quando è possibile determinare univocamente $\mathbf{x}^* \in \mathbb{R}^n$ dalle misure?

sia

• stato finale:
$$\mathbf{x}^* = \mathbf{x}(t) = e^{\mathbf{F}t}\mathbf{x}_0 + \int_0^t e^{\mathbf{F}(t-\tau)}\mathbf{Gu}(\tau)\mathrm{d}\tau$$

• misure:
$$\mathbf{u}(\tau), \mathbf{y}(\tau), \tau \in [0, t]$$

allora

- stati iniziali compatibili con le misure: $\mathbf{x}_0 + X_{NO}(t)$
- stati finali compatibili con le misure: $e^{\mathbf{F}t}\mathbf{x}_0 + e^{\mathbf{F}t}X_{NO}(t) + \int_0^t e^{\mathbf{F}(t-\tau)}\mathbf{Gu}(\tau)d\tau = \mathbf{x}^* + e^{\mathbf{F}t}X_{NO}(t)$

 $\begin{array}{|c|c|c|} \hline X_{NR}(t) = e^{\mathbf{F}t} X_{NO}(t) \text{: spazio non ricostruibile nell'intervallo } [0,t] \\ \hline X_{NR} \text{: (minimo) spazio non ricostruibile} \end{array}$

(completa) ricostruibilità

• un sistema Σ a tempo continuo si dice (completamente) ricostruibile se $X_{NR} = \{0\}$

 $\blacktriangleright e^{\mathbf{F}t}$ invertibile

$$\mathsf{X}_{NR}(t) = \{\mathbf{0}\} \iff X_{NO}(t) = \{\mathbf{0}\}$$

 Σ ricostruibile $\iff \Sigma$ osservabile

5.3 Sistemi duali

si considera il caso di sistemi a tempo discreto ma tutto si applica anche al caso di sistemi a tempo continuo

per i sistemi duali vale che

- raggiungibilità e controllabilità
 - dato che $\mathcal{R}_d = \begin{bmatrix} \mathbf{H}^\top & \mathbf{F}^\top \mathbf{H}^\top & \cdots & (\mathbf{F}^\top)^{n-1} \mathbf{H}^\top \end{bmatrix} = \mathcal{O}^\top$ Σ_d raggiungibile $\Leftrightarrow \Sigma$ osservabile

- dato che

- * dati due sottospazi \mathcal{U}, \mathcal{V} di \mathbb{R}^n tali che $\mathcal{V} \subseteq \mathcal{U}$, si ha che $\mathcal{U}^{\perp} \subseteq \mathcal{V}^{\perp}$ con $\mathcal{V}^{\perp} = \{\mathbf{w} \in \mathbb{R}^n | \mathbf{w}^{\top} \mathbf{v} = 0 \ \forall \mathbf{v} \in \mathcal{V}\}$ complemento ortogonale di \mathcal{V}
- * data la matrice $\mathbf{A} \in \mathbb{R}^{n \times m}$, si ha che $(\mathsf{im}(\mathbf{A}))^\perp = \ker(\mathbf{A}^\top)$

allora im $((\mathbf{F}^{\top})^n) \subseteq \operatorname{im} \mathcal{R}_d \iff \ker(\mathbf{F}^n) \supseteq \ker \mathcal{O}$ Σ_d controllabile $\Leftrightarrow \Sigma$ ricostruibile

- osservabilità e ricostruibilità
 - poichè $\mathcal{O}_d = \begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \cdots & \mathbf{F}^{n-1}\mathbf{G} \end{bmatrix}^\top = \mathcal{R}^\top$ $\Sigma_d \text{ osservabile } \Leftrightarrow \Sigma \text{ raggiungibile}$

- $\begin{array}{l} \text{ dato che } \ker((\mathbf{F}^{\top})^n) \supseteq \ker \mathcal{O}_d \iff \text{ im}(\mathbf{F}^n) \subseteq \text{im}\mathcal{R} \\ \Sigma_d \text{ ricostruibile } \Leftrightarrow \Sigma \text{ controllabile} \end{array}$
- forma canonica di raggiungibilità e forma canonica di osservabilità

 $\Sigma_O = (\mathbf{F}_{11}, \mathbf{H}_1)$ sottosistema osservabile $\Sigma_{NO} = (\mathbf{F}_{22}, \mathbf{0})$ sottosistema non osservabile

test PBH di raggiungibilità e test PBH di osservabilità

allocazione degli autovalori

$$\Sigma_{d} = (\mathbf{F}^{\top}, \mathbf{H}^{\top}, \mathbf{G}^{\top}) \longrightarrow \Sigma_{d} \text{ raggiungibile} \iff \begin{array}{l} \exists \mathbf{K} \in \mathbb{R}^{p \times n} \text{tale che} \\ \mathbf{F}^{\top} + \mathbf{H}^{\top} \mathbf{K} \quad \text{ha autovalori desiderati} \\ \downarrow \\ \mathbf{L} = (\mathbf{F}, \mathbf{G}, \mathbf{H}) \longrightarrow \Sigma \text{ osservabile} \iff \begin{array}{l} \exists \mathbf{L} = \mathbf{K}^{\top} \in \mathbb{R}^{n \times p} \text{tale che} \\ \mathbf{F} + \mathbf{L} \mathbf{H} \quad \text{ha autovalori desiderati} \end{array}$$

grazie alle relazioni precedenti si dimostrano le seguenti proposizioni

Proposizione Il sistema Σ è osservabile se e solo se:

- 1. $\operatorname{rank}(\mathcal{O}) = n$.
- 2. Il sistema duale Σ_d è raggiungibile.
- 3. rank $\begin{bmatrix} z\mathbf{I} \mathbf{F} \\ \mathbf{H} \end{bmatrix} = n, \ \forall z \in \mathbb{C}.$
- 4. Gli autovalori di $\mathbf{F} + \mathbf{LH}$ sono allocabili arbitrariamente tramite la matrice $\mathbf{L} \in \mathbb{R}^{n \times p}$.

Proposizione Il sistema Σ è ricostruibile se e solo se:

- 1. ker $\mathbf{F}^n \supseteq \ker \mathcal{O} = X_{NO}$.
- 2. Il sistema duale Σ_d è controllabile.
- 3. rank $\begin{bmatrix} z\mathbf{I} \mathbf{F} \\ \mathbf{H} \end{bmatrix} = n, \ \forall z \in \mathbb{C}, \ z \neq 0.$
- 4. Esiste una matrice $\mathbf{L} \in \mathbb{R}^{n imes p}$ tale che $\mathbf{F} + \mathbf{L}\mathbf{H}$ ha tutti gli autovalori nulli.

▶ la proprietà di ricostruibilità ha senso solo per i sistemi a tempo discreto

6 STIMA DELLO STATO

Dato il sistema Σ controllato tramite retroazione statica dallo stato

problema di stima: nel caso in cui lo stato $\mathbf{x}(t)$ non sia direttamente accessibile o misurabile, costruire una "buona" stima $\hat{\mathbf{x}}(t)$ di $\mathbf{x}(t)$ a partire da dati ingresso/uscita e dalla conoscenza del modello

soluzioni di stima

stimatore ad anello aperto

$$\widehat{\boldsymbol{\Sigma}}: \quad \widehat{\mathbf{x}}(t+1) = \mathbf{F}\widehat{\mathbf{x}}(t) + \mathbf{G}\mathbf{u}(t) \\ \widehat{\mathbf{y}}(t) = \widehat{\mathbf{x}}(t)$$

sia $\mathbf{e}(t) \triangleq \mathbf{x}(t) - \hat{\mathbf{x}}(t)$: errore di stima allora $\mathbf{e}(t+1) = \mathbf{x}(t+1) - \hat{\mathbf{x}}(t+1) = \mathbf{F}(\mathbf{x}(t) - \hat{\mathbf{x}}(t)) = \mathbf{F}\mathbf{e}(t)$ $\Rightarrow \mathbf{e}(t) \xrightarrow{t \to \infty} \infty$ se \mathbf{F} è instabile

stimatore ad anello chiuso

$$\begin{split} \hat{\boldsymbol{\Sigma}} : \quad \hat{\mathbf{x}}(t+1) &= \mathbf{F} \hat{\mathbf{x}}(t) + \mathbf{G} \mathbf{u}(t) - \mathbf{L} (\mathbf{y}(t) - \mathbf{H} \hat{\mathbf{x}}(t)) \\ \hat{\mathbf{y}}(t) &= \hat{\mathbf{x}}(t) \\ \mathbf{L} \in \mathbb{R}^{n \times p} : \text{ guadagno dello stimatore} \end{split}$$

sia $\mathbf{e}(t) \triangleq \mathbf{x}(t) - \hat{\mathbf{x}}(t)$: errore di stima

allora $\mathbf{e}(t+1) = \mathbf{x}(t+1) - \hat{\mathbf{x}}(t+1) = \mathbf{F}(\mathbf{x}(t) - \hat{\mathbf{x}}(t)) + \mathbf{LH}(\mathbf{x}(t) - \hat{\mathbf{x}}(t)) = (\mathbf{F} + \mathbf{LH})\mathbf{e}(t)$ $\Rightarrow \mathbf{e}(t) \xrightarrow{t \to \infty} \mathbf{0}$ se $\mathbf{F} + \mathbf{LH}$ è asintoticamente stabile (e in questo caso \mathbf{F} può anche essere instabile)

si osserva che

- Se il sistema è osservabile allora è sempre possible calcolare un guadagno L in grado di rendere F + LH asintoticamente stabile. Per il calcolo di L si possono usare gli stessi metodi allocazione degli autovalori visti per il controllo in retroazione.
- Se tutti gli autovalori di F + LH vengono allocati in zero l'errore di stima converge a zero in tempo finito. Lo stimatore in questo caso viene detto *stimatore dead-beat*.
- Gli stimatori visti sono detti di stimatori di ordine intero perché stimano l'intero stato x(t). In certi casi, è
 possibile costruire stimatori di ordine ridotto che stimano solo la parte "veramente incognita" dello stato.
- Tutto quello che abbiamo visto si applica anche a sistemi a tempo continuo (unica eccezione: a tempo continuo non ha senso parlare di stimatori dead-beat).

esempio

 $\mathbf{x}(t+1) = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}(t)$ $\mathbf{y}(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x}(t)$

costruire, se esiste, uno stimatore dead-beat dello stato del sistema

esistenza di l*

$$\mathcal{O} = \begin{bmatrix} \mathbf{h}^\top \\ \mathbf{F}\mathbf{h}^\top \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \quad \rightarrow \mathsf{rank}(\mathcal{O}) = 2 \quad \rightarrow \Sigma = (\mathbf{F}, \mathbf{h})\mathsf{osservabile} \quad \Rightarrow \mathbf{l}^*\mathsf{esiste}$$

• calcolo di $\mathbf{l}^* = \begin{bmatrix} l_1 & l_2 \end{bmatrix}^\top$

$$\begin{split} \Delta_{\mathbf{F}+\mathbf{lh}^{\top}}(\lambda) &= \det(\lambda \mathbf{I} - \mathbf{F} - \mathbf{lh}^{\top}) = \det\left(\begin{bmatrix} \lambda - l_1 & -1 - l_1 \\ -l_2 & \lambda - 1 - l_2 \end{bmatrix} \right) = \lambda^2 + \lambda(-1 - l_1 - l_2) + (l_1 - l_2) \\ &= p(\lambda) = \lambda^2 \\ \rightarrow \begin{cases} -1 - l_1 - l_2 = 0 \\ l_1 - l_2 = 0 \end{cases} \Rightarrow \mathbf{l}^* = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \end{split}$$

\boxtimes

6.1 Rivelabilità dei sistemi lineari

rivelabilità

• un sistema Σ si dice **rivelabile** se esiste uno stimatore dello stato ad anello chiuso il cui errore di stima tende asintoticamente a zero

sistemi a tempo discreto

$$\Sigma : \mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t)$$

Teorema Per un sistema a tempo discreto Σ , le seguenti condizioni sono equivalenti:

- 1. Σ è rivelabile.
- 2. Il sistema duale Σ_d è stabilizzabile.
- 3. Esiste $\mathbf{L} \in \mathbb{R}^{n \times p}$ tale che $\mathbf{F} + \mathbf{LH}$ ha autovalori con modulo strettamente minore di 1.
- 4. Il sottosistema non osservabile di Σ ha autovalori con modulo strettamente minore di 1.

5. La matrice PBH di osservabilità
$$\begin{bmatrix} z\mathbf{I} - \mathbf{F} \\ \mathbf{H} \end{bmatrix}$$
 ha rango n , $\forall z \text{ con } |z| \ge 1$.

sistemi a tempo continuo

$$\Sigma : \dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t)$$

Teorema Per un sistema a tempo continuo Σ , le seguenti condizioni sono equivalenti:

- 1. Σ è rivelabile.
- 2. Il sistema duale Σ_d è stabilizzabile.
- 3. Esiste $\mathbf{L} \in \mathbb{R}^{n \times p}$ tale che $\mathbf{F} + \mathbf{LH}$ ha autovalori con parte reale strettamente negativa.
- 4. Il sottosistema non osservabile di Σ ha autovalori con parte reale strettamente negativa.

5. La matrice PBH di osservabilità
$$\begin{bmatrix} z\mathbf{I} - \mathbf{F} \\ \mathbf{H} \end{bmatrix}$$
 ha rango n , $\forall z \text{ con } \Re[z] \ge 0$.

6.2 Sintesi del regolatore

stimatore dello stato + controllo in retroazione dallo stato

equazioni dinamiche del regolatore

sistema Σ :

 $\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t)$

legge di controllo:

 $\mathbf{u}(t) = \mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{v}(t)$ $\hat{\mathbf{x}}(t+1) = \mathbf{F}\hat{\mathbf{x}}(t) + \mathbf{G}\mathbf{u}(t) - \mathbf{L}(\mathbf{y}(t) - \mathbf{L})$

stimatore dello stato:

$$[\mathbf{x}(t+1)] = \mathbf{F}\hat{\mathbf{x}}(t) + \mathbf{G}\mathbf{u}(t) - \mathbf{L}(\mathbf{y}(t) - \mathbf{H}\hat{\mathbf{x}}(t))$$
$$[\mathbf{x}(t+1)] = \begin{bmatrix} \mathbf{F} & \mathbf{G}\mathbf{K} \\ \mathbf{F} & \mathbf{G}\mathbf{K} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \end{bmatrix}_{+} \begin{bmatrix} \mathbf{G} \end{bmatrix}_{\mathbf{y}}$$

$$\begin{bmatrix} \mathbf{x}(t+1) \\ \hat{\mathbf{x}}(t+1) \end{bmatrix} = \begin{bmatrix} \mathbf{F} & \mathbf{G}\mathbf{K} \\ -\mathbf{L}\mathbf{H} & \mathbf{F} + \mathbf{G}\mathbf{K} + \mathbf{L}\mathbf{H} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \hat{\mathbf{x}}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{G} \\ \mathbf{G} \end{bmatrix} \mathbf{v}(t)$$
$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{H} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \hat{\mathbf{x}}(t) \end{bmatrix}$$

regolatori stabilizzanti

- un regolatore si dice stabilizzante se il sistema regolato è asintoticamente stabile
- un regolatore si dice *dead-beat* se l'evoluzione dello stato del sistema regolato va a zero in un numero finito di passi

sia
$$\mathbf{T} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{I} & -\mathbf{I} \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$$
: matrice di cambio di base $\rightarrow \mathbf{z}(t) = \mathbf{T}^{-1} \begin{bmatrix} \mathbf{x}(t) \\ \hat{\mathbf{x}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{e}(t) \end{bmatrix}$ allora

$$\begin{bmatrix} \mathbf{x}(t+1) \\ \mathbf{e}(t+1) \end{bmatrix} = \begin{bmatrix} \mathbf{F} + \mathbf{G}\mathbf{K} & -\mathbf{G}\mathbf{K} \\ \mathbf{0} & \mathbf{F} + \mathbf{L}\mathbf{H} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{e}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{G} \\ \mathbf{0} \end{bmatrix} \mathbf{v}(t)$$
$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{H} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \hat{\mathbf{e}}(t) \end{bmatrix}$$

 $\Rightarrow \left\{ \text{autovalori di} \begin{bmatrix} \mathbf{F} + \mathbf{G}\mathbf{K} & -\mathbf{G}\mathbf{K} \\ \mathbf{0} & \mathbf{F} + \mathbf{L}\mathbf{H} \end{bmatrix} \right\} = \{ \text{autovalori di } \mathbf{F} + \mathbf{G}\mathbf{K} \cup \text{ autovalori di } \mathbf{F} + \mathbf{L}\mathbf{H} \}$

Proposizione (principio di separazione)

Gli autovalori della matrice di stato del sistema regolato sono dati dall'unione degli autovalori di $\mathbf{F} + \mathbf{GK}$ e di $\mathbf{F} + \mathbf{LH}$. Quindi la sintesi del controllo in retroazione (allocazione degli autovalori di $\mathbf{F} + \mathbf{GK}$) e dello stimatore (allocazione degli autovalori di $\mathbf{F} + \mathbf{LH}$) possono essere effettuate in modo indipendente.

Teorema Dato un sistema Σ il sistema ammette un regolatore stabilizzante se e solo se Σ è sia stabilizzabile che rivelabile.

Teorema Dato un sistema Σ il sistema ammette un regolatore dead-beat se e solo se Σ è sia controllabile che ricostruibile.

7 CONTROLLO OTTIMO

Dato il sistema $\boldsymbol{\Sigma}$ controllato tramite retroazione statica dallo stato

se $\Sigma = (\mathbf{F}, \mathbf{G})$ è raggiungibile allora è possibile determinare \mathbf{K} tramite allocazione degli autovalori

come scegliere gli autovalori del sistema retroazionato? esiste un altro modo per determinare la matrice di retroazione?

controllo ottimo: metodo sistematico che consente di calcolare la matrice di retroazione in base alle specifiche desiderate (nel dominio del tempo) per il sistema in catena chiusa selezionando l'ingresso di controllo in modo da *ottimizzare un opportuno funzionale costo*

PROBELMA DI OTTIMO

per $\varsigma:\mathcal{X}\to\mathbb{R}$, determinare $\mathbf{x}^{\star}\in\mathcal{X}\subseteq\mathbb{R}^n$ tale che

- $\varsigma(\mathbf{x}^{\star}) \leq \varsigma(\mathbf{x})$ per ogni $\mathbf{x} \in \mathcal{X}$ ("minimizzazione")
- $\varsigma(\mathbf{x}^{\star}) \geq \varsigma(\mathbf{x})$ per ogni $\mathbf{x} \in \mathcal{X}$ ("massimizzazione")
- ▶ problema di ottimizzazione: $\varsigma(\cdot) = f(\cdot)$ funzione
- ► calcolo delle variazioni: $\varsigma(\cdot) = F(\cdot)$ funzionale (funzione di funzioni)

 $\begin{cases} \min \varsigma(\mathbf{x}) / \max \left(\varsigma(\mathbf{x})\right) & \varsigma : \mathcal{X} \to \mathbb{R} \quad \text{funzione/funzionale obiettivo/costo} \\ \mathbf{x} \in \mathcal{X} & \mathbf{x} \in \mathcal{X} & \text{insieme delle soluzioni ammissibili} \end{cases}$

esempio classico di problema di calcolo delle variazioni: determinazione delle geodesiche - curve a "lunghezza" minima tra due punti \rightarrow problema della curva brachistocrona - curva percorsa da una particella con massa per andare da un punto ad un altro nel minor tempo possibile (J. Bernoulli 1696)

problema di controllo ottimo \sim problema classico di calcolo delle variazioni

principali ingredienti di un problema di controllo ottimo 3 (2+1):

- 1. modello del sistema da controllare
 - sistemi a tempo continuo
 - sistemi a tempo discreto
- 2. funzionale costo da minimizzare/massimizzare
 - ottimizzazione su orizzonte finito
 - ottimizzazione su orizzonte infinito

3. vincoli sullo stato o sull'ingresso di controllo

▶ ingresso di controllo calcolato in modo da ottimizzare il funzionale costo considerando la dinamica del sistema e i vincoli esistenti

esempio: tempo continuo

estrazione di energia da una rete elettrica : calcolare la tensione d'ingresso alla rete che consente di estrarre la massima energia nell'intervallo di tempo [0, T]

1. modello del sistema:

$$\int \frac{di_L(t)}{dt} = -\frac{1}{4}i_L(t) + \frac{1}{4}v(t)$$
$$i(t) = \frac{1}{2}i_L(t) + \frac{3}{2}v(t)$$

 $E = \int_0^\top v(t)i(t)dt$ 2. funzionale costo:

problema di controllo ottimo: $\max_{v(t)} E(t), t \in [0, T]$

$$E(t) = \int_0^\top v(t)i(t)dt = \int_0^\top v(t) \left(\frac{1}{2}i_L(t) + \frac{3}{2}v(t)\right)dt = \int_0^\top \begin{bmatrix} v(t) & i_L(t) \end{bmatrix} \begin{bmatrix} \frac{3}{2} & \frac{1}{4} \\ \frac{1}{4} & 0 \end{bmatrix} \begin{bmatrix} v(t) \\ i_L(t) \end{bmatrix} dt$$

esempio: tempo discreto

allocazione delle risorse : distribuire un ammontare limitato S di soldi tra un numero finito N di progetti differenti in modo da massimizzare il ricavato

hp: il ricavato ottenuto destinando la somma u(k) al progetto k è $r(k) = \frac{3}{2}u(k)$

- 1. modello del sistema:
- 2. funzionale costo:
- $\begin{aligned} x(k+1) &= x(k) u(k) \\ R(k) &= \sum_{k=1}^{N} r(k) \\ \mathbf{x}(1) &= \mathcal{S} \qquad x(N+1) = 0 \end{aligned}$ 3. vincoli sullo stato:

problema di controllo ottimo: $\max_{u(k)} R(k), k \in [1, N]$

 \boxtimes

controllo ottimo LQ: caso particolare di controllo ottimo in cui

- il modello da controllare è Lineare
- il funzionale costo da minimizzare/massimizzare è Quadratico

7.1 Controllo ottimo LQ di sistemi a tempo continuo

1. modello di sistema da controllare: sistema lineare a tempo continuo il cui stato è accessibile (misurabile o stimabile)

$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t)$	$\mathbf{x}(t) \in \mathbb{R}^n$ accessibile
$\mathbf{x}(t_0) = \mathbf{x}_0$	$\mathbf{u}(t) \in \mathbb{R}^m$

- 2. funzionale costo da minimizzare/massimizzare:
 - \rightarrow si possono distinguere due casi:

ottimizzazione quadratica su orizzonte finito

si considera un intervallo di tempo finito $t\in[t_0,t_f]\rightsquigarrow t\in[0,T]$, su cui è definito il funzionale costo

$$J_T(t) = \mathbf{x}(T)^{\top} \mathbf{S} \mathbf{x}(T) + \int_0^T \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right) dt$$

con $\mathbf{S}, \mathbf{Q} \in \mathbb{R}^{n \times n}$ matrici semi-definite positive e $\mathbf{R} \in \mathbb{R}^{m \times m}$ matrice definita positiva \Rightarrow problema di controllo ottimo:

$$\mathbf{u}_T^{\star}(t) = \arg\min_{t \in [0,T]} J_T(\mathbf{u}(t))$$

- ▶ Il funzionale costo risulta dalla somma di tre componenti:
 - $$\begin{split} \mathbf{u}(t)^{\top}\mathbf{R}\mathbf{u}(t) & \text{costo del controllo} \\ & \text{controllo a energia minima: } J_T(t) = \int_0^T \mathbf{u}(t)^{\top}\mathbf{R}\mathbf{u}(t)dt \\ \mathbf{x}(t)^{\top}\mathbf{Q}\mathbf{x}(t) & \text{scostamento dall'equilibrio} \\ & \text{tracking ad errore minimo: } J_T(t) = \int_0^T \mathbf{x}(t)^{\top}\mathbf{Q}\mathbf{x}(t)dt \\ \mathbf{x}(T)^{\top}\mathbf{S}\mathbf{x}(T) & \text{scostamento al tempo finale} \\ & \text{controllo del punto finale: } J_T(t) = \mathbf{x}(t)^{\top}\mathbf{S}\mathbf{x}(T) \end{split}$$

ottimizzazione quadratica su orizzonte finito

si considera un intervallo di tempo infinito $t \in [0, +\infty)$, su cui è definito il funzionale costo

$$J_{\infty}(t) = \int_{0}^{\infty} \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right) dt$$

con $\mathbf{Q} \in \mathbb{R}^{n \times n}$ matrice semi-definita positiva e $\mathbf{R} \in \mathbb{R}^{m \times m}$ matrice definita positiva. \Rightarrow problema di controllo ottimo:

$$\mathbf{u}_{\infty}(t)^{\star} = \arg\min_{t\in[0,+\infty)} J_{\infty}(\mathbf{u}(t))$$

 \blacktriangleright il funzionale costo risulta dalla somma di due componenti dal momento che $T \to +\infty$

esempio: derivazione della soluzione tramite calcolo diretto - caso scalare

1. modello del sistema:

sistema lineare scalare

$$\begin{split} \dot{x}(t) &= fx(t) + u(t) \\ x(0) &= x_0 \\ u(t) &= -kx(t) \end{split} \qquad \begin{cases} f < 0 & \text{asint. stabile} \\ f = 0 & \text{sempl. stabile} \\ f > 0 & \text{instabile} \end{cases}$$

sistema in catena chiusa

$$\dot{x}(t) = (f-k)x(t)$$
 \rightarrow $x(t) = e^{(f-k)t}x_0$
 $u(t) = -ke^{(f-k)t}x_0$

2. funzionale costo:

$$J_T(t) = \int_0^T qx^2(t) + ru^2(t)dt \qquad q \ge 0, \ r > 0$$
$$r \to 0^+ \qquad \text{cheap control}$$

 $r
ightarrow +\infty$ expensive control

$$J_{T}(t) = \int_{0}^{T} q e^{2(f-k)t} x_{0}^{2} + rk^{2} e^{2(f-k)t} x_{0}^{2} dt = x_{0}^{2} \left(q + rk^{2}\right) \left(\int_{0}^{T} e^{2(f-k)t} dt\right) \quad \text{con}$$

$$\int_{0}^{T} e^{2(f-k)t} dt = \frac{1}{2(f-k)} e^{2(f-k)t} \Big|_{0}^{T} = \begin{cases} +\infty & f - k \ge 0\\ \frac{1}{2(f-k)} \left(e^{2(f-k)T} - 1\right) & f - k < 0 \end{cases}$$

$$= \begin{cases} +\infty & k \le f\\ \frac{q+rk^{2}}{2(f-k)} x_{0}^{2} \left(e^{2(f-k)T} - 1\right) & k > f \end{cases}$$

fissati x_0,r,q,T , calcolare k_T^\star tale che $u_T^\star(t)=-k_T^\star x(t)=\arg\min J_T(u(t))$ è necessario risolvere

$$\frac{d}{dk}\left(\frac{q+rk^2}{2(f-k)}x_0^2\left(e^{2(f-k)T}-1\right)\right) = 0$$
si osserva che, per $T \to +\infty$, si ottiene

$$J_{\infty}(t) = \begin{cases} +\infty & k \le f \\ \\ -\frac{q+rk^2}{2(f-k)}x_0^2 & k > f \end{cases}$$

allora, fissati x_0, r, q , per calcolare k_{∞}^{\star} tale che $u_{\infty}^{\star}(t) = -k_{\infty}^{\star}x(t) = \arg \min J_{\infty}(u(t))$ è necessario risolvere

 $k_{\infty}^{\star}(r) = f + \sqrt{f^2 + \frac{q}{r}}$: funzione monotona decrescente in r indipendente da x_0

7.2 Controllo ottimo LQ di sistemi a tempo continuo a orizzonte finito

1. modello del sistema da controllare: sistema lineare a tempo continuo

$$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \qquad \mathbf{x}(t) \in \mathbb{R}^n, \ \mathbf{u}(t) \in \mathbb{R}^m$$
$$\mathbf{x}(0) = \mathbf{x}_0 \qquad t \in [0, T]$$

2. funzionale costo da minimizzare/massimizzare: ottimizzazione su orizzonte finito

$$J_T(t) = \mathbf{x}(T)^{\top} \mathbf{S} \mathbf{x}(T) + \int_0^T \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right) dt$$

 $\mathbf{S}, \mathbf{Q} \in \mathbb{R}^{n imes n}$ matrici semi-definite positive $\mathbf{R} \in \mathbb{R}^{m imes m}$ matrice definita positiva

 \Rightarrow problema di controllo ottimo:

$$\mathbf{u}_T^{\star}(t) = \arg\min_{t \in [0,T]} J_T(\mathbf{u}(t))$$

 \boxtimes

7.2.1 teorema principale

Teorema Per i sistemi a tempo continuo, la legge di controllo ottimo su orizzonte finito è data da

$$\mathbf{u}_T^{\star}(t) = -\mathbf{K}_T^{\star}(t)\mathbf{x}(t)$$
 con $\mathbf{K}_T^{\star}(t) = \mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_T(t)$

dove $\mathbf{M}_T(t) = \mathbf{M}_T(t)^\top \in \mathbb{R}^{n \times n}$ è l'unica soluzione sdp dell'Equazione Differenziale di Riccati:

$$(EDR) \quad \begin{cases} -\dot{\mathbf{M}}(t) = \mathbf{F}^{\top} \mathbf{M}(t) + \mathbf{M}(t) \mathbf{F} - \mathbf{M}(t) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}(t) + \mathbf{Q} \\ \mathbf{M}(T) = \mathbf{S} \end{cases}$$

In corrispondenza all'ingresso di controllo $\mathbf{u}_T^{\star}(t)$, il funzionale costo assume il valore (minimo)

$$J_T^{\star} = \mathbf{x}_0^{\top} \mathbf{M}_T(0) \mathbf{x}_0$$

Dimostrazione. Si consideri la matrice $\mathbf{M}(t) = \mathbf{M}(t)^{\top} \in \mathbb{R}^{n \times n}$ differenziabile in $t \in [0,T]$ (qualsiasi) e la funzione

$$H(t) = \int_0^T \frac{d}{dt} \left(\mathbf{x}(t)^\top \mathbf{M}(t) \mathbf{x}(t) \right) dt$$

Applicando la regola fondamentale del calcolo integrale si ottiene

$$H(t) = \int_0^T \frac{d}{dt} \left(\mathbf{x}(t)^\top \mathbf{M}(t) \mathbf{x}(t) \right) dt = \mathbf{x}(t)^\top \mathbf{M}(t) \mathbf{x}(t) \Big|_0^T$$
$$= \mathbf{x}(T)^\top \mathbf{M}(T) \mathbf{x}(T) - \mathbf{x}(0)^\top \mathbf{M}(0) \mathbf{x}(0)$$

Applicando le regole del calcolo differenziale e sfruttando le equazioni della dinamica del sistema si ottiene

$$\begin{split} H(t) &= \int_0^T \frac{d}{dt} \left(\mathbf{x}(t)^\top \mathbf{M}(t) \mathbf{x}(t) \right) dt \\ &= \int_0^T \left(\dot{\mathbf{x}}(t)^\top \mathbf{M}(t) \mathbf{x}(t) + \mathbf{x}(t)^\top \dot{\mathbf{M}}(t) \mathbf{x}(t) + \mathbf{x}(t)^\top \mathbf{M}(t) \dot{\mathbf{x}}(t) \right) dt \\ &= \int_0^T \left((\mathbf{F} \mathbf{x}(t) + \mathbf{G} \mathbf{u}(t))^\top \mathbf{M}(t) \mathbf{x}(t) + \mathbf{x}(t)^\top \dot{\mathbf{M}}(t) \mathbf{x}(t) + \mathbf{x}(t)^\top \mathbf{M}(t) \left(\mathbf{F} \mathbf{x}(t) + \mathbf{G} \mathbf{u}(t) \right) \right) dt \\ &= \int_0^T \left[\mathbf{u}(t)^\top \quad \mathbf{x}(t)^\top \right] \begin{bmatrix} \mathbf{0} & \mathbf{G}^\top \mathbf{M}(t) \\ \mathbf{M}(t) \mathbf{G} \quad \mathbf{F}^\top \mathbf{M}(t) + \mathbf{M}(t) \mathbf{F} + \dot{\mathbf{M}}(t) \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt \end{split}$$

Nota l'equivalenza

$$\mathbf{x}(T)^{\top}\mathbf{M}(T)\mathbf{x}(T) - \mathbf{x}(0)^{\top}\mathbf{M}(0)\mathbf{x}(0) = \int_{0}^{\top} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{G}^{\top}\mathbf{M}(t) \\ \mathbf{M}(t)\mathbf{G} & \mathbf{F}^{\top}\mathbf{M}(t) + \mathbf{M}(t)\mathbf{F} + \dot{\mathbf{M}}(t) \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$$

si consideri la funzione

$$H'(t) = \mathbf{x}(0)^{\top} \mathbf{M}(0) \mathbf{x}(0) - \mathbf{x}(T)^{\top} \mathbf{M}(T) \mathbf{x}(T) + \int_{0}^{\top} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{G}^{\top} \mathbf{M}(t) \\ \mathbf{M}(t) \mathbf{G} & \mathbf{F}^{\top} \mathbf{M}(t) + \mathbf{M}(t) \mathbf{F} + \dot{\mathbf{M}}(t) \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt = 0$$

Si riscrive il funzionale costo $J_{T}(t) = \mathbf{x}(T)^{\top} \mathbf{S} \mathbf{x}(T) + \int_{0}^{T} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$ come segue

$$J_{T}(t) = J_{T}(t) + H'(t)$$

= $\mathbf{x}(T)^{\top} (\mathbf{S} - \mathbf{M}(T)) \mathbf{x}(T) + \mathbf{x}(0)^{\top} \mathbf{M}(0) \mathbf{x}(0) + \int_{0}^{T} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{G}^{\top} \mathbf{M}(t) \\ \mathbf{M}(t) \mathbf{G} & \mathbf{Q} + \mathbf{F}^{\top} \mathbf{M}(t) + \mathbf{M}(t) \mathbf{F} + \dot{\mathbf{M}}(t) \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$

Si consideri ora la matrice $\mathbf{M}(t) = \mathbf{M}_T(t) = \mathbf{M}_T(t)^\top \in \mathbf{R}^{n \times n}$ differenziabile in $t \in [0, T]$ soluzione della EDR, segue che

$$J_{T}(t) = \mathbf{x}(0)^{\top} \mathbf{M}_{T}(0) \mathbf{x}(0) + \int_{0}^{T} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{G}^{\top} \mathbf{M}_{T}(t) \\ \mathbf{M}_{T}(t) \mathbf{G} & \mathbf{M}_{T}(t) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_{T}(t) \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$$
$$= \mathbf{x}(0)^{\top} \mathbf{M}_{T}(0) \mathbf{x}(0) + \int_{0}^{T} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{M}_{T}(t) \mathbf{G} \end{bmatrix} \mathbf{R}^{-1} \begin{bmatrix} \mathbf{R} & \mathbf{G}^{\top} \mathbf{M}_{T}(t) \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$$

Si consideri l'ingresso ausiliario $\mathbf{v}(t) = \mathbf{R}\mathbf{u}(t) + \mathbf{G}^{\top}\mathbf{M}_{T}(t)\mathbf{x}(t)$ allora

$$J_T(t) = \mathbf{x}(0)^{\top} \mathbf{M}_T(0) \mathbf{x}(0) + \int_0^T \mathbf{v}(t)^{\top} \mathbf{R}^{-1} \mathbf{v}(t) dt$$

Poichè ${f R}$ è una matrice definita positiva, allora

$$J_T^{\star} = \min_{t \in [0,T]} J_T(t) \quad \Leftrightarrow \quad \mathbf{v}(t) = \mathbf{R}\mathbf{u}(t) + \mathbf{G}^{\top}\mathbf{M}_T(t)\mathbf{x}(t) = \mathbf{0}$$

da cui si conclude che

$$\mathbf{u}_T^{\star}(t) = -\left(\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_T(t)\right)\mathbf{x}(t) = -\mathbf{K}_T^{\star}(t)\mathbf{x}(t)$$

e di conseguenza $J_T^{\star} = \mathbf{x}(0)^{\top} \mathbf{M}_T(0) \mathbf{x}(0) = \mathbf{x}_0^{\top} \mathbf{M}_T(0) \mathbf{x}_0.$

EDR = Equazioni Differenziali di Riccati

dai matematici Jacopo Riccati e suo figlio Vincenzo

eq. differenziale ordinaria **quadratica** nella funzione incognita
$$y'(x) = q_0(x) + q_1(x)y(x) + q_2(x)y^2(x), \quad q_0(x) \neq 0, q_2(x) \neq 0$$

[caso particolare delle eq. di Hamilton-Jacobi-Bellman (HJB)]

- **1830ca** l'eq. HJB ha le sue origini nel lavoro di Hamilton, con successivi miglioramenti di Jacobi, nel contesto del calcolo delle variazioni \rightarrow HJB condizione necessaria per l'ottimalità
- 1835 Carathéodory definisce l'approccio noto come la "strada reale" del calcolo delle variazioni → HJB condizione necessaria e sufficiente per l'ottimalità
- 1950ca Bellman "Invece di determinare la sequenza ottimale delle decisioni dallo stato fisso del sistema, desideriamo determinare la decisione ottima da prendere in qualsiasi stato del sistema." → programmazione dinamica
- **1960ca** Kalman è il primo a usare il termine "eq. HJB" → stretta connessione tra il lavoro di Bellman (programmazione dinamica) e quello di Hamilton-Jacobi nel calcolo delle variazioni

esempio: derivazione della soluzione tramite applicazione del teorema principale - caso scalare

1. modello del sistema: sistema lineare scalare

2. funzionale costo:
$$J_T(t) = sx^2(T) + \int_0^T qx^2(t) + ru^2(t)dt$$
 $s, q \ge 0, r > 0$

г		

applicazione del teorema principale:

$$u_T^{\star}(t) = -k_T^{\star}(t)x(t) \quad \text{con} \quad k_T^{\star}(t) = \frac{g}{r}m_T(t) \quad \text{dove} \quad m_T(t) \in \mathbb{R} \quad \text{soddisfa} \begin{cases} -\dot{m}(t) = 2fm(t) - \frac{g^2}{r}m^2(t) + q \\ m(T) = s \end{cases}$$

è possibile calcolare la soluzione della EDR in forma chiusa tramite separazione delle variabili:

$$-\frac{dm(t)}{dt} = 2fm(t) - \frac{g^2}{r}m^2(t) + q \quad \Leftrightarrow \quad \frac{1}{\frac{g^2}{r}m^2(t) - 2fm(t) - q} \, dm(t) = dt$$
$$\int_{m(t)}^s \frac{1}{\frac{g^2}{r}m^2(t) - 2fm(t) - q} \, dm(t) = \int_t^\top dt$$

si distinguono diversi casi:

• caso 1: f = q = 0 $\triangleright f = 0 \Rightarrow \dot{x}(t) = gu(t)$: modello singolo integratore $\triangleright q = 0 \Rightarrow$ penalizzazione dello stato solo all'istante finale

$$\int_{m(t)}^{s} \frac{1}{\frac{g^2}{r}m^2(t)} dm(t) = \int_{t}^{\top} dt \quad \Leftrightarrow \quad -\frac{1}{s} + \frac{1}{m(t)} = \frac{g^2}{r}(T-t)$$
$$\overline{m_T(t)} = \frac{1}{\frac{g^2}{r}(T-t) + \frac{1}{s}}$$
$$k_T^{\star}(t) = \frac{g}{r}m_T(t) = \frac{\frac{g}{r}}{\frac{g^2}{r}(T-t) + \frac{1}{s}}$$

• caso 2: altrimenti

$$\int_{m(t)}^{s} \frac{1}{\frac{g^{2}}{r}m^{2}(t) - 2fm(t) - q} dm(t) = \int_{t}^{\top} dt \quad \text{dove}$$

$$\frac{1}{\frac{g^{2}}{r}m^{2}(t) - 2fm(t) - q} = \frac{1}{\frac{g^{2}}{r}\left(m^{2}(t) - 2\frac{fr}{g^{2}}m(t) - \frac{qr}{g^{2}}\right)}$$

$$= \frac{1}{\frac{g^{2}}{r}\left(m(t) - m^{+}\right)\left(m(t) - m^{-}\right)}$$

$$= \frac{1}{\frac{g^{2}}{r}\left(m^{+} - m^{-}\right)}\left(\frac{1}{m(t) - m^{+}} - \frac{1}{m(t) - m^{-}}\right) \quad \text{con}$$

$$m^{+} = \frac{fr}{g^{2}} + \sqrt{\frac{f^{2}r^{2}}{g^{4}} + \frac{rq}{g^{2}}} > 0, \quad m^{-} = \frac{fr}{g^{2}} - \sqrt{\frac{f^{2}r^{2}}{g^{4}} + \frac{rq}{g^{2}}} < 0$$

quindi

$$\begin{split} \int_{m(t)}^{s} \frac{1}{\frac{g^{2}}{r}m^{2}(t) - 2fm(t) - q} \, dm(t) &= \int_{m(t)}^{s} \frac{1}{\frac{g^{2}}{r}(m^{+} - m^{-})} \left(\frac{1}{m(t) - m^{+}} - \frac{1}{m(t) - m^{-}} \right) \, dm(t) \\ &= \underbrace{\frac{1}{\frac{g^{2}}{r}(m^{+} - m^{-})}}_{\frac{1}{\beta} > 0} \int_{m(t)}^{s} \left(\frac{1}{m(t) - m^{+}} - \frac{1}{m(t) - m^{-}} \right) \, dm(t) \\ &= \frac{1}{\beta} \left(\left(\ln\left(m(t) - m^{+}\right) - \ln\left(m(t) - m^{-}\right)\right) \right|_{m(t)}^{s} \right) \\ &= \frac{1}{\beta} \left(\ln\left(\frac{s - m^{+}}{s - m^{-}}\right) - \ln\left(\frac{m(t) - m^{+}}{m(t) - m^{-}}\right) \right) \\ &= \int_{t}^{T} dt \end{split}$$

da cui

$$\begin{split} \int_{m(t)}^{s} \frac{1}{\frac{g^2}{r}m^2(t) - 2fm(t) - q} \ dm(t) &= \int_{t}^{T} dt \ \Leftrightarrow \ \ln\left(\frac{s - m^+}{s - m^-}\right) - \ln\left(\frac{m(t) - m^+}{m(t) - m^-}\right) = \beta(T - t) \\ &\Leftrightarrow \ \ln\left(\frac{s - m^+}{s - m^-} \frac{m(t) - m^-}{m(t) - m^+}\right) = \beta(T - t) \\ &\Leftrightarrow \ \frac{m(t) - m^-}{m(t) - m^+} = \alpha e^{\beta(T - t)} \end{split}$$

$$m_T(t) = m^+ + \frac{m^- - m^+}{1 - \alpha e^{\beta(T-t)}}$$

$$k_T^{\star}(t) = \frac{g}{r}m_T(t) = \frac{g}{r}\left(m^+ + \frac{m^- - m^+}{1 - \alpha e^{\beta(T-t)}}\right)$$

a. f = 0, q > 0

b. $f \neq 0, q = 0$

In conclusione

$$\begin{split} u_T^{\star}(t) &= -k_T^{\star}(t)x(t) \qquad \text{con} \qquad k_T^{\star}(t) = \frac{g}{r}m_T(t) \\ & \boxed{m_T(t) = \begin{cases} \frac{1}{g_r^2(T-t) + \frac{1}{s}} & \text{se} \quad f = q = 0\\ m^+ + \frac{m^- - m^+}{1 - \alpha e^{\beta(T-t)}} & \text{altrimenti} \end{cases}} \\ & m^+ = \frac{fr}{g^2} + \sqrt{\frac{f^2r^2}{g^4} + \frac{rq}{g^2}}, \quad m^- = \frac{fr}{g^2} - \sqrt{\frac{f^2r^2}{g^4} + \frac{rq}{g^2}} \\ & \alpha = \frac{s - m^-}{s - m^+}, \quad \beta = \frac{g^2}{r} \left(m^+ - m^-\right) \end{split}$$

Si noti che

$$\begin{split} \beta &= \frac{g^2}{r} \left(m^+ - m^- \right) = 2 \sqrt{f^2 + \frac{g^2}{r} q} > 0 \qquad \Rightarrow m^+ = \frac{fr}{g^2} + \sqrt{\frac{f^2 r^2}{g^4} + \frac{rq}{g^2}} = \frac{r}{g^2} \left(f + \frac{\beta}{2} \right) \\ \Rightarrow m^- &= \frac{fr}{g^2} - \sqrt{\frac{f^2 r^2}{g^4} + \frac{rq}{g^2}} = \frac{r}{g^2} \left(f - \frac{\beta}{2} \right) \end{split}$$

quindi

$$m_T(t) = \frac{r}{g^2} \left(f + \frac{\beta}{2} - \beta \frac{1}{1 - \alpha e^{\beta(T-t)}} \right)$$

Di conseguenza (dinamica del sistema controllato)

$$\begin{aligned} \dot{x}(t) &= fx(t) + g \, u_T^{\star}(t) = fx(t) + g \left(-\frac{g}{r} m_T(t) x(t) \right) = fx(t) + g \left(-\frac{1}{g} \left(f + \frac{\beta}{2} - \beta \frac{1}{1 - \alpha e^{\beta(T-t)}} \right) x(t) \right) \\ &= \left(-\frac{\beta}{2} + \beta \frac{1}{1 - \alpha e^{\beta(T-t)}} \right) x(t) \end{aligned}$$

da cui

$$\begin{aligned} \frac{dx(t)}{dt} &= \left(-\frac{\beta}{2} + \beta \frac{1}{1 - \alpha e^{\beta(T-t)}}\right) x(t) \quad \Leftrightarrow \quad \frac{dx(t)}{x(t)} = \left(-\frac{\beta}{2} + \beta \frac{1}{1 - \alpha e^{\beta(T-t)}}\right) dt \\ &\Leftrightarrow \quad \int_{x_0}^{x(t)} \frac{dx(t)}{x(t)} = \int_0^t \left(-\frac{\beta}{2} + \beta \frac{1}{1 - \alpha e^{\beta(T-t)}}\right) dt \end{aligned}$$

dove

$$-\frac{\beta}{2} + \beta \frac{1}{1 - \alpha e^{\beta(T-t)}} = -\frac{\beta}{2} + \beta \frac{1 + \alpha e^{\beta(T-t)} - \alpha e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = -\frac{\beta}{2} + \beta + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}} = \frac{\beta}{2} + \alpha \beta$$

perciò

$$\int_{x_0}^{x(t)} \frac{dx(t)}{x(t)} = \int_0^t \left(\frac{\beta}{2} + \alpha\beta \frac{e^{\beta(T-t)}}{1 - \alpha e^{\beta(T-t)}}\right) dt \quad \Leftrightarrow \quad \ln x(t) - \ln x_0 = \frac{\beta}{2}t + \ln\left(1 - \alpha e^{\beta(T-t)}\right) - \ln\left(1 - \alpha e^{\beta T}\right)$$
$$\Leftrightarrow \quad \ln\left(\frac{x(t)}{x_0} \frac{1 - \alpha e^{\beta T}}{1 - \alpha e^{\beta(T-t)}}\right) = \frac{\beta}{2}t$$

$$x(t) = \left(e^{\frac{\beta}{2}t} \frac{1 - \alpha e^{\beta(T-t)}}{1 - \alpha e^{\beta T}}\right) x_0 = h(t)x_0$$

 \boxtimes

7.2.2 soluzione della EDR tramite matrice Hamiltoniana

La determinazione della legge di controllo ottimo dipende dal calcolo della matrice $\mathbf{M}_T(t)$, ovvero dalla risoluzione della EDR:

• per parametri (F,G) tempo-varianti, la risoluzione della EDR è numerica

```
– from backward to forward integration: \tau = T - t, \mathbf{S}(\tau) = \mathbf{M}_T(T - \tau)
```

* backward integration

$$\begin{cases} -\dot{\mathbf{M}}_T(t) = \mathbf{F}^{\top} \mathbf{M}_T(t) + \mathbf{M}_T(t) \mathbf{F} - \mathbf{M}_T(t) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_T(t) + \mathbf{Q} \\ \mathbf{M}_T(T) = \mathbf{S} \end{cases}$$

* forward integration

$$\begin{cases} \frac{d}{d\tau} \mathbf{S}(\tau) = \mathbf{F}(\tau)^{\top} \mathbf{S}(\tau) + \mathbf{S}(\tau) \mathbf{F}(\tau) - \mathbf{S}(\tau) \mathbf{G}(\tau) \mathbf{R}^{-1} \mathbf{G}(\tau)^{\top} \mathbf{S}(\tau) + \mathbf{Q} \\ \mathbf{S}(0) = \mathbf{S} \end{cases}$$

- integrazione numerica
- per parametri (F,G) tempo-invarianti, la risoluzione della EDR è algebrica
 - matrice Hamiltoniana

matrice Hamiltoniana: si definisce matrice Hamiltoniana associata al problema di controllo ottimo la matrice

$$oldsymbol{\mathcal{H}} = egin{bmatrix} \mathbf{F} & -\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{ op} \ -\mathbf{Q} & -\mathbf{F}^{ op} \end{bmatrix} \in \mathbb{R}^{2n imes 2n}$$

Si osserva che

- (definizione) la matrice Hamiltoniana dipende dalle matrici che definiscono la dinamica del sistema e dalle matrici peso presenti nel funzionale costo
- (proprietà spettrali) la matrice Hamiltoniana è tale che

$$\begin{array}{ll} - \ \mathbf{T}^{-1} \boldsymbol{\mathcal{H}} \mathbf{T} = -\boldsymbol{\mathcal{H}}^\top \ \text{con} \ \mathbf{T} = \begin{bmatrix} \mathbf{0}_n & -\mathbf{I}_n \\ \mathbf{I}_n & \mathbf{0}_n \end{bmatrix} & \Rightarrow & \text{se } \lambda \in \Lambda(\boldsymbol{\mathcal{H}}) \ \text{allora} \ -\lambda \in \Lambda(\boldsymbol{\mathcal{H}}) \\ - \ (\mathbf{F}, \mathbf{G}) \ \text{stabilizzabile e} \ (\mathbf{F}, \mathbf{Q}) \ \text{rivelabile} & \Rightarrow & \text{se } \lambda \in \Lambda(\boldsymbol{\mathcal{H}}) \ \text{allora} \ \lambda \in \mathbb{R} \end{array}$$

Proposizione Dato il sistema (risolubile) retto dalla matrice hamiltoniana $\mathcal{H} = \begin{bmatrix} \mathbf{F} & -\mathbf{GR}^{-1}\mathbf{G}^{\top} \\ -\mathbf{Q} & -\mathbf{F}^{\top} \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$ $\begin{bmatrix} \dot{\mathbf{Z}}_1(t) \\ \dot{\mathbf{Z}}_2(t) \end{bmatrix} = \mathcal{H} \begin{bmatrix} \mathbf{Z}_1(t) \\ \mathbf{Z}_2(t) \end{bmatrix}, \quad \begin{bmatrix} \mathbf{Z}_1(T) \\ \mathbf{Z}_2(T) \end{bmatrix} = \begin{bmatrix} \mathbf{I}_n \\ \mathbf{S} \end{bmatrix}, \quad \mathbf{Z}_1(t), \mathbf{Z}_2(t) \in \mathbb{R}^{n \times n}$

l'unica soluzione sdp $\mathbf{M}_T(t) = \mathbf{M}_T(t)^\top \in \mathbb{R}^{n imes n}$ della EDR si può calcolare come

$$\mathbf{M}_{T}(t) = \mathbf{Z}_{2}(t)\mathbf{Z}_{1}(t)^{-1}$$
$$= \left(\mathbf{W}_{21} + \mathbf{W}_{22}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{\mathbf{D}^{+}(t-T)}\right) \left(\mathbf{W}_{11} + \mathbf{W}_{12}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{\mathbf{D}^{+}(t-T)}\right)^{-1}$$
$$\begin{bmatrix}\mathbf{W}_{11} + \mathbf{W}_{12}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{\mathbf{D}^{+}(t-T)}\right) = diag(\{\lambda < 0, \lambda \in \Lambda(\mathcal{H})\})$$

$$\operatorname{con} \mathbf{W} = \begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix} \quad \text{t.c.} \quad \mathbf{W}^{-1} \mathcal{H} \mathbf{W} = \begin{bmatrix} \mathbf{D}^{-} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}^{+} \end{bmatrix}, \quad \mathbf{D}^{-} = diag(\{\lambda < 0, \lambda \in \Lambda(\mathcal{H})\})$$
$$\cdot \quad \mathbf{P} = -(\mathbf{W}_{22} - \mathbf{SW}_{12})^{-1} (\mathbf{W}_{21} - \mathbf{SW}_{11}) \in \mathbb{R}^{n \times n}$$

Dimostrazione. Per prima cosa, si vuole dimostrare che $\mathbf{M}_T(t) = \mathbf{Z}_2(t)\mathbf{Z}_1(t)^{-1}$ soddisfa l'EDR

$$\begin{cases} -\dot{\mathbf{M}}(t) = \mathbf{F}^{\top} \mathbf{M}(t) + \mathbf{M}(t)\mathbf{F} - \mathbf{M}(t)\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}(t) + \mathbf{Q} \\ \mathbf{M}(T) = \mathbf{S} \end{cases}$$

A tal fine si verifica che

1. $\mathbf{M}_T(T) = \mathbf{Z}_2(T)\mathbf{Z}_1(T)^{-1} = \mathbf{S}$

2.
$$\dot{\mathbf{M}}_{T}(t) = \frac{d}{dt} \left(\mathbf{Z}_{2}(t) \mathbf{Z}_{1}(t)^{-1} \right) = \left(\frac{d}{dt} \mathbf{Z}_{2}(t) \right) \mathbf{Z}_{1}(t)^{-1} + \mathbf{Z}_{2}(t) \left(\frac{d}{dt} \mathbf{Z}_{1}(t)^{-1} \right)
= \dot{\mathbf{Z}}_{2}(t) \mathbf{Z}_{1}(t)^{-1} - \mathbf{Z}_{2}(t) \mathbf{Z}_{1}(t)^{-1} \dot{\mathbf{Z}}_{1}(t) \mathbf{Z}_{1}(t)^{-1}
= \left(-\mathbf{Q} \mathbf{Z}_{1}(t) - \mathbf{F}^{\top} \mathbf{Z}_{2}(t) \right) \mathbf{Z}_{1}(t)^{-1} - \mathbf{Z}_{2}(t) \mathbf{Z}_{1}(t)^{-1} \left(\mathbf{F} \mathbf{Z}_{1}(t) - \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{Z}_{2}(t) \right) \mathbf{Z}_{1}(t)^{-1}
= -\mathbf{Q} - \mathbf{F}^{\top} \left(\mathbf{Z}_{2}(t) \mathbf{Z}_{1}(t)^{-1} \right) - \left(\mathbf{Z}_{2}(t) \mathbf{Z}_{1}(t)^{-1} \right) \mathbf{F} + \mathbf{Z}_{2}(t) \mathbf{Z}_{1}(t)^{-1} \left(\mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \right) \mathbf{Z}_{2}(t) \mathbf{Z}_{1}(t)^{-1}
= -\mathbf{Q} - \mathbf{F}^{\top} \mathbf{M}_{T}(t) - \mathbf{M}_{T}(t) \mathbf{F} + \mathbf{M}_{T}(t) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_{T}(t)$$

Ora, dati (\mathbf{F}, \mathbf{G}) stabilizzabile e (\mathbf{F}, \mathbf{Q}) rivelabile, vale che se $\lambda \in \Lambda(\mathcal{H})$ allora $\lambda \in \mathbb{R}$ e $-\lambda \in \Lambda(\mathcal{H})$, perciò

$$\exists \mathbf{W} = \begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix} \text{ t.c. } \mathbf{W}^{-1} \mathcal{H} \mathbf{W} = \begin{bmatrix} \mathbf{D}^{-} & \mathbf{0}_n \\ \mathbf{0}_n & \mathbf{D}^+ \end{bmatrix} \text{ con } \begin{bmatrix} \mathbf{D}^{-} & = diag(\{\lambda < 0\}) \\ \mathbf{D}^+ = -\mathbf{D}^- \end{bmatrix}$$

si consideri allora il seguente cambio di variabili

$$\begin{bmatrix} \mathbf{Z}_1(t) \\ \mathbf{Z}_2(t) \end{bmatrix} = \mathbf{W} \begin{bmatrix} \bar{\mathbf{Z}}_1(t) \\ \bar{\mathbf{Z}}_2(t) \end{bmatrix} \quad \text{tale che} \quad \begin{bmatrix} \dot{\bar{\mathbf{Z}}}_1(t) \\ \dot{\bar{\mathbf{Z}}}_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{D}^- & \mathbf{0}_n \\ \mathbf{0}_n & \mathbf{D}^+ \end{bmatrix} \begin{bmatrix} \bar{\mathbf{Z}}_1(t) \\ \bar{\mathbf{Z}}_2(t) \end{bmatrix}, \quad \begin{bmatrix} \bar{\mathbf{Z}}_1(T) \\ \bar{\mathbf{Z}}_2(T) \end{bmatrix} = \mathbf{W}^{-1} \begin{bmatrix} \mathbf{I}_n \\ \mathbf{S} \end{bmatrix}$$

 \rightarrow il nuovo sistema è caratterizzato da

- evolutione dello stato: $\ddot{\mathbf{Z}}_1(t) = e^{\mathbf{D}^-(t-T)} \bar{\mathbf{Z}}_1(T)$ $\bar{\mathbf{Z}}_2(t) = e^{\mathbf{D}^+(t-T)} \bar{\mathbf{Z}}_2(T)$
- stato all'istante finale: $\begin{aligned} \mathbf{W}_{11}\bar{\mathbf{Z}}_1(T) + \mathbf{W}_{12}\bar{\mathbf{Z}}_2(T) &= \mathbf{I}_n \\ \mathbf{W}_{21}\bar{\mathbf{Z}}_1(T) + \mathbf{W}_{22}\bar{\mathbf{Z}}_2(T) &= \mathbf{S} \\ \Rightarrow \quad \bar{\mathbf{Z}}_2(T) &= -\left(\mathbf{W}_{22} - \mathbf{SW}_{12}\right)^{-1}\left(\mathbf{W}_{21} - \mathbf{SW}_{11}\right)\bar{\mathbf{Z}}_1(T) \end{aligned}$

allora, introducendo $\mathbf{P} = -\left(\mathbf{W}_{22} - \mathbf{S}\mathbf{W}_{12}\right)^{-1}\left(\mathbf{W}_{21} - \mathbf{S}\mathbf{W}_{11}\right) \in \mathbb{R}^{n \times n}$, si verifica che

$$\begin{aligned} \mathbf{Z}_{1}(t) &= \mathbf{W}_{11}e^{\mathbf{D}^{-}(t-T)}\bar{\mathbf{Z}}_{1}(T) + \mathbf{W}_{12}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}\bar{\mathbf{Z}}_{1}(T) \\ &= \mathbf{W}_{11}e^{\mathbf{D}^{-}(t-T)}\bar{\mathbf{Z}}_{1}(T) + \mathbf{W}_{12}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{-\mathbf{D}^{-}(t-T)}e^{\mathbf{D}^{-}(t-T)}\bar{\mathbf{Z}}_{1}(T) \\ &= \left(\mathbf{W}_{11} + \mathbf{W}_{12}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{-\mathbf{D}^{-}(t-T)}\right)e^{\mathbf{D}^{-}(t-T)}\bar{\mathbf{Z}}_{1}(T) \\ &= \left(\mathbf{W}_{11} + \mathbf{W}_{12}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{\mathbf{D}^{+}(t-T)}\right)e^{\mathbf{D}^{-}(t-T)}\bar{\mathbf{Z}}_{1}(T) \\ \mathbf{Z}_{2}(t) &= \left(\mathbf{W}_{21} + \mathbf{W}_{22}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{\mathbf{D}^{+}(t-T)}\right)e^{\mathbf{D}^{-}(t-T)}\bar{\mathbf{Z}}_{1}(T)\end{aligned}$$

e di conseguenza

$$\mathbf{M}_{T}(t) = \mathbf{Z}_{2}(t)\mathbf{Z}_{1}(t)^{-1}$$

= $\left(\mathbf{W}_{21} + \mathbf{W}_{22}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{\mathbf{D}^{+}(t-T)}\right) \left(\mathbf{W}_{11} + \mathbf{W}_{12}e^{\mathbf{D}^{+}(t-T)}\mathbf{P}e^{\mathbf{D}^{+}(t-T)}\right)^{-1}$

Poichè

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix} \quad \text{t.c.} \quad \mathbf{W}^{-1} \mathcal{H} \mathbf{W} = \begin{bmatrix} \mathbf{D}^{-} & \mathbf{0}_n \\ \mathbf{0}_n & \mathbf{D}^+ \end{bmatrix} \quad \text{con} \quad \begin{array}{c} \mathbf{D}^{-} = diag(\{\lambda < 0\}) \\ \mathbf{D}^+ = -\mathbf{D}^- \end{bmatrix}$$

allora

- le colonne di $\begin{bmatrix} \mathbf{W}_{11} \\ \mathbf{W}_{21} \end{bmatrix}$ corrispondono agli autovettori associati agli autovalori in \mathbf{D}^-
- le colonne di $\begin{bmatrix} W_{21} \\ W_{22} \end{bmatrix}$ corrispondono agli autovettori associati agli autovalori in D^+

esempio: applicazione della proposizione - caso scalare (integratore semplice)

1. modello del sistema: $\dot{x}(t) = u(t)$ f = 0, g = 1 x(0) = 0

2. funzionale costo: $J_T(t) = \int_0^T x^2(t) + u^2(t) dt$ s = 0, q = r = 1

soluzione analitica (applicazione del teorema principale):

$$u_T^{\star}(t) = -k_T^{\star}(t)x(t) \quad \text{con} \quad k_T^{\star}(t) = \frac{g}{r}m_T(t), \quad m_T(t) = m^+ + \frac{m^- - m^+}{1 - \alpha e^{\beta(T-t)}}$$

dove $m^+ = \frac{fr}{g^2} + \sqrt{\frac{f^2r^2}{g^4} + \frac{rq}{g^2}} = 0 + \sqrt{0+1} = 1, \quad m^- = \frac{fr}{g^2} - \sqrt{\frac{f^2r^2}{g^4} + \frac{rq}{g^2}} = 0 - \sqrt{0+1} = -1,$
 $\alpha = \frac{s - m^-}{s - m^+} = \frac{0+1}{0-1} = -1, \quad \beta = \frac{g^2}{r} \left(m^+ - m^-\right) = \frac{1}{1}(1 - (-1)) = 2$
 $\Rightarrow \quad m_T(t) = 1 + \frac{-2}{1 + e^{2(T-t)}} = \frac{1 + e^{2(T-t)} - 2}{1 + e^{2(T-t)}} = \frac{-1 + e^{2(T-t)}}{1 + e^{2(T-t)}}$

soluzione non analitica (applicazione della proposizione):

$$\mathcal{H} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \rightarrow \qquad \Lambda(\mathcal{H}) = \{\lambda \mid det(\lambda \mathbf{I}_2 - \mathcal{H}) = 0\} = \{\lambda \mid det\left(\begin{bmatrix} \lambda & 1 \\ 1 & \lambda \end{bmatrix}\right) = 0\}$$
$$= \{\lambda \mid \lambda^2 - 1 = 0\} = \{-1, +1\} = \{d^-, d^+\}$$
$$\bullet \quad \text{autovettore associato a -1:} \qquad \mathcal{H}\mathbf{x} = -\mathbf{x} \quad \leftrightarrow \quad \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ -x_2 \end{bmatrix} \quad \Rightarrow \quad \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} w_{11} \\ w_{21} \end{bmatrix}$$
$$\bullet \quad \text{autovettore associato a +1:} \qquad \mathcal{H}\mathbf{x} = +\mathbf{x} \quad \leftrightarrow \quad \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} +x_1 \\ +x_2 \end{bmatrix} \quad \Rightarrow \quad \mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} w_{12} \\ w_{22} \end{bmatrix}$$

$$m_T(t) = z_2(t)z_1(t)^{-1} = \left(w_{21} + w_{22}e^{d^+(t-T)}pe^{d^+(t-T)}\right) \left(w_{11} + w_{12}e^{d^+(t-T)}pe^{d^+(t-T)}\right)^{-1}$$

con $p = -\left(w_{22} - sw_{12}\right)^{-1}\left(w_{21} - sw_{11}\right) = -(1-0)^{-1}(1-0) = -1$

$$\Rightarrow \quad m_T(t) = \left(1 + 1e^{1(t-T)}(-1)e^{1(t-T)}\right) \left(1 - 1e^{1(t-T)}(-1)e^{1(t-T)}\right)^{-1}$$
$$= \frac{1 - e^{2(t-T)}}{1 + e^{2(t-T)}} = \frac{1 - e^{-2(T-t)}}{1 + e^{-2(T-t)}} \frac{e^{2(T-t)}}{e^{2(T-t)}} = \frac{-1 + e^{2(T-t)}}{1 + e^{2(T-t)}}$$

 \boxtimes

7.3 Controllo ottimo LQ di sistemi a tempo continuo a orizzonte infinito

1. modello del sistema da controllare: sistema lineare a tempo continuo

$$\begin{aligned} \dot{\mathbf{x}}(t) &= \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \qquad \mathbf{x}(t) \in \mathbb{R}^n, \ \mathbf{u}(t) \in \mathbb{R}^m \\ \mathbf{x}(0) &= \mathbf{x}_0 \qquad t \in [0, +\infty) \end{aligned}$$

2. funzionale costo da minimizzare/massimizzare: ottimizzazione su orizzonte finito

$$J_{\infty}(t) = \int_{0}^{\infty} \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right) dt$$

 $\mathbf{Q} \in \mathbb{R}^{n \times n}$ matrice semi-definita positiva $\mathbf{R} \in \mathbb{R}^{m \times m}$ matrice definita positiva \Rightarrow problema di controllo ottimo:

$$\mathbf{u}_{\infty}^{\star}(t) = \arg\min_{t \in [0, +\infty)} J_{\infty}(\mathbf{u}(t))$$

corrispondenza tra caso infinito e caso finito con $T \to \infty$

$$\mathbf{u}_{\infty}^{\star}(t) = \lim_{T \to +\infty} \mathbf{u}_{T}^{\star}(t) = -\mathbf{R}^{-1}\mathbf{G}^{\top} \left(\lim_{T \to +\infty} \mathbf{M}_{T}(t)\right)$$

esistono delle condizioni necessarie e sufficienti per *esistenza & unicità* del limite in particolare

Pr.1. Se (\mathbf{F}, \mathbf{G}) stabilizzabile, allora

- **a.** $\mathbf{M}_T(t)$, soluzione della EDR con $\mathbf{M}_T(T) = \mathbf{0}$, converge ad un valore limite costante e finito \mathbf{M}_{∞} quando $T \to +\infty$.
- **b.** \mathbf{M}_{∞} risulta essere *una* soluzione sdp dell'Equazione Algebrica di Riccati:

$$(EAR) \quad \mathbf{F}^{\top}\mathbf{M} + \mathbf{MF} - \mathbf{MGR}^{-1}\mathbf{G}^{\top}\mathbf{M} + \mathbf{Q} = \mathbf{0}$$

- **Pr.2.** Sia $\mathbf{H} \in \mathbb{R}^{p \times n}$ una matrice tale che $\mathbf{Q} = \mathbf{H}^{\top}\mathbf{H}$. Se (\mathbf{F}, \mathbf{G}) è stabilizzabile e (\mathbf{F}, \mathbf{H}) è rivelabile, allora
 - a. per ogni scelta della condizione finale $\mathbf{M}_T(T)$ sdp, la soluzione $\mathbf{M}_T(t)$ della EDR converge all'unico valore costante finito \mathbf{M}_∞ quando $T \to \infty$,
 - **b.** \mathbf{M}_{∞} è l'unica soluzione sdp della EAR; inoltre, se (\mathbf{F}, \mathbf{H}) è osservabile allora \mathbf{M}_{∞} è dp,

7.3.1 teorema principale

Teorema Per i sistemi a tempo continuo con (\mathbf{F}, \mathbf{G}) stabilizzabile e (\mathbf{F}, \mathbf{H}) rivelabile con $\mathbf{Q} = \mathbf{H}^{\top}\mathbf{H}$, la legge di controllo ottimo su orizzonte infinito è data da

$$\mathbf{u}_{\infty}^{\star}(t) = -\mathbf{K}_{\infty}^{\star}\mathbf{x}(t) \qquad \text{con} \qquad \mathbf{K}_{\infty}^{\star} = \mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}$$

dove $\mathbf{M}_{\infty} = \mathbf{M}_{\infty}^{\top} \in \mathbb{R}^{n \times n}$ è l'unica soluzione sdp dell'Equazione Algebrica di Riccati:

$$(EAR) \quad \mathbf{F}^{\top}\mathbf{M} + \mathbf{MF} - \mathbf{MGR}^{-1}\mathbf{G}^{\top}\mathbf{M} + \mathbf{Q} = \mathbf{0}$$

In corrispondenza all'ingresso di controllo $\mathbf{u}_{\infty}^{\star}(t)$, il funzionale costo assume il valore (minimo)

$$J_{\infty}^{\star} = \mathbf{x}_{0}^{\top} \mathbf{M}_{\infty} \mathbf{x}_{0}$$

Dimostrazione. Si consideri la matrice $\mathbf{M} = \mathbf{M}^{\top} \in \mathbb{R}^{n \times n}$ (*qualsiasi*) e la funzione

$$H(t) = \int_0^T \frac{d}{dt} \left(\mathbf{x}(t)^\top \mathbf{M} \mathbf{x}(t) \right) dt$$

Applicando la regola fondamentale del calcolo integrale si ottiene

$$H(t) = \int_0^T \frac{d}{dt} \left(\mathbf{x}(t)^\top \mathbf{M} \mathbf{x}(t) \right) dt = \left. \mathbf{x}(t)^\top \mathbf{M} \mathbf{x}(t) \right|_0^T$$
$$= \left. \mathbf{x}(T)^\top \mathbf{M} \mathbf{x}(T) - \mathbf{x}(0)^\top \mathbf{M} \mathbf{x}(0) \right]$$

Applicando le regole del calcolo differenziale e sfruttando le equazioni della dinamica del sistema si ottiene

$$\begin{split} H(t) &= \int_0^T \frac{d}{dt} \left(\mathbf{x}(t)^\top \mathbf{M} \mathbf{x}(t) \right) dt \\ &= \int_0^T \left(\dot{\mathbf{x}}(t)^\top \mathbf{M} \mathbf{x}(t) + \mathbf{x}(t)^\top \mathbf{M} \dot{\mathbf{x}}(t) \right) dt \\ &= \int_0^T \left((\mathbf{F} \mathbf{x}(t) + \mathbf{G} \mathbf{u}(t))^\top \mathbf{M} \mathbf{x}(t) + \mathbf{x}(t)^\top \mathbf{M} \left(\mathbf{F} \mathbf{x}(t) + \mathbf{G} \mathbf{u}(t) \right) \right) dt \\ &= \int_0^T \left[\mathbf{u}(t)^\top \quad \mathbf{x}(t)^\top \right] \begin{bmatrix} \mathbf{0} & \mathbf{G}^\top \mathbf{M} \\ \mathbf{M} \mathbf{G} & \mathbf{F}^\top \mathbf{M} + \mathbf{M} \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt \end{split}$$

Nota l'equivalenza

$$\mathbf{x}(T)^{\top}\mathbf{M}\mathbf{x}(T) - \mathbf{x}(0)^{\top}\mathbf{M}\mathbf{x}(0) = \int_{0}^{\top} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} 0 & \mathbf{G}^{\top}\mathbf{M} \\ \mathbf{M}\mathbf{G} & \mathbf{F}^{\top}\mathbf{M} + \mathbf{M}\mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$$

si consideri la funzione

$$H'(t) = \mathbf{x}(0)^{\top} \mathbf{M} \mathbf{x}(0) - \mathbf{x}(T)^{\top} \mathbf{M} \mathbf{x}(T) + \int_{0}^{\top} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} 0 & \mathbf{G}^{\top} \mathbf{M}(t) \\ \mathbf{M}(t) \mathbf{G} & \mathbf{F}^{\top} \mathbf{M} + \mathbf{M} \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt = 0$$

Si riscrive il funzionale costo $J_T(t) = \int_0^T \begin{bmatrix} \mathbf{u}(t)^\top & \mathbf{x}(t)^\top \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 & \mathbf{Q} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$ (funzionale costo a orizzonte finito con $\mathbf{S} = \mathbf{0}$) come segue

$$J_T(t) = J_T(t) + H'(t)$$

= $\mathbf{x}(0)^\top \mathbf{M} \mathbf{x}(0) - \mathbf{x}(T)^\top \mathbf{M} \mathbf{x}(T) + \int_0^T \begin{bmatrix} \mathbf{u}(t)^\top & \mathbf{x}(t)^\top \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{G}^\top \mathbf{M} \\ \mathbf{M} \mathbf{G} & \mathbf{Q} + \mathbf{F}^\top \mathbf{M} + \mathbf{M} \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$

Si consideri ora la matrice $\mathbf{M}=\mathbf{M}_{\infty}=\mathbf{M}_{\infty}^{ op}\in\mathbf{R}^{n imes n}$ soluzione della EAR, segue che

$$J_{T}(t) = \mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0) - \mathbf{x}(T)^{\top} \mathbf{M}_{\infty} \mathbf{x}(T) + \int_{0}^{T} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{G}^{\top} \mathbf{M}_{\infty} \\ \mathbf{M}_{\infty} \mathbf{G} & \mathbf{Q} + \mathbf{F}^{\top} \mathbf{M}_{\infty} + \mathbf{M}_{\infty} \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$$
$$= \mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0) - \mathbf{x}(T)^{\top} \mathbf{M}_{\infty} \mathbf{x}(T) + \int_{0}^{T} \begin{bmatrix} \mathbf{u}(t)^{\top} & \mathbf{x}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{G}^{\top} \mathbf{M}_{\infty} \\ \mathbf{M}_{\infty} \mathbf{G} & -\mathbf{M}_{\infty} \mathbf{G} \mathbf{R}^{-1} \mathbf{G} \mathbf{M}_{\infty} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{x}(t) \end{bmatrix} dt$$

Si consideri l'ingresso ausiliario $\mathbf{v}(t) = \mathbf{R} \mathbf{u}(t) + \mathbf{G}^\top \mathbf{M}_\infty \mathbf{x}(t)$ allora

$$J_T(t) = \mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0) - \mathbf{x}(T)^{\top} \mathbf{M}_{\infty} \mathbf{x}(T) + \int_0^T \mathbf{v}(t)^{\top} \mathbf{R}^{-1} \mathbf{v}(t) dt$$

e posto

$$\mathbf{u}(t) = \mathbf{u}^{\star}(t) = -\left(\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}\right)\mathbf{x}(t)$$

si verifica che

$$J_T(\mathbf{u}^{\star}(t)) = \mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0) - \mathbf{x}(T)^{\top} \mathbf{M}_{\infty} \mathbf{x}(T)$$

È noto che

- nel caso a orizzonte finito $J_T^{\star} = \min_{t \in [0,T]} J_T(t) = J_T(\mathbf{u}_T^{\star}) = \mathbf{x}(0)^\top \mathbf{M}(0)\mathbf{x}(0)$ per cui $\mathbf{x}(0)^\top \mathbf{M}_T(0)\mathbf{x}(0) = J_T(\mathbf{u}_T^{\star}(t)) \leq J_T(\mathbf{u}^{\star}(t))$
- \mathbf{M}_{∞} è una matrice semi-definita positiva per cui $J_T(\mathbf{u}^{\star}(t)) \leq \mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0)$

Per il teorema del confronto e le Pr.1-2, si ha che

$$\lim_{T \to \infty} \left(\mathbf{x}(0)^{\top} \mathbf{M}_{T}(0) \mathbf{x}(0) \right) \leq \lim_{T \to \infty} \left(J_{T}(\mathbf{u}^{\star}(t)) \right) \leq \lim_{T \to \infty} \left(\mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0) \right) \Rightarrow \\
\mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0) \leq J_{\infty}(\mathbf{u}^{\star}(t)) \leq \mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0) \Rightarrow \\
J_{\infty}(\mathbf{u}^{\star}(t)) = \mathbf{x}(0)^{\top} \mathbf{M}_{\infty} \mathbf{x}(0) = \min_{t \in [0, +\infty)} J_{\infty}(t) = J_{\infty}^{\star}$$

Si conclude dimostrando che $\mathbf{u}^{\star}(t) = \mathbf{u}^{\star}_{\infty}(t) = \arg\min_{t \in [0,+\infty)} J_{\infty}(t).$

Ab absurdo $\exists \mathbf{u}'(t) \neq \mathbf{u}_{\infty}^{\star}(t)$ tale che $J_{\infty}(\mathbf{u}'(t)) < J_{\infty}(\mathbf{u}_{\infty}^{\star}(t)), t \in [0, +\infty)$ allora, poichè $\mathbf{u}_{\infty}^{\star}(t) = -\left(\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}\right)\mathbf{x}(t) = \lim_{T \to +\infty} -\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{T}(t)\mathbf{x}(t)$ (Pr. 1-2),

$$\lim_{T \to +\infty} J_T\left(\mathbf{u}'(t)\right) < \lim_{T \to +\infty} J_T\left(-\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_T(t)\mathbf{x}(t)\right)$$

per il teorema della permanenza del segno, segue che

$$\exists T' \text{ tale che } J_T\left(\mathbf{u}'(t)\right) < J_T\left(-\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_T(t)\mathbf{x}(t)\right) = x_0^{\top}\mathbf{M}_T(0)x_0 \quad \forall t \ge T'$$

ovvero $J_T(\mathbf{u}'(t)) < x_0^\top \mathbf{M}_T(0) x_0$: questo assurdamente implica che $J_T(\mathbf{u}'(t)) < J_T^{\star}$.

- 1. sia \mathbf{Q} matrice semi-definita positiva, allora esiste $\mathbf{T} \in \mathbb{R}^{n \times n}$ invertibile tale che $\mathbf{Q} = \mathbf{T}\mathbf{D}\mathbf{T}^{-1}$, $\mathbf{D} = diag(\lambda \in \Lambda(\mathbf{Q}))$ $\Rightarrow \mathbf{Q} = \mathbf{Q}^{\frac{1}{2}}\mathbf{Q}^{\frac{1}{2}}$ dove $\mathbf{Q}^{\frac{1}{2}} = \mathbf{T}\mathbf{D}^{\frac{1}{2}}\mathbf{T}^{-1}$ simmetrica & semi-definita positiva
- $\begin{array}{ll} \textbf{2. se} \ (\textbf{F},\textbf{Q}) \ \text{non rivelabile,} \\ \text{allora esiste} \ \lambda \in \Lambda(\textbf{F}), \ \Re(\lambda) \leq 0 \quad \text{tale che} \quad \textbf{Fv} = \lambda \textbf{v} \ \& \ \textbf{Qv} = 0 \ \text{con } \textbf{v} \neq \textbf{0} \end{array}$
- **3.** sia $\mathbf{Q} = \mathbf{H}^{\top}\mathbf{H}$ con $\mathbf{H} \in \mathbb{R}^{p \times n}$, allora (\mathbf{F}, \mathbf{Q}) rivelabile \Leftrightarrow (\mathbf{F}, \mathbf{H}) rivelabile $\mathbf{Q}\mathbf{v} = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{Q}^{\frac{1}{2}}\mathbf{Q}^{\frac{1}{2}}\mathbf{v} = \mathbf{0} \Leftrightarrow \mathbf{v}^{*}\mathbf{Q}^{\frac{1}{2}}\mathbf{Q}^{\frac{1}{2}}\mathbf{v} = \mathbf{0} \Leftrightarrow \quad \|\mathbf{Q}^{\frac{1}{2}}\mathbf{v}\|^{2} = 0 \Leftrightarrow \mathbf{Q}^{\frac{1}{2}}\mathbf{v} = \mathbf{0}$ $\Leftrightarrow \quad \mathbf{H}^{\top}\mathbf{H}\mathbf{v} = \mathbf{0} \Leftrightarrow \mathbf{v}^{*}\mathbf{H}^{\top}\mathbf{H}\mathbf{v} = \mathbf{0} \Leftrightarrow \quad \|\mathbf{H}\mathbf{v}\|^{2} = 0 \Leftrightarrow \mathbf{H}\mathbf{v} = \mathbf{0}$

esempio: derivazione della soluzione tramite applicazione del teorema principale - caso scalare

1. modello del sistema: sistema lineare scalare

$$\begin{split} \dot{x}(t) &= fx(t) + gu(t) \\ x(0) &= x_0 \\ u(t) &= -kx(t) \end{split} \qquad \qquad g \neq 0, \quad \begin{cases} f < 0 & \text{asint. stabile} \\ f = 0 & \text{sempl. stabile} \\ f > 0 & \text{instabile} \end{cases} \\ 2. \text{ funzionale costo:} \qquad J_{\infty}(t) &= \int_{0}^{\infty} qx^{2}(t) + ru^{2}(t)dt \qquad q \geq 0, r > 0 \end{split}$$

applicazione del teorema principale:

$$u^{\star}_{\infty}(t) = -k^{\star}_{\infty}x(t) \quad \text{con} \quad k^{\star}_{\infty} = \frac{g}{r}m_{\infty} \quad \text{dove} \quad m_{\infty} \in \mathbb{R} \quad \text{soddisfa} \ 2fm - \frac{g^2}{r}m^2 + q = 0$$

è possibile calcolare la soluzione della EAR in forma chiusa:

$$\frac{g^2}{r}m^2 - 2fm - q = 0 \quad \Leftrightarrow \quad \begin{cases} m^+ = \frac{fr}{g^2} + \sqrt{\frac{f^2r^2}{g^4} + \frac{rq}{g^2}} \\ m^- = \frac{fr}{g^2} - \sqrt{\frac{f^2r^2}{g^4} + \frac{rq}{g^2}} \end{cases}$$

si distinguono diversi casi:

• caso 1: f < 0, $q \ge 0$ (sistema asintoticamente stabile) $\triangleright (f,g)$ stabilizzabile e (f,\sqrt{q}) rivelabile

$$\Rightarrow$$
 unica soluzione $m_{\infty} = m^+ = \frac{fr}{g^2} + \sqrt{\frac{f^2r^2}{g^4} + \frac{rq}{g^2}} \ge 0$

(si verifica che $m_{\infty} = \lim_{T \to +\infty} m_T(t)$)

• caso 2: $f \ge 0$, q > 0 (sistema instabile) $\triangleright (f,g)$ stabilizzabile e (f,\sqrt{q}) rivelabile

unica soluzione
$$m_{\infty}=m^+=rac{fr}{g^2}+\sqrt{rac{f^2r^2}{g^4}+rac{rq}{g^2}}>0$$

$$k_{\infty}^{\star} = \frac{g}{r}m_{\infty} = \frac{f}{g} + \frac{g}{|g|}\sqrt{\frac{f^2}{g^2} + \frac{q}{r}}$$

(si verifica che $m_{\infty} = \lim_{T \to +\infty} m_T(t)$)

• caso 3: $f \ge 0$, q = 0 (sistema instabile) $\triangleright (f,g)$ stabilizzabile e (f,\sqrt{q}) non rivelabile \Rightarrow più soluzioni m_{∞}

Di conseguenza nei casi 1 e 2 (dinamica del sistema controllato)

$$\dot{x}(t) = fx(t) + g \, u_{\infty}^{\star}(t) = fx(t) - g \left(\frac{f}{g} + \frac{g}{|g|} \sqrt{\frac{f^2}{g^2} + \frac{q}{r}}\right) x(t) = \left(-|g| \sqrt{\frac{f^2}{g^2} + \frac{q}{r}}\right) x(t) = ax(t)$$

$$x(t) = e^{at}x_0$$

Si osserva che

 \Rightarrow

• $r \to 0$, $q/r \gg 1$: cheap control caso limite $q/r \to +\infty$ autovalore del sistema retroazionato $\lambda = -|g|\sqrt{\frac{f^2}{g^2} + \frac{q}{r}} \to -\infty$ • $r \to +\infty$, $q/r \ll 1$: expensive control caso limite $q/r \to 0$ autovalore del sistema retroazionato $\lambda = -|g|\sqrt{\frac{f^2}{q^2} + \frac{q}{r}} \to -|f|$

\boxtimes

7.3.2 proprietà stabilizzanti della legge di controllo

Proposizione Sia $\mathbf{H} \in \mathbb{R}^{p \times n}$ una matrice tale che $\mathbf{Q} = \mathbf{H}^{\top}\mathbf{H}$. Se (\mathbf{F}, \mathbf{G}) è stabilizzabile e (\mathbf{F}, \mathbf{H}) è rivelabile, allora la legge di controllo $\mathbf{u}_{\infty}^{\star}(t) = -\mathbf{K}_{\infty}^{\star}\mathbf{x}(t)$ con $\mathbf{K}_{\infty}^{\star} = \mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}$ minimizza il funzionale costo $J_{\infty}(\mathbf{u}(t))$ del problema di controllo ottimo su orizzonte infinito, rendendo il sistema in catena chiusa asintoticamente stabile, cioè $\mathbf{u}_{\infty}^{\star}(t)$ è stabilizzante.

Dimostrazione. Ad absurdo, sia $\mathbf{A} = \mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star}$, $\exists \lambda \in \Lambda(\mathbf{A}), \ \Re(\lambda) \geq 0$ tale che $\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \text{ con } \mathbf{v} \neq \mathbf{0}$

Dato $\mathbf{A} = \mathbf{F} - \mathbf{G} \mathbf{K}_{\infty}^{\star}$ con $\mathbf{K}_{\infty}^{\star} = \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_{\infty}$, allora $\mathbf{F} = \mathbf{A} + \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_{\infty}$. Perciò

$$\begin{split} \mathbf{F}^{\top}\mathbf{M}_{\infty} + \mathbf{M}_{\infty}\mathbf{F} - \mathbf{M}_{\infty}\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty} + \mathbf{Q} &= \mathbf{0} \qquad (\mathsf{E}\mathsf{A}\mathsf{R}) \\ (\mathbf{A} + \mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty})^{\top}\mathbf{M}_{\infty} + \mathbf{M}_{\infty}(\mathbf{A} + \mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}) - \mathbf{M}_{\infty}\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty} + \mathbf{Q} &= \mathbf{0} \\ \mathbf{A}^{\top}\mathbf{M}_{\infty} + \mathbf{M}_{\infty}\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty} + \mathbf{M}_{\infty}\mathbf{A} + \mathbf{M}_{\infty}\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty} - \mathbf{M}_{\infty}\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty} + \mathbf{Q} &= \mathbf{0} \\ \mathbf{A}^{\top}\mathbf{M}_{\infty} + \mathbf{M}_{\infty}\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty} + \mathbf{Q} &= \mathbf{0} \end{split}$$

Si moltiplichi a destra per \mathbf{v} e a sinistra per \mathbf{v}^* , ovvero per il complesso coniugato di \mathbf{v} tale che $\mathbf{v}^*\mathbf{A}^\top = \lambda^*\mathbf{v}^*$, dove λ^* è il complesso coniugato di λ e \mathbf{A}^\top coincide con il complesso coniugato di essendo \mathbf{A} una matrice reale. Si ottiene

$$\begin{split} \mathbf{v}^* \mathbf{A}^\top \mathbf{M}_\infty \mathbf{v} + \mathbf{v}^* \mathbf{M}_\infty \mathbf{A} \mathbf{v} + \mathbf{v}^* \mathbf{M}_\infty \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^\top \mathbf{M}_\infty \mathbf{v} + \mathbf{v}^* \mathbf{Q} \mathbf{v} &= \mathbf{0} \\ \lambda^* \mathbf{v}^* \mathbf{M}_\infty \mathbf{v} + \mathbf{v}^* \mathbf{M}_\infty \lambda \mathbf{v} + \mathbf{v}^* \mathbf{M}_\infty \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^\top \mathbf{M}_\infty \mathbf{v} + \mathbf{v}^* \mathbf{Q} \mathbf{v} &= \mathbf{0} \\ 2 \Re(\lambda) \mathbf{v}^* \mathbf{M}_\infty \mathbf{v} + \mathbf{v}^* \mathbf{M}_\infty \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^\top \mathbf{M}_\infty \mathbf{v} + \mathbf{v}^* \mathbf{Q} \mathbf{v} &= \mathbf{0} \\ \underbrace{2 \Re(\lambda) \mathbf{v}^* \mathbf{M}_\infty \mathbf{v}}_{\geq 0} &= -\underbrace{\mathbf{v}^* \mathbf{M}_\infty \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^\top \mathbf{M}_\infty \mathbf{v}}_{\geq 0} - \underbrace{\mathbf{v}^* \mathbf{Q} \mathbf{v}}_{\geq 0} \end{split}$$

Poichè il termine a sx dell'uguale può essere positivo o nullo e il termine a dx dell'uguale può essere negativo o nullo, l'uguaglianza è verificata solo se

$$\begin{cases} \mathbf{v}^* \mathbf{M}_{\infty} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_{\infty} \mathbf{v} = \mathbf{0} \\ \mathbf{v}^* \mathbf{Q} \mathbf{v} = \mathbf{0} \end{cases} \Leftrightarrow \begin{cases} (\mathbf{v}^* \mathbf{M}_{\infty} \mathbf{G}) \mathbf{R}^{-1} (\mathbf{G}^{\top} \mathbf{M}_{\infty} \mathbf{v}) = \mathbf{0} \\ (\mathbf{v}^* \mathbf{H}^{\top}) (\mathbf{H} \mathbf{v}) = \mathbf{0} \end{cases} \Leftrightarrow \begin{cases} \mathbf{G}^{\top} \mathbf{M}_{\infty} \mathbf{v} = \mathbf{0} \\ \mathbf{H} \mathbf{v} = \mathbf{0} \end{cases}$$

Pertanto, si ha che

$$\lambda \mathbf{v} = \mathbf{A} \mathbf{v} = (\mathbf{F} - \mathbf{G} \mathbf{K}_{\infty}^{\star}) \mathbf{v} = (\mathbf{F} - \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_{\infty}) \mathbf{v} = \mathbf{F} \mathbf{v} \quad \Rightarrow \quad \lambda \in \Lambda(F)$$

di conseguenza, in base al test PBH eseguito in corrispondenza a λ , si ha che

 $\begin{bmatrix} \mathbf{F} - \lambda \mathbf{I} \\ \mathbf{H} \end{bmatrix} \mathbf{v} = \mathbf{0} \quad \leftrightarrow \quad \text{la matrice non ha rango rieno in corrispondenza a } \lambda \in \Lambda(F), \ \Re(\lambda) \ge 0$

ma questa conclusione è assurda in quanto (\mathbf{F}, \mathbf{H}) è rivelabile per ipotesi.

7.3.3 soluzione della EAR tramite matrice Hamiltoniana

Come nel caso a orizzonte finito, si definisce matrice Hamiltoniana associata al problema di controllo ottimo la matrice

$$oldsymbol{\mathcal{H}} = egin{bmatrix} \mathbf{F} & -\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{ op} \ -\mathbf{Q} & -\mathbf{F}^{ op} \end{bmatrix} \in \mathbb{R}^{2n imes 2n}$$

e valgono le seguenti proprietà

- $\mathbf{T}^{-1} \mathcal{H} \mathbf{T} = -\mathcal{H}^{\top} \text{ con } \mathbf{T} = \begin{bmatrix} \mathbf{0}_n & -\mathbf{I}_n \\ \mathbf{I}_n & \mathbf{0}_n \end{bmatrix} \Rightarrow \text{ se } \lambda \in \Lambda(\mathcal{H}) \text{ allora } -\lambda \in \Lambda(\mathcal{H})$
- (\mathbf{F}, \mathbf{G}) stabilizzabile e (\mathbf{F}, \mathbf{Q}) rivelabile \Rightarrow se $\lambda \in \Lambda(\mathcal{H})$ allora $\lambda \in \mathbb{R}$

$$\Rightarrow \exists \mathbf{W} = \begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix} \text{ t.c. } \mathbf{W}^{-1} \mathcal{H} \mathbf{W} = \begin{bmatrix} \mathbf{D}^{-} & \mathbf{0}_n \\ \mathbf{0}_n & \mathbf{D}^+ \end{bmatrix} \text{ con } \begin{array}{c} \mathbf{D}^{-} = diag(\{\lambda < 0\}) \\ \mathbf{D}^+ = -\mathbf{D}^- \end{array}$$

Lemma Siano \mathbf{M}_{∞} soluzione della EAR, $\mathbf{K}_{\infty}^{\star} = \mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}$ il corrispondente guadagno (ottimo) di retroazione e $\mathbf{A} = (\mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star})$ la matrice di transizione dello stato del corrispondente sistema retroazionato. Gli autovalori della matrice Hamiltoniana \mathcal{H} sono l'unione degli autovalori di \mathbf{A} e di $-\mathbf{A}$, ovvero

$$\Lambda(\mathcal{H}) = \Lambda(\mathbf{A}) \cup \Lambda(-\mathbf{A})$$

Dimostrazione. Si consideri la matrice di trasformazione di base $\mathbf{T} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{M}_{\infty} & \mathbf{I} \end{bmatrix}$ dipendente da \mathbf{M}_{∞} . Si ha che

$$\begin{split} \mathbf{T}^{-1} \boldsymbol{\mathcal{H}} \mathbf{T} &= \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{M}_{\infty} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{F} & -\mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \\ -\mathbf{Q} & -\mathbf{F}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{M}_{\infty} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{F} & -\mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \\ -\mathbf{M}_{\infty} \mathbf{F} - \mathbf{Q} & \mathbf{M}_{\infty} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} - \mathbf{F}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{M}_{\infty} & \mathbf{I} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{F} - \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_{\infty} & -\mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \\ -\mathbf{M}_{\infty} \mathbf{F} - \mathbf{Q} + \mathbf{M}_{\infty} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \mathbf{M}_{\infty} - \mathbf{F}^{\top} \mathbf{M}_{\infty} & \mathbf{M}_{\infty} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} - \mathbf{F}^{\top} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{F} - \mathbf{G} \mathbf{K}_{\infty}^{\star} & -\mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \\ \mathbf{0} & -(\mathbf{F} - \mathbf{G} \mathbf{K}_{\infty}^{\star})^{\top} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{\top} \\ \mathbf{0} & -\mathbf{A}^{\top} \end{bmatrix} \end{split}$$

Di coseguenza, si osserva che

- $\Lambda(\mathcal{H}) = \Lambda(\mathbf{T}^{-1}\mathcal{H}\mathbf{T})$
- $\Lambda(\mathbf{T}^{-1}\mathcal{H}\mathbf{T}) = \Lambda(\mathbf{A}) \cup \Lambda(-\mathbf{A})$

per tanto, si conclude che $\Lambda(\mathcal{H}) = \Lambda(\mathbf{A}) \cup \Lambda(-\mathbf{A})$.

Corollario Sia $\mathbf{H} \in \mathbb{R}^{p \times n}$ una matrice tale che $\mathbf{Q} = \mathbf{H}^{\top}\mathbf{H}$. Siano (\mathbf{F}, \mathbf{G}) stabilizzabile e (\mathbf{F}, \mathbf{H}) rivelabile. Siano \mathbf{M}_{∞} soluzione della EAR, $\mathbf{K}_{\infty}^{\star} = \mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}$ il corrispondente guadagno (ottimo) di retroazione e $\mathbf{A} = (\mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star})$ la matrice di transizione dello stato del corrispondente sistema retroazionato. Gli autovalori della matrice \mathbf{A} corrispondono agli autovalori stabili della matrice Hamiltoniana \mathcal{H}

$$\Lambda(\mathbf{A}) = \Lambda(\mathbf{D}^{-})$$

Proposizione Siano (**F**, **G**) stabilizzabile e (**F**, **Q**) rivelabile con **Q** = **H**^T**H**. Sia **X** = $\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \in \mathbb{R}^{2n \times n}$ una matrice le cui colonne costituiscono un insieme di autovettori generalizzati associati agli *n* autovalori stabili di \mathcal{H} . Allora $\mathbf{X}_1 \in \mathbb{R}^{n \times n}$ è invertibile e l'unica \mathbf{M}_{∞} sdp soluzione della EAR è esprimibile come

$$\mathbf{M}_{\infty} = \mathbf{X}_2 \mathbf{X}_1^{-1}$$

v è un autovettore generalizzato di A associato all'autovalore λ se $(\mathbf{A} - \lambda \mathbf{I})^m \mathbf{v} = \mathbf{0}$ per qualche $m \in \mathbb{N}$ Il fatto che X sia una matrice le cui colonne costituiscono un insieme di autovettori generalizzati associati agli n autovalori stabili di \mathcal{H} implica che si possono determinare due matrici $\mathbf{Y}_1, \mathbf{Y}_2 \in \mathbb{R}^{n \times n}$ in modo che $\mathbf{T} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{Y}_1 \\ \mathbf{X}_2 & \mathbf{Y}_2 \end{bmatrix}$ è una matrice di cambio di base che porta \mathcal{H} in forma di Jordan $\mathcal{H}_J = \begin{bmatrix} \mathcal{H}_J^- & \mathbf{0} \\ \mathbf{0} & \mathcal{H}_J^+ \end{bmatrix}$ dove il blocco $\mathcal{H}_J^- (\mathcal{H}_J^+)$ è formato da blocchi di Jordan relativi agli autovalori stabili (instabili) di \mathcal{H} .

Dimostrazione. Sia $\mathbf{T} \in \mathbb{R}^{n \times n}$ la matrice di cambio base che porta $\mathbf{A} = (\mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star})$ in forma di Jordan. Sia $\mathbf{A}_J = \mathbf{T}^{-1}(\mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star})\mathbf{T} = \mathbf{T}^{-1}(\mathbf{F} - \mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty})\mathbf{T}$ la matrice di transizione dello stato del sistema retroazionato (asintoticamente stabile) in forma di Jordan.

Allora, definita $\mathbf{Z} = \begin{bmatrix} \mathbf{T} \\ \mathbf{M}_{\infty}\mathbf{T} \end{bmatrix} \in \mathbb{R}^{2n imes n}$, si ha che

$$\begin{split} \mathcal{H}\mathbf{Z} &= \mathcal{H}\begin{bmatrix}\mathbf{T}\\\mathbf{M}_{\infty}\mathbf{T}\end{bmatrix} = \mathcal{H}\begin{bmatrix}\mathbf{I}\\\mathbf{M}_{\infty}\end{bmatrix}\mathbf{T} = \begin{bmatrix}\mathbf{F} & -\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\\-\mathbf{Q} & -\mathbf{F}^{\top}\end{bmatrix}\begin{bmatrix}\mathbf{I}\\\mathbf{M}_{\infty}\end{bmatrix}\mathbf{T} \\ &= \begin{bmatrix}\mathbf{F} - \mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}\\-\mathbf{Q} - \mathbf{F}^{\top}\mathbf{M}_{\infty}\end{bmatrix}\mathbf{T} = \begin{bmatrix}\mathbf{F} - \mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}\\\mathbf{M}_{\infty}\mathbf{F} - \mathbf{M}_{\infty}\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}\end{bmatrix}\mathbf{T} \\ &= \begin{bmatrix}\mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star}\\\mathbf{M}_{\infty}\mathbf{F} - \mathbf{M}_{\infty}\mathbf{G}\mathbf{K}_{\infty}^{\star}\end{bmatrix}\mathbf{T} = \begin{bmatrix}\mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star}\\\mathbf{M}_{\infty}(\mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star})\end{bmatrix}\mathbf{T} \\ &= \begin{bmatrix}\mathbf{I}\\\mathbf{M}_{\infty}\end{bmatrix}(\mathbf{F} - \mathbf{G}\mathbf{K}_{\infty}^{\star})\mathbf{T} = \begin{bmatrix}\mathbf{I}\\\mathbf{M}_{\infty}\end{bmatrix}\mathbf{T}\mathbf{A}_{J} \\ &= \begin{bmatrix}\mathbf{T}\\\mathbf{M}_{\infty}\mathbf{T}\end{bmatrix}\mathbf{A}_{J} = \mathbf{Z}\mathbf{A}_{J} \end{split}$$

Poichè risulta $\mathcal{H}\mathbf{Z} = \mathbf{Z}\mathbf{A}_J \operatorname{con} \Lambda(\mathbf{A}_J) \subset \Lambda(\mathcal{H})$ allora le colonne di \mathbf{Z} costituiscono la base di un sottospazio \mathcal{H} -invariante e *n*-dimensionale di \mathbb{R}^{2n} . Anche gli autovettori associati agli *n* autovalori stabili di \mathcal{H} costituiscono la base di un sottospazio \mathcal{H} -invariante e *n*-dimensionale di \mathbb{R}^{2n} . Da cui si conclude che esiste una matrice di trasformazione di base $\mathbf{T}' \in \mathbb{R}^{n \times n}$ tale che $\mathbf{X} = \mathbf{ZT}' \in \mathbb{R}^{2n \times n}$ risulta essere la matrice le cui colonne corrispondono agli autovettori generalizzati associati agli *n* autovalori stabili di \mathcal{H} . In particolare, si ha che

$$\mathbf{X} = \mathbf{Z}\mathbf{T}' \quad \Leftrightarrow \quad egin{bmatrix} \mathbf{X}_1 \ \mathbf{X}_2 \end{bmatrix} = egin{bmatrix} \mathbf{T} \ \mathbf{M}_\infty\mathbf{T} \end{bmatrix} \mathbf{T}' \quad \Leftrightarrow \quad egin{bmatrix} \mathbf{X}_1 = \mathbf{T}\mathbf{T}' \ \mathbf{X}_2 = \mathbf{M}_\infty\mathbf{T}\mathbf{T}' \end{cases}$$

Ora, poichè T e T' sono invertibili per definizione, anche X_1 è invertibile e risulta

$$\mathbf{X}_{2}\mathbf{X}_{1}^{-1} = \mathbf{M}_{\infty}\mathbf{T}\mathbf{T}'(\mathbf{T}\mathbf{T}')^{-1} = \mathbf{M}_{\infty}$$

esempio: applicazione della proposizione - caso scalare (integratore semplice)

1. modello del sistema: $\dot{x}(t) = u(t)$ f = 0, g = 1x(0) = 0

2. funzionale costo: $J_{\infty}(t) = \int_0^{\infty} x^2(t) + u^2(t)dt$ q = r = 1

soluzione analitica (applicazione del teorema principale): dato che (f,g) rivelabile $(g \neq 0)$ e (f,q) stabilizzabile $(q \neq 0)$ allora $u_{\infty}^{\star}(t) = -k_{\infty}^{\star}x(t)$ con $k_{\infty}^{\star} = \frac{g}{r}m_{\infty}$, dove

$$m_{\infty} = m^{+} = \frac{fr}{g^{2}} + \sqrt{\frac{f^{2}r^{2}}{g^{4}} + \frac{rq}{g^{2}}} = 1$$

soluzione non analitica (applicazione della proposizione):

$$\boldsymbol{\mathcal{H}} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \quad \rightarrow \quad \Lambda(\boldsymbol{\mathcal{H}}) = \{-1, +1\} = \{d^-, d^+\}$$

• autovettore associato a -1: $\mathcal{H}\mathbf{x} = -\mathbf{x} \iff \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ -x_2 \end{bmatrix} \implies \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\boxed{m_{\infty} = x_2(t)x_1(t)^{-1} = 1}$

 \boxtimes

7.4 Controllo ottimo LQ di sistemi a tempo discreto

1. modello di sistema da controllare:

sistema lineare a tempo discreto il cui stato è accessibile (misurabile o stimabile)

$$\begin{aligned} \mathbf{x}(t+1) &= \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) & \mathbf{x}(t) \in \mathbb{R}^n \text{ accessibile} \\ \mathbf{x}(t_0) &= \mathbf{x}_0 & \mathbf{u}(t) \in \mathbb{R}^m \end{aligned}$$

- 2. funzionale costo da minimizzare/massimizzare:
 - \rightarrow si possono distinguere due casi:

ottimizzazione quadratica su orizzonte finito

si considera un intervallo di tempo finito $t \in [t_0, t_f] \rightsquigarrow t \in [0, T]$, su cui è definito il funzionale costo

$$J_T(t) = \mathbf{x}(T)^{\top} \mathbf{S} \mathbf{x}(T) + \sum_{t=0}^{T-1} \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right)$$

con $\mathbf{S}, \mathbf{Q} \in \mathbb{R}^{n \times n}$ matrici semi-definite positive e $\mathbf{R} \in \mathbb{R}^{m \times m}$ matrice definita positiva \Rightarrow problema di controllo ottimo:

$$\mathbf{u}_T^{\star}(t) = \arg\min_{t \in [0, T-1]} J_T(\mathbf{u}(t))$$

Quando si considerano i sistemi a tempo discreto $(t \in \mathbb{N})$ rispetto a quelli a tempo continuo $(t \in \mathbb{R})$, nel funzionale costo a orizzonte finito l'integrale è sostituito dalla sommatoria ma fino a T - 1.

ottimizzazione quadratica su orizzonte finito

si considera un intervallo di tempo infinito $t \in [0, +\infty)$, su cui è definito il funzionale costo

$$J_{\infty}(t) = \sum_{t=0}^{\infty} \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right)$$

con $\mathbf{Q} \in \mathbb{R}^{n \times n}$ matrice semi-definita positiva e $\mathbf{R} \in \mathbb{R}^{m \times m}$ matrice definita positiva. \Rightarrow problema di controllo ottimo:

$$\mathbf{u}_{\infty}(t)^{\star} = \arg\min_{t \in [0, +\infty)} J_{\infty}(\mathbf{u}(t))$$

esempio: derivazione della soluzione (a orizzonte infinito) tramite calcolo diretto - caso scalare

1. modello del sistema: sistema lineare scalare con retroazione statica

$$\begin{aligned} x(t+1) &= x(t) + u(t) & f = 1 \\ x(0) &= x_0 \neq 0 \\ u(t) &= -kx(t) \\ 2. \text{ funzionale costo:} & J_{\infty}(t) &= \sum_{t=0}^{+\infty} x^2(t) + ru^2(t)dt & q = 1 > 0, r > 0 \end{aligned}$$

► come si risolve il problema di *regolazione dello stato* (determinare u(t) tale per cui $\lim_{t\to+\infty} x(t) = 0$)? si osseva che

- k = 1x(1) = x(0) - x(0) = 0 soluzione a orizzonte finito minimo (controllo dead beat)
- 0 < k < 2 $x(t+1) = (1-k)x(t) \iff X(z) = \frac{1}{z-(1-k)}$ stabilità asintotica (polo in |(1-k)| < 1)
- k qualsiasi $x(t) = (1-k)^t x_0$ evoluzione libera del sistema retroazionato $\rightarrow u(t) = -k(1-k)^t x_0$

per cui vale che

$$J_{\infty}(t) = \sum_{t=0}^{+\infty} \left((1-k)^{t} x_{0} \right)^{2} + r \left(-k(1-k)^{t} x_{0} \right)^{2} = x_{0}^{2} (1+rk^{2}) \sum_{t=0}^{+\infty} \left((1-k)^{2} \right)^{t}$$
$$= (0 < k < 2) = x_{0}^{2} (1+rk^{2}) \frac{1}{1-(1-k)^{2}} = \frac{x_{0}^{2} (1+rk^{2})}{k(2-k)}$$

di conseguenza, nel caso 0 < k < 2, si ha che

$$\frac{\partial J_{\infty}}{\partial k} = -\frac{2x_0^2}{k^2(2-k)^2}(rk^2 + k - 1) = 0 \quad \Leftrightarrow \quad rk^2 + k - 1 = 0$$

$$k^{\star}_{\infty} = \frac{-1 + \sqrt{1 + 4r}}{2r} \quad k^{\star}_{\infty} \in (0, 2) \forall r > 0 \qquad \left(k^{\star}_{\infty} = 1 \quad \text{nel caso limite } r \to 0^{+}\right)$$

7.5 Controllo ottimo LQ di sistemi a tempo discreto a orizzonte finito

1. modello del sistema da controllare: sistema lineare a tempo discreto

$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \qquad \mathbf{x}(t) \in \mathbb{R}^n, \ \mathbf{u}(t) \in \mathbb{R}^m$$
$$\mathbf{x}(0) = \mathbf{x}_0 \qquad t \in [0, T], t \in \mathbb{N}$$

2. funzionale costo da minimizzare/massimizzare: ottimizzazione su orizzonte finito

$$J_T(t) = \mathbf{x}(T)^{\top} \mathbf{S} \mathbf{x}(T) + \sum_{t=0}^{T-1} \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right) dt$$

 $\mathbf{S}, \mathbf{Q} \in \mathbb{R}^{n imes n}$ matrici semi-definite positive $\mathbf{R} \in \mathbb{R}^{m imes m}$ matrice definita positiva

 \boxtimes

 \Rightarrow problema di controllo ottimo:

$$\mathbf{u}_T^{\star}(t) = \arg\min_{t \in [0, T-1]} J_T(\mathbf{u}(t))$$

7.5.1 teorema principale

e

Teorema Per i sistemi a tempo discreto, la legge di controllo ottimo su orizzonte finito è data da

$$\mathbf{u}_T^{\star}(t) = -\mathbf{K}_T^{\star}(t)\mathbf{x}(t) \qquad \text{con} \qquad \mathbf{K}_T^{\star}(t) = \left(\mathbf{R} + \mathbf{G}^{\top}\mathbf{M}_T(t+1)\mathbf{G}\right)^{-1}\mathbf{G}^{\top}\mathbf{M}_T(t+1)\mathbf{F}$$

dove la sequenza $\mathbf{M}_T(0) \dots \mathbf{M}_T(T)$ di matrici simmetriche e sdp è soluzione dell'Equazione di Riccati alle Differenze:

$$(ERD) \quad \begin{cases} \mathbf{M}(t) = \mathbf{F}^{\top} \mathbf{M}(t+1) \mathbf{F} - \mathbf{F}^{\top} \mathbf{M}(t+1) \mathbf{G} \left(\mathbf{R} + \mathbf{G}^{\top} \mathbf{M}(t+1) \mathbf{G} \right)^{-1} \mathbf{G}^{\top} \mathbf{M}(t+1) \mathbf{F} + \mathbf{Q} \\ \mathbf{M}(T) = \mathbf{S} \end{cases}$$

In corrispondenza all'ingresso di controllo $\mathbf{u}_T^{\star}(t)$, il funzionale costo assume il valore (minimo)

$$J_T^{\star} = \mathbf{x}_0^{\top} \mathbf{M}_T(0) \mathbf{x}_0$$

Dimostrazione. (cenni) Si consideri la sequenza $\mathbf{M}_T(0) \dots \mathbf{M}_T(T)$ di matrici simmetriche e sdp soluzione della ERD, allora, sfruttando l'identità

$$\mathbf{0} = \mathbf{x}(0)^{\top} \mathbf{M}_T \mathbf{x}(0) + \mathbf{x}(T)^{\top} \mathbf{M}_T(T) \mathbf{x}(T) + \sum_{t=0}^{T-1} \left(\mathbf{x}(t+1)^{\top} \mathbf{M}_T(t+1) \mathbf{x}(t+1) - \mathbf{x}(t)^{\top} \mathbf{M}_T(t) \mathbf{x}(t) \right)$$

e le equazioni della dinamica del sistema, è possibile riscrivere il funzionale costo come segue

			1

 \Rightarrow La determinazione di $\mathbf{u}_T^{\star}(t)$ richiede la risoluzione della ERD (equazione ricorsiva all'indietro)

$$\begin{split} \mathbf{M}_{T}(0) &\leftarrow \mathbf{M}_{T}(1) \leftarrow \mathbf{M}_{T}(2) \leftarrow \cdots \leftarrow \mathbf{M}_{T}(T-1) \leftarrow \mathbf{M}_{T}(T) = \mathbf{S} \\ &\downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ &\mathbf{K}_{T}^{\star}(0) &\mathbf{K}_{T}^{\star}(1) &\cdots &\mathbf{K}_{T}^{\star}(T-2) &\mathbf{K}_{T}^{\star}(T-1) \\ &\downarrow &\downarrow &\downarrow &\downarrow &\downarrow \\ &\mathbf{u}_{T}^{\star}(0) &\mathbf{u}_{T}^{\star}(1) &\cdots &\mathbf{u}_{T}^{\star}(T-2) &\mathbf{u}_{T}^{\star}(T-1) \\ &\nearrow &\downarrow &\swarrow &\downarrow \\ \mathbf{x}(0) &\mathbf{x}(1) &\mathbf{x}(2) &\cdots &\mathbf{x}(T-1) \end{split}$$

esempio: derivazione della soluzione tramite calcolo diretto - caso scalare

1. modello del sistema: sistema lineare scalare

$$x(t+1) = x(t) + u(t)$$
 $t \in [0,2]$
 $x(0) = x_0 = 1$
 $u(t) = -k(t)x(t)$
2. funzionale costo: $J_T(t) = 2x(T)^2 + \sum_{t=0}^{T-1} x(t)^2 + u(t)^2$ $s = 2, q = 1, r = 1$
 $= 2x(2)^2 + \sum_{t=0}^{1} x(t)^2 + u(t)^2 = 2x(2)^2 + (x(1)^2 + u(1)^2) + (x(0)^2 + u(0)^2)$

Dal momento che $\mathbf{F}=f=1, \mathbf{G}=g=1, \mathbf{S}=s=2, \mathbf{Q}=q=1, \mathbf{R}=r=1$, si ha che

$$(ERD) \quad \begin{cases} \mathbf{M}(t) = \mathbf{F}^{\top} \mathbf{M}(t+1) \mathbf{F} - \mathbf{F}^{\top} \mathbf{M}(t+1) \mathbf{G} \left(\mathbf{R} + \mathbf{G}^{\top} \mathbf{M}(t+1) \mathbf{G} \right)^{-1} \mathbf{G}^{\top} \mathbf{M}(t+1) \mathbf{F} + \mathbf{Q} \\ \mathbf{M}(T) = \mathbf{S} \end{cases}$$
$$\Leftrightarrow \quad \begin{cases} m(t) = m(t+1) - m(t+1)(1+m(t+1))^{-1}m(t+1) + 1 \\ m(T) = 2 \end{cases}$$

da cui

$$m_T(2) = 2$$

$$m_T(1) = m_T(2) - m_T(2)^2 (1 + m_T(2))^{-1} + 1 = 2 - 4(1+2)^{-1} + 1 = \frac{5}{3}$$

$$m_T(0) = m_T(1) - m_T(1)^2 (1 + m_T(1))^{-1} + 1 = \frac{5}{3} - \frac{25}{9} \left(1 + \frac{5}{3}\right)^{-1} + 1 = \frac{13}{8}$$

e di conseguenza, dato che $k_T^\star(t) = \left(1+m_T(t+1)\right)^{-1}m_T(t+1)$, segue

$$k_T^{\star}(1) = (1 + m_T(2))^{-1} m_T(2) = \frac{2}{3}$$
$$k_T^{\star}(0) = (1 + m_T(1))^{-1} m_T(1) = \frac{5}{8}$$

$$u_T^{\star}(0) = -k_T^{\star}(0)x(0) = -\frac{5}{8}$$
$$u_T^{\star}(1) = -k_T^{\star}(1)x(1) = -k_T^{\star}(1)(x(0) + u_T^{\star}(0)) = -\frac{1}{4}$$

 \boxtimes

7.6 Controllo ottimo LQ di sistemi a tempo discreto a orizzonte infinito

1. modello del sistema da controllare: sistema lineare a tempo discreto

$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) \qquad \mathbf{x}(t) \in \mathbb{R}^n, \ \mathbf{u}(t) \in \mathbb{R}^m$$
$$\mathbf{x}(0) = \mathbf{x}_0 \qquad t \in [0, +\infty), t \in \mathbb{N}$$

2. funzionale costo da minimizzare/massimizzare: ottimizzazione su orizzonte finito

$$J_{\infty}(t) = \sum_{t=0}^{\infty} \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right)$$

 $\mathbf{Q} \in \mathbb{R}^{n imes n}$ matrice semi-definita positiva $\mathbf{R} \in \mathbb{R}^{m imes m}$ matrice definita positiva

 \Rightarrow problema di controllo ottimo:

$$\mathbf{u}_{\infty}^{\star}(t) = \arg\min_{t \in [0, +\infty)} J_{\infty}(\mathbf{u}(t))$$

corrispondenza tra caso infinito e caso finito con $T \to \infty$ Sia $\mathbf{H} \in \mathbb{R}^{p \times n}$ una matrice tale che $\mathbf{Q} = \mathbf{H}^{\top} \mathbf{H}$. Se (\mathbf{F}, \mathbf{G}) è stabilizzabile e (\mathbf{F}, \mathbf{H}) è rivelabile, allora

- a. per ogni scelta della condizione finale $\mathbf{M}_T(T)$ sdp, la soluzione $\mathbf{M}_T(t)$ della ERD converge all'unico valore costante finito \mathbf{M}_∞ quando $T \to \infty$,
- **b.** \mathbf{M}_{∞} è l'unica soluzione sdp dell'Equazione Algebrica di Riccati (Discreta):

$$(EARD) \quad \mathbf{M} = \mathbf{F}^{\top} \mathbf{M} \mathbf{F} - \mathbf{F}^{\top} \mathbf{M} \mathbf{G} \left(\mathbf{R} + \mathbf{G}^{\top} \mathbf{M} \mathbf{G} \right)^{-1} \mathbf{G}^{\top} \mathbf{M} \mathbf{F} + \mathbf{Q}$$

7.6.1 teorema principale

Teorema Per i sistemi a tempo discreto con (\mathbf{F}, \mathbf{G}) stabilizzabile e (\mathbf{F}, \mathbf{H}) rivelabile con $\mathbf{Q} = \mathbf{H}^{\top}\mathbf{H}$, la legge di controllo ottimo su orizzonte infinito è data da

$$\mathbf{u}_{\infty}^{\star}(t) = -\mathbf{K}_{\infty}^{\star}\mathbf{x}(t) \qquad \text{con} \qquad \mathbf{K}_{\infty}^{\star} = \left(\mathbf{R} + \mathbf{G}^{\top}\mathbf{M}_{\infty}\mathbf{G}\right)^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}\mathbf{F}$$

dove $\mathbf{M}_{\infty} = \mathbf{M}_{\infty}^{\top} \in \mathbb{R}^{n \times n}$ è l'unica soluzione dell'Equazione Algebrica di Riccati (Discreta):

(EARD)
$$\mathbf{M} = \mathbf{F}^{\top}\mathbf{M}\mathbf{F} - \mathbf{F}^{\top}\mathbf{M}\mathbf{G}\left(\mathbf{R} + \mathbf{G}^{\top}\mathbf{M}\mathbf{G}\right)^{-1}\mathbf{G}^{\top}\mathbf{M}\mathbf{F} + \mathbf{Q}$$

In corrispondenza all'ingresso di controllo $\mathbf{u}^{\star}_{\infty}(t)$, il funzionale costo assume il valore (minimo)

$$J_{\infty}^{\star} = \mathbf{x}_0^{\top} \mathbf{M}_{\infty} \mathbf{x}_0$$

Dimostrazione. (cenni) La dimostrazione si basa sulla manipolazione dell'indice (a orizzonte finito) $J_T(t)$, posto $\mathbf{M}_T(-t) = \cdots = \mathbf{M}_T(0) = \mathbf{M}_\infty$. Si dimostra dunque che $\mathbf{x}_0^\top \mathbf{M}_T(-T)\mathbf{x}_0 \leq \sum_{t=0}^{T-1} \left(\mathbf{x}(t)^\top \mathbf{Q}\mathbf{x}(t) + \mathbf{u}_\infty(t)^\top \mathbf{R}\mathbf{u}_\infty(t) \right) \leq \mathbf{x}_0^\top \mathbf{M}_\infty \mathbf{x}_0$. Si calcola infine il limite per $T \to +\infty$.

7.6.2 proprietà stabilizzanti della legge di controllo

Proposizione Sia $\mathbf{H} \in \mathbb{R}^{p \times n}$ una matrice tale che $\mathbf{Q} = \mathbf{H}^{\top}\mathbf{H}$. Se (\mathbf{F}, \mathbf{G}) è stabilizzabile e (\mathbf{F}, \mathbf{H}) è rivelabile, allora la legge di controllo $\mathbf{u}_{\infty}^{\star}(t) = -\mathbf{K}_{\infty}^{\star}\mathbf{x}(t)$ con $\mathbf{K}_{\infty}^{\star} = (\mathbf{R} + \mathbf{G}^{\top}\mathbf{M}_{\infty}\mathbf{G})^{-1}\mathbf{G}^{\top}\mathbf{M}_{\infty}\mathbf{F}$ minimizza il funzionale costo $J_{\infty}(\mathbf{u}(t))$ del problema di controllo ottimo su orizzonte infinito, rendendo il sistema in catena chiusa asintoticamente stabile, cioè $\mathbf{u}_{\infty}^{\star}(t)$ è stabilizzante.

esempio: applicazione della proposizione

1. modello del sistema: sistema lineare

$$\mathbf{x}(t+1) = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \qquad \mathbf{x}(t) \in \mathbb{R}^2 \ (n=2), \quad u(t) \in \mathbb{R} \ (m=1)$$
$$\mathbf{x}(0) = \mathbf{x}_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\top \qquad (\mathbf{F}, \mathbf{g}) \text{ stabilizzabile (sist. raggiungibile)}$$

2.A funzionale costo:
$$J_{\infty}(t) = \sum_{t=0}^{\infty} \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right) \quad \mathbf{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ sdp, } \mathbf{R} = r = 1$$
$$(\mathbf{F}, \mathbf{Q}) \quad \text{non rivelabile}$$

Allora, posto $u(t) = -\mathbf{k}^{\top}\mathbf{x}(t) = -\begin{bmatrix} k & 0 \end{bmatrix} \mathbf{x}(t) = -kx_1(t)$ per cui $x_1(t+1) = 2x_1(t) + u(t) = (2-k)x_1(t)$, si ha che

$$J_{\infty} = \sum_{t=0}^{+\infty} \left(\begin{bmatrix} x_1(t) & x_2(t) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + u(t)^2 \right) = \sum_{t=0}^{+\infty} \left(x_1(t)^2 + u(t)^2 \right)$$
$$= \sum_{t=0}^{+\infty} \left(x_1(t)^2 + k^2 x_1(t)^2 \right) = \sum_{t=0}^{+\infty} (1+k^2) x_1(t)^2 = (1+k^2) \sum_{t=0}^{+\infty} \left((2-k)^t x_1(0) \right)^2$$
$$= (1+k^2) x_1(0)^2 \sum_{t=0}^{+\infty} (2-k)^{2t}$$

perciò se |2-k| < 1 (1 < k < 3) allora $J_{\infty} = rac{1+k^2}{1-(2+k)^2} x_1(0)^2$ e, di conseguenza,

$$\frac{d}{dk}J_{\infty} = \frac{d}{dk}\frac{1+k^2}{1-(2-k)^2}x_1(0)^2 = -4\frac{k^2-k-1}{(1-(2-k)^2)^2}x_1(0)^2 = 0 \quad \Leftrightarrow \quad k = \frac{1\pm\sqrt{5}}{2}$$
$$\boxed{\mathbf{k}_{\infty}^{\star} = \begin{bmatrix} k^{\star} & 0 \end{bmatrix}^{\top} \quad \text{con} \quad k^{\star} = \frac{1-\sqrt{5}}{2}}$$

Tuttavia, il sistema retroazionato risulta instabile in quanto

$$\mathbf{A} = (\mathbf{F} - \mathbf{g}\mathbf{k}_{\infty}^{\star}) = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} \frac{1-\sqrt{5}}{2} & 0 \end{bmatrix} = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ \frac{1+\sqrt{5}}{2} & 3 \end{bmatrix} \quad \Rightarrow \quad \Lambda(\mathbf{A}) = \left\{ 3, \frac{1+\sqrt{5}}{2} \right\}$$

2.**B** funzionale costo:
$$J_{\infty}(t) = \sum_{t=0}^{\infty} \left(\mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) \right) \quad \mathbf{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{sdp, } \mathbf{R} = r = 1$$

(**F**, **Q**) rivelabile

Allora,

$$\mathbf{M}_{\infty} = \mathtt{idare}(\mathtt{F}, \mathtt{g}, \mathtt{Q}, \mathtt{r}, \mathtt{[]}, \mathtt{[]}) = \begin{bmatrix} 126.245 & -196.030\\ -196.030 & 316.144 \end{bmatrix}$$
$$\mathbf{k}_{\infty}^{\star} = (r + \mathbf{g}^{\top} \mathbf{M}_{\infty} \mathbf{g})^{-1} \mathbf{g}^{\top} \mathbf{M}_{\infty} \mathbf{F} = \begin{bmatrix} -2.720 & 7.022 \end{bmatrix}^{\top}$$

E, il sistema retroazionato risulta stabile in quanto

$$\mathbf{A} = (\mathbf{F} - \mathbf{g}\mathbf{k}_{\infty}^{\star}) = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} -2.720 & 7.022 \\ 2.720 & -4.022 \end{bmatrix} \Rightarrow \Lambda(\mathbf{A}) = \{0.2728, 0.4252\}$$

 \boxtimes

7.7 Implementazione del controllore ottimo LQ

7.7.1 generalizzazione al caso con termini misti

nel funzionale costo possono comparire dei termini misti ovvero dei prodotti (pesati) di stato e ingresso

$$J_{\infty}(t) = \sum_{t=0}^{+\infty} \begin{bmatrix} \mathbf{x}(t)^{\top} & \mathbf{u}(t)^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{Q} & \mathbf{N} \\ \mathbf{N}^{\top} & \mathbf{R} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{u}(t) \end{bmatrix} \text{ con } \mathbf{N} \in \mathbb{R}^{n \times m}$$

 \rightarrow è possibile ricondursi al caso standard (anche nel caso a orizzonte finito e nel caso di sistemi a tempo continuo):

sfruttando la formula del completamento dei quadrati dati $\mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^m, \mathbf{A} = \mathbf{A}^\top \in \mathbb{R}^{n \times n}, \mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{m \times m}$ sdp

$$\mathbf{y}^{\top}\mathbf{C}\mathbf{y} + \mathbf{x}^{\top}\mathbf{A}\mathbf{B}\mathbf{y} + \mathbf{y}^{\top}\mathbf{B}^{\top}\mathbf{A}\mathbf{x} + \mathbf{x}^{\top}\mathbf{A}\mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\top}\mathbf{A}\mathbf{x} = (\mathbf{y} + \mathbf{C}^{-1}\mathbf{B}^{\top}\mathbf{A}\mathbf{x})^{\top}\mathbf{C}(\mathbf{y} + \mathbf{C}^{-1}\mathbf{B}^{\top}\mathbf{A}\mathbf{x})$$

si ha che

$$J_{\infty}(t) = \sum_{t=0}^{+\infty} J'(t)$$

con

$$\begin{aligned} J'(t) &= \mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) + \mathbf{x}(t)^{\top} \mathbf{N} \mathbf{u}(t) + \mathbf{u}(t)^{\top} \mathbf{N}^{\top} \mathbf{u}(t) \\ &= \mathbf{x}(t)^{\top} \mathbf{Q} \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) + \mathbf{x}(t)^{\top} \mathbf{N} \mathbf{u}(t) + \mathbf{u}(t)^{\top} \mathbf{N}^{\top} \mathbf{u}(t) - \mathbf{x}(t)^{\top} \mathbf{N} \mathbf{R}^{-1} \mathbf{N}^{\top} \mathbf{x}(t) + \mathbf{x}(t)^{\top} \mathbf{N} \mathbf{R}^{-1} \mathbf{N}^{\top} \mathbf{x}(t) \\ &= \mathbf{x}(t)^{\top} \left(\mathbf{Q} - \mathbf{N} \mathbf{R}^{-1} \mathbf{N}^{\top} \right) \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R} \mathbf{u}(t) + \mathbf{x}(t)^{\top} \mathbf{N} \mathbf{u}(t) + \mathbf{u}(t)^{\top} \mathbf{N}^{\top} \mathbf{u}(t) + \mathbf{x}(t)^{\top} \mathbf{N} \mathbf{R}^{-1} \mathbf{N}^{\top} \mathbf{x}(t) \\ &= \mathbf{x}(t)^{\top} \left(\mathbf{Q} - \mathbf{N} \mathbf{R}^{-1} \mathbf{N}^{\top} \right) \mathbf{x}(t) + \left(\mathbf{u}(t)^{\top} + \mathbf{R}^{-1} \mathbf{N}^{\top} \mathbf{x}(t) \right)^{\top} \mathbf{R} \left(\mathbf{u}(t)^{\top} + \mathbf{R}^{-1} \mathbf{N}^{\top} \mathbf{x}(t) \right) \end{aligned}$$

posto

$$\bar{\mathbf{Q}} = \mathbf{Q} - \mathbf{N}\mathbf{R}^{-1}\mathbf{N}^{\top}$$
 e $\bar{\mathbf{u}}(t) = \mathbf{u}(t) + \mathbf{R}^{-1}\mathbf{N}^{\top}\mathbf{x}(t)$

e osservando che $\mathbf{u}(t) = \bar{\mathbf{u}}(t) - \mathbf{R}^{-1}\mathbf{N}^{\top}\mathbf{x}(t)$, ci si riconduce al caso standard:

1. modello di sistema da controllare

$$\mathbf{x}(t+1) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}(\bar{\mathbf{u}}(t) - \mathbf{R}^{-1}\mathbf{N}^{\top}\mathbf{x}(t)) = (\mathbf{F} - \mathbf{G}\mathbf{R}^{-1}\mathbf{N}^{\top})\mathbf{x}(t) + \mathbf{G}\bar{\mathbf{u}}(t)$$
$$= \bar{\mathbf{F}}\mathbf{x}(t) + \mathbf{G}\bar{\mathbf{u}}(t)$$

2. funzionale costo da ottimizzare

$$J_{\infty}(t) = \sum_{t=0}^{+\infty} \left(\mathbf{x}(t)^{\top} \bar{\mathbf{Q}} \mathbf{x}(t) + \bar{\mathbf{u}}(t)^{\top} \mathbf{R} \bar{\mathbf{u}}(t) \right)$$

per cui, se

- $\bar{\mathbf{Q}}$ sdp
- $(\bar{\mathbf{F}}, \mathbf{G})$ stabilizzabile
- $(\bar{\mathbf{F}}, \bar{\mathbf{H}})$ rivelabile con $\bar{\mathbf{Q}} = \bar{\mathbf{H}}^{\top} \bar{\mathbf{H}}$

allora

$$\begin{split} \bar{\mathbf{u}}_{\infty}^{\star}(t) &= -\bar{\mathbf{K}}_{\infty}^{\star}\mathbf{x}(t) \quad \text{con} \quad \bar{\mathbf{K}}_{\infty}^{\star} = \left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{G}\right)^{-1}\mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\bar{\mathbf{F}} \\ \text{dove} \quad \bar{\mathbf{M}}_{\infty} \text{ è soluzione di } \bar{\mathbf{M}} = \bar{\mathbf{F}}^{\top}\bar{\mathbf{M}}\bar{\mathbf{F}} - \bar{\mathbf{F}}^{\top}\bar{\mathbf{M}}\mathbf{G}\left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}\mathbf{G}\right)^{-1}\mathbf{G}^{\top}\bar{\mathbf{M}}\bar{\mathbf{F}} + \bar{\mathbf{Q}} \end{split}$$

da cui segue che

$$\begin{split} \mathbf{u}_{\infty}^{\star}(t) &= \bar{\mathbf{u}}_{\infty}^{\star}(t) - \mathbf{R}^{-1}\mathbf{N}^{\top}\mathbf{x}(t) = -(\bar{\mathbf{K}}_{\infty}^{\star} + \mathbf{R}^{-1}\mathbf{N}^{\top})\mathbf{x}(t) \\ &= -\left(\left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{G}\right)^{-1}\mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\bar{\mathbf{F}} + \mathbf{R}^{-1}\mathbf{N}^{\top}\right)\mathbf{x}(t) \\ &= -\left(\left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{G}\right)^{-1}\mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}(\mathbf{F} - \mathbf{G}\mathbf{R}^{-1}\mathbf{N}^{\top}) + \mathbf{R}^{-1}\mathbf{N}^{\top}\right)\mathbf{x}(t) \\ &= -\left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{G}\right)^{-1}\left(\mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}(\mathbf{F} - \mathbf{G}\mathbf{R}^{-1}\mathbf{N}^{\top}) + \left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{G}\right)\mathbf{R}^{-1}\mathbf{N}^{\top}\right)\mathbf{x}(t) \\ &= -\left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{G}\right)^{-1}\left(\mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{F} + \mathbf{N}^{\top}\right)\mathbf{x}(t) \end{split}$$

$$\begin{split} \mathbf{u}_{\infty}^{\star}(t) &= -\mathbf{K}_{\infty}^{\star}\mathbf{x}(t) \quad \text{con} \quad \mathbf{K}_{\infty}^{\star} = \left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{G}\right)^{-1} \left(\mathbf{G}^{\top}\bar{\mathbf{M}}_{\infty}\mathbf{F} + \mathbf{N}^{\top}\right) \\ & \text{dove} \quad \bar{\mathbf{M}}_{\infty} \text{ è soluzione di } \bar{\mathbf{M}} = \bar{\mathbf{F}}^{\top}\bar{\mathbf{M}}\bar{\mathbf{F}} - \bar{\mathbf{F}}^{\top}\bar{\mathbf{M}}\mathbf{G} \left(\mathbf{R} + \mathbf{G}^{\top}\bar{\mathbf{M}}\mathbf{G}\right)^{-1} \mathbf{G}^{\top}\bar{\mathbf{M}}\bar{\mathbf{F}} + \bar{\mathbf{Q}} \end{split}$$

significato fisico dei termini misti

l'introduzione dei termini misti può essere legata alla volontà di minimizzare un qualche indice di performance basato sulla norma dell'*uscita del sistema*

$$\begin{aligned} \|\mathbf{y}\|_{\mathbf{P}}^2 &= \mathbf{y}^{\top} \mathbf{P} \mathbf{y} = (\mathbf{H} \mathbf{x} + \mathbf{J} \mathbf{u})^{\top} \mathbf{P} (\mathbf{H} \mathbf{x} + \mathbf{J} \mathbf{u}) = \left(\mathbf{x}^{\top} \mathbf{H}^{\top} + \mathbf{u}^{\top} \mathbf{J}^{\top}\right) \mathbf{P} (\mathbf{H} \mathbf{x} + \mathbf{J} \mathbf{u}) \\ &= \mathbf{x}^{\top} \mathbf{H}^{\top} \mathbf{P} \mathbf{H} \mathbf{x} + \mathbf{x}^{\top} \mathbf{H}^{\top} \mathbf{P} \mathbf{J} \mathbf{u} + \mathbf{u}^{\top} \mathbf{J}^{\top} \mathbf{P} \mathbf{H} \mathbf{x} + \mathbf{u}^{\top} \mathbf{J}^{\top} \mathbf{P} \mathbf{J} \mathbf{u} \\ &= \mathbf{x}^{\top} \mathbf{Q}^{+} \mathbf{x} + \mathbf{x}^{\top} \mathbf{N} \mathbf{u} + \mathbf{u}^{\top} \mathbf{N}^{\top} \mathbf{x} + \mathbf{u}^{\top} \mathbf{R}^{+} \mathbf{u} \end{aligned}$$

7.7.2 progettazione del controllore: scelta dei parametri

vincoli: \mathbf{Q} sdp, \mathbf{R} dp & (\mathbf{F}, \mathbf{Q}) rivelabile

si osserva che una scelta comoda per il debug (poichè rende facile interpretazione delle conseguenze dirette di causa-effetto) è la seguente

$$\mathbf{Q} = diag(q_i)$$
 e $\mathbf{R} = diag(r_i)$

 \oplus eventuale normalizzazione: pesi all'interno di un range omogeneo, tipicamente [0,1]

(in tal senso, è utile conoscere i valori max/min delle variabili di stato e ingresso)

principali possibili scelte

- 1. opzione più semplice
 - $q_i = q$
 - $r_i = r$
 - \rightarrow è necessario gestire solo il rapporto q/r
- 2. regola di Bryson (regola euristica) $q_i = 1/(\bar{x}_i^2)$, $\bar{x}_i = \max\{x_i(t)\}$ $r_i = 1/(\bar{u}_i^2)$, $\bar{u}_i = \max\{u_i(t)\}$ \rightarrow è necessario conoscere bene i limiti del sistema

A RICHIAMI E APPROFONDIMENTI DI ALGEBRA LINEARE

A.1 Spazi vettoriali e trasformazioni lineari

• vettori e basi in \mathbb{R}^n

- 1. L'insieme (di vettori) \mathbb{R}^n con campo (di scalari) \mathbb{R} dotato delle consuete operazioni di somma tra vettori e prodotto di vettore per scalare, è uno *spazio vettoriale*.
- 2. l vettori $\mathbf{v}_1 \dots \mathbf{v}_k \in \mathbb{R}^n$ sono

linearmente *indipendenti* se $\alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}, \ \alpha_i \in \mathbb{R} \implies \alpha_1 = \dots = \alpha_k = 0$ linearmente *dipendenti* se $\alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}, \ \alpha_i \in \mathbb{R} \implies \alpha_1 = \dots = \alpha_k = 0$

esempio

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \quad \mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3 \text{ linearmente indipendenti?}$$
$$\begin{cases} \alpha_1 + \alpha_2 = 0\\ \alpha_1 - \alpha_2 + \alpha_3 = 0\\ \alpha_1 - \alpha_2 - \alpha_3 = 0 \end{cases} \implies \alpha_1 = \alpha_2 = \alpha_3 = 0 \implies \mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3 \text{ linearmente indipendenti}$$

- 3. I vettori $\mathbf{v}_1 \dots \mathbf{v}_k \in \mathbb{R}^n$ formano una *base* \mathcal{B} di uno spazio vettoriale $\mathcal{V} \subseteq \mathbb{R}^n$ se:
 - (*i*) generano \mathcal{V} : $\forall \mathbf{v} \in \mathcal{V}, \exists \alpha_i \in \mathbb{R} \text{ t.c. } \mathbf{v} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k \text{ (span}\{\mathbf{v}_1 \dots \mathbf{v}_k\} = \mathcal{V})$
 - (*ii*) sono linearmente indipendenti

esempio

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \quad \text{base di } \mathcal{V} = \text{span}\{\mathbf{v}_{1}, \ \mathbf{v}_{2}, \ \mathbf{v}_{3}\} ?$$
$$\mathcal{B} = \text{span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-2\\0 \end{bmatrix} \right\} \quad (\mathbf{N}.\mathbf{B}. \text{ scelta generatori della base non unica!})$$

trasformazioni lineari

- 1. Una trasformazione $f\colon \mathbb{R}^n \to \mathbb{R}^m$ si dice lineare se
 - (i) $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2), \quad \forall \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n$ (ii) $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbb{R}^n, \forall \alpha \in \mathbb{R}$
- 2. Una trasformazione lineare $f : \mathbb{R}^n \to \mathbb{R}^m$ è univocamente individuata dalla sua restrizione ai vettori di una qualsiasi base \mathcal{B} di \mathbb{R}^n .
- Fissata una base B₁ di ℝⁿ e una base B₂ di ℝ^m è possibile rappresentare una trasformazione lineare f: ℝⁿ → ℝ^m con una matrice F ∈ ℝ^{m×n} che descrive come le coordinate (rispetto a B₁) di vettori di ℝⁿ vengono mappate da f in coordinate di vettori (rispetto a B₂) di ℝ^m.
- 4. Fissata una base \mathcal{B} di \mathbb{R}^n , sia $\mathbf{F} \in \mathbb{R}^{n \times n}$ la matrice che rappresenta la trasformazione lineare $f \colon \mathbb{R}^n \to \mathbb{R}^n$. Sia $\mathbf{T} \in \mathbb{R}^{n \times n}$ la matrice di cambio di base da \mathcal{B} di \mathbb{R}^n ad una "nuova" base \mathcal{B}' di \mathbb{R}^n . La matrice che rappresenta f nella nuova base è $\mathbf{F}' = \mathbf{T}^{-1}\mathbf{FT}$.

 \boxtimes

 \boxtimes

A.2 Principali proprietà e operazioni matriciali

autovalori e autovettori di una matrice

- 1. Sia $\mathbf{F} \in \mathbb{R}^{m imes n}$ allora
 - nucleo di \mathbf{F} : ker $\mathbf{F} \triangleq \{\mathbf{v} \in \mathbb{R}^n : \mathbf{F}\mathbf{v} = \mathbf{0}\}$
 - immagine di \mathbf{F} : Im $\mathbf{F} \triangleq \{\mathbf{w} \in \mathbb{R}^m : \mathbf{w} = \mathbf{F}\mathbf{v}, \exists \mathbf{v} \in \mathbb{R}^n\}$
 - rango di **F**: rank $\mathbf{F} \triangleq \#$ righe (o colonne) lin. indipendenti di $\mathbf{F} = \dim \mathsf{Im} \, \mathbf{F}$

esempio

$$\mathbf{F} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}, \quad \ker \mathbf{F}? \ \operatorname{Im} \mathbf{F}? \ \operatorname{rank} \mathbf{F}?$$

ker
$$\mathbf{F} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1/2 \\ -1/3 \end{bmatrix} \right\}, \quad \operatorname{Im} \mathbf{F} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \right\}, \quad \operatorname{rank} \mathbf{F} = 2$$

2. Sia $\mathbf{F} \in \mathbb{R}^{n \times n}$, un vettore $\mathbf{v} \in \mathbb{C}^n$ tale che $\mathbf{F}\mathbf{v} = \lambda \mathbf{v}$, $\lambda \in \mathbb{C}$, è detto *autovettore* di \mathbf{F} corrispondente all'*autovalore* λ .

 \boxtimes

- 3. Gli autovalori $\{\lambda_i\}_{i=1}^k$ di $\mathbf{F} \in \mathbb{R}^{n \times n}$ sono le radici del *polinomio caratteristico* $\Delta_{\mathbf{F}}(\lambda) = \det(\lambda \mathbf{I} \mathbf{F}) = (\lambda \lambda_1)^{m_1^a} (\lambda \lambda_2)^{m_2^a} \cdots (\lambda \lambda_k)^{m_k^a}$, dove m_i^a è la *molteplicità algebrica* dell'autovalore λ_i .
- 4. Ogni autovettore \mathbf{v}_i relativo all'autovalore λ_i di $\mathbf{F} \in \mathbb{R}^{n \times n}$ soddisfa $(\lambda_i \mathbf{I} \mathbf{F}) \mathbf{v}_I = \mathbf{0}$.
- 5. La molteplicità geometrica m_i^g dell'autovalore λ_i di $\mathbf{F} \in \mathbb{R}^{n \times n}$ è il numero massimo di autovettori linearmente indipendenti associati a λ_i e coincide con $m_i^g = \dim \ker(\lambda_i \mathbf{I} \mathbf{F}) = n \operatorname{rank}(\lambda_i \mathbf{I} \mathbf{F}), (1 \le m_i^g \le m_i^a).$
- 6. Se $m_i^a = m_i^g$ per ogni autovalore λ_i di $\mathbf{F} \in \mathbb{R}^{n \times n}$ allora \mathbf{F} è *diagonalizzabile*, cioè, esiste una matrice di cambio di base $\mathbf{T} \in \mathbb{R}^{n \times n}$ tale che $\mathbf{F}_D \triangleq \mathbf{T}^{-1}\mathbf{F}\mathbf{T}$ è diagonale.

esempio

1.
$$\mathbf{F} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 $\lambda_1 = i, m_1^a = 1, m_1^g = 1, \lambda_2 = -i, m_2^a = 1, m_2^g = 1 \implies \text{diagonalizzabile}$
2. $\mathbf{F} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\lambda_1 = 1, m_1^a = 2, m_1^g = 2 \implies \text{diagonalizzabile}$
3. $\mathbf{F} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\lambda_1 = 2, m_1^a = 1, m_1^g = 1, \lambda_2 = 0, m_2^a = 1, m_2^g = 1 \implies \text{diagonalizzabile}$
4. $\mathbf{F} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $\lambda_1 = 1, m_1^a = 2, m_1^g = 1 \implies \text{NON diagonalizzabile}$

- inversa e determinante di una matrice
 - 1. Sia $\mathbf{F} \in \mathbb{R}^{n \times n}$,
 - per ogni $i = 1 \dots n$ (indice riga), si ha $det(\mathbf{F}) = \sum_{j=1}^{n} (-1)^{i+j} F_{ij} det(\mathbf{F}_{ij}^{-})$
 - per ogni $j = 1 \dots n$ (indice colonna), si ha $\det(\mathbf{F}) = \sum_{i=1}^{n} (-1)^{i+j} F_{ij} \det(\mathbf{F}_{ij})$

dove $\mathbf{F}_{ij}^j \in \mathbb{R}^{(n-1) \times (n-1)}$ è la matrice ottenuta cancellando la *i*-esima riga e la *j*-esima colonna di \mathbf{F} e $F_{ij} \in \mathbb{R}$ è l'elemento nella matrice \mathbf{F} posto nella *i*-esima riga e *j*-esima colonna.

2. Una matrice $\mathbf{F} \in \mathbb{R}^{n \times n}$ è detta *invertibile* se esiste una matrice $\mathbf{H} \in \mathbb{R}^{n \times n}$ tale che $\mathbf{FH} = \mathbf{HF} = \mathbf{I}$. $\mathbf{F}^{-1} = \mathbf{H}$ è detta *inversa* di \mathbf{F} .

F è invertibile se e solo se det(**F**) \neq 0. In tal caso, la matrice inversa **F**⁻¹ si può calcolare come **F**⁻¹ = $\frac{\operatorname{adj}(\mathbf{F})}{\operatorname{det}(\mathbf{F})}$, dove adj(**F**) è la matrice aggiunta di **F**, $[\operatorname{adj}(\mathbf{F})]_{ij} = (-1)^{i+j} \operatorname{det}(\mathbf{F}_{ji}^{-})$.

esempio

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad \det(\mathbf{F})? \ \mathbf{F}^{-1}?$$
$$\det(\mathbf{F}) = 2 \implies \mathbf{F} \text{ invertibile}, \qquad \mathbf{F}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1/2 & -1/2 \\ -1 & 0 & 1 \end{bmatrix}$$

matrici triangolari e triangolari a blocchi

1. Una matrice $\mathbf{F} \in \mathbb{R}^{n imes n}$ si dice

- triangolare superiore se
$$\mathbf{F} = \begin{bmatrix} \star & \star & \cdots & \star \\ 0 & \star & \cdots & \star \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \star \end{bmatrix}$$
- triangolare inferiore se
$$\mathbf{F} = \begin{bmatrix} \star & 0 & \cdots & 0 \\ \star & \star & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \star & \cdots & \star & \star \end{bmatrix}$$

Gli autovalori di una matrice triangolare F sono gli elementi sulla diagonale.

L'inversa di una matrice triangolare \mathbf{F} (quando esiste) è ancora triangolare e i suoi elementi sulla diagonale soddisfano $[\mathbf{F}^{-1}]_{ii} = 1/F_{ii}$.

2. Una matrice $\mathbf{F} \in \mathbb{R}^{n imes n}$ si dice

- triangolare superiore a blocchi se
$$\mathbf{F} = \begin{bmatrix} \mathbf{*} & \mathbf{*} & \cdots & \mathbf{*} \\ 0 & \mathbf{*} & \cdots & \mathbf{*} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \mathbf{*} \end{bmatrix}$$

- triangolare inferiore a blocchi se $\mathbf{F} = \begin{bmatrix} \mathbf{*} & 0 & \cdots & 0 \\ \mathbf{*} & \mathbf{*} & \cdots & 0 \\ \mathbf{*} & \mathbf{*} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \mathbf{*} & \cdots & \mathbf{*} & \mathbf{*} \end{bmatrix}$

dove gli "*" sulla diagonale sono matrici quadrate di dimensioni anche diverse tra loro.

Gli autovalori di una matrice triangolare a blocchi \mathbf{F} sono l'unione degli autovalori dei blocchi sulla diagonale.

L'inversa di una matrice triangolare \mathbf{F} a blocchi (quando esiste) è ancora triangolare a blocchi con blocchi diagonali di \mathbf{F}^{-1} pari alle inverse dei blocchi diagonali di \mathbf{F} .

 \boxtimes

matrici in forma canonica di Jordan

sia $\mathbf{F} \in \mathbb{R}^{n \times n}$ con autovalori $\{\lambda_i\}_{i=1}^k$, m_i^a : molteplicità algebrica λ_i e m_i^g : molteplicità geometrica λ_i allora

- caso 1: $m_i^a = m_i^g$ per ogni $i \implies \mathbf{F}$ diagonalizzabile

- caso 2: esiste *i* tale che $m_i^a > m_i^g \implies \mathbf{F}$ non diagonalizzabile \rightarrow trasformare la matrice in una forma a blocchi diagonali o "quasi" diagonali (*forma di Jordan*)

$$\begin{split} \mathbf{Teorema} \ \ \mathsf{Siano} \ \{\lambda_i\}_{i=1}^k \ \mathsf{gli} \ \mathsf{autovalori} \ \mathsf{di} \ \mathbf{F} \in \mathbb{R}^{n \times n}. \ \mathsf{Esiste} \ \mathsf{una} \ \mathbf{T} \in \mathbb{R}^{n \times n} \ \mathsf{tale} \ \mathsf{che} \\ \mathbf{F}_J \triangleq \mathbf{T}^{-1} \mathbf{F} \mathbf{T} = \begin{bmatrix} \mathbf{J}_{\lambda_1} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{J}_{\lambda_2} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{J}_{\lambda_k} \end{bmatrix}, \quad \mathbf{J}_{\lambda_i} = \begin{bmatrix} \mathbf{J}_{\lambda_i,1} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{J}_{\lambda_i,2} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{J}_{\lambda_i,m_i^g} \end{bmatrix} \in \mathbb{R}^{m_i^a \times m_i^a} \\ \mathsf{dove} \\ \mathbf{J}_{\lambda_i,j} = \begin{bmatrix} \lambda_i & \mathbf{1} & \cdots & \mathbf{0} \\ \mathbf{0} & \lambda_i & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{1} \\ \mathbf{0} & \cdots & \mathbf{0} & \lambda_i \end{bmatrix} \in \mathbb{R}^{m_{ij}^r \times m_{ij}^r}, \quad m_i^a = \sum_{j=1}^{m_i^g} m_{ij}^r \\ \mathbf{F}_{\mathbf{J}} \ (\textit{forma canonica di Jordan di } \mathbf{F}) \ \mathsf{e} \ \mathsf{unica a meno} \ \mathsf{di permutazioni di blocchi} \ \{\mathbf{J}_{\lambda_i}\} \ \mathsf{e} \ \mathsf{miniblocchi} \ \{\mathbf{J}_{\lambda_{i,j}}\}. \end{split}$$

- 1. Esiste una procedura algoritmica per il calcolo della matrice di trasformazione T.
- 2. La dimensione del blocco \mathbf{J}_{λ_i} associato a λ_i è pari alla molteplicità algebrica m_i^a .
- 3. Il numero di miniblocchi $\{\mathbf{J}_{\lambda_i,j}\}$ associati a λ_i è pari alla molteplicità geometrica m_i^g .
- 4. In generale, per determinare \mathbf{F}_J non è sufficiente conoscere gli autovalori $\{\lambda_i\}$ e i valori di $\{m_i^a\}$, $\{m_i^g\}$, ma bisogna anche conoscere i valori di $\{m_{ij}^r\}$!
- 5. Se $m_i^a \leq 3 \ \forall i$, è possibile calcolare \mathbf{F}_J conoscendo solo $\{\lambda_i\}$, $\{m_i^a\}$, $\{m_i^g\}$!

esempio

$$\mathbf{1. F} = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \lambda_1 = 2, \ m_1^a = 3, \ m_1^g = 1 \implies \mathbf{F}_J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\mathbf{2. F} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \alpha = 0, 1 \quad \lambda_1 = 1, \ m_1^a = 4, \ m_1^g = 2 \implies \mathbf{F}_J = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \alpha = 0$$

esponenziale di matrice

Sia $\mathbf{F} \in \mathbb{R}^{n imes n}$, allora

$$e^{\mathbf{F}} \triangleq \sum_{k \ge 0} \frac{\mathbf{F}^k}{k!}$$

 \boxtimes

con

- 1. $e^{0} = \mathbf{I}$ 2. $\mathbf{AB} = \mathbf{BA} \implies e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}$
- 3. $\mathbf{T} \in \mathbb{R}^{n imes n}$ invertibile: $e^{\mathbf{TFT}^{-1}} = \mathbf{T}e^{\mathbf{F}}\mathbf{T}^{-1}$
- 4. $\frac{d}{dt}e^{\mathbf{F}t} = \mathbf{F}e^{\mathbf{F}t} = e^{\mathbf{F}t}\mathbf{F}, \ t \in \mathbb{R}$