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INTRODUCTION

Most common application is 
particle accelerators 

Important parameters:

Cavity Quality factor (Q0 )

Accelerating field

Meissner regime

2 K or 4.2 K operation temperature

Important parameters:

Both Meissner and Shubnikov regime 

mK operation regime

Cavity Quality factor (Q0 )

Quantum computing 
and sensing

𝑄0 =
𝐺

𝑅𝑠

Depends on shape and frequency

Depends on material/surface treatments

Superconducting Resonant Cavities



SLIDE 5 OF 39

OUTLINE

Quantum computing Axion search

Design of a 7.46 GHz cavity

Fabrication using 
pure Al vs Al alloy

Characterization of the 
Cavity + Qubit

Aluminum cavities for 3D transmon architecture NbTi thin film on Cu cavities as haloscopes

Fabrication

Characterization at 4 K

Material
selection

& Characterization
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QUANTUM COMPUTING
Why go quantum?

Analogue simulations Algorithms implementation

CONTROL SYSTEM
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QUANTUM COMPUTING
Transmon qubit
(Anharmonic resonator)Harmonic resonator

𝐻 = 4𝐸𝐶𝑛
2 +

1

2
𝐸𝐿𝜙

2

𝐻 = 4𝐸𝐶𝑛
2 − 𝐸𝑗cos(𝜙)

P. Krantz, et al., Applied Physics Reviews, vol. 6, fasc. 2, giu. 2019

Inductor
Capacitor

Josephson 
junction

Capacitor

Al
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QUANTUM COMPUTING
Qubit coherence time 

evolution
Decoherence

Γ1 =
1

𝑇1
Γ𝜑 Γ2 = Γ1 + Γ𝜑 =

1

𝑇2

P. Krantz, et al., Applied Physics Reviews, vol. 6, fasc. 2, giu. 2019
M. Kjaergaard et al., Annu. Rev. Condens. Matter Phys., vol. 11, fasc. 1, mar. 2020
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CAVITY DESIGN

22 mm

40 mm

20 mm

ac
b

Antenna 1
Antenna 2Shape optimization

∼ 1 𝐺𝐻𝑧 detuning from qubit at ≃ 6.50 𝐺𝐻𝑧
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CAVITY DESIGN

𝐺 =
𝜔0𝜇0 𝑉׬ |ഥ𝐻|2𝑑𝑣

𝑆׬ |𝐻|2𝑑𝑠
= 157.30 Ω

𝑅𝑠 =
𝐺

𝑄0
= (730 ± 40) 𝜇Ω

Using experimental value of 𝑄0
for the aluminum alloy cavity

𝑅𝑠 = 𝑅𝐵𝐶𝑆 + 𝑅𝑟𝑒𝑠

Only experimentally measurable 

Surface resistance estimation
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CAVITY SIMULATION

Lorentzian fitting function

Cavity

S11

12

Cavity

S21

12

Scattering parameters simulations @7.46 GHz

Transmitted
power

Reflected
power
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CAVITY SIMULATION

Source 𝑸𝟎

Eigenmode 𝟐. 𝟏𝟔 ± 𝟏. 𝟐 ⋅ 𝟏𝟎𝟓

Modal Network (1.7 ± 0.2) ⋅ 105

Experimental (𝟐. 𝟏𝟕 ± 𝟏. 𝟏) ⋅ 𝟏𝟎𝟓

Lower bound for next cavity performance

Move to Al 5N (99.999% purity)

Simulation can reproduce experimental values

Al alloy

Alloy cavity and qubit
fabricated at TII
(Arab Emirates)
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CAVITY FABRICATION

Tumbling Electropolishing
Mechanical 
Machining

𝐻3𝑃𝑂4 : 𝐵𝑢𝐴𝑐

Qubit chip 
accommodation

Machining defects
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CAVITY CHARACTERIZATION

𝑸𝑳 = 𝟐. 𝟐 ± 𝟏. 𝟎 ⋅ 𝟏𝟎𝟓

𝑄𝐿 = (1.78 ± 0.9) ⋅ 104

Already better 
than Al alloy cavity!

S11

S21Scattering parameters results

All measures at 30 mK
Cavity

12

Cavity

12

7.46 GHz

7.46 GHz

13.98 GHz

13.98 GHz
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QUBIT CHARACTERIZATION

Cavity characteristic time 𝜏 =
𝑄0

𝜔
≃ 29 𝜇𝑠

Rabi spectroscopy

Pump power -28 dB

𝑇1 = 6.1 ± 0.3 𝜇𝑠

t [μs]

Ramsey spectroscopy

Pump detuning 600 kHz

𝑇2 = 2.3 ± 0.3 𝜇𝑠

t [μs]
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QUBIT CHARACTERIZATION

Cavity

Qubit

M. Kjaergaard et al., Annu. Rev. Condens. Matter Phys., vol. 11, fasc. 1, mar. 2020
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AXIONS
Axions are a promising dark matter candidate 

Axion predicted mass can vary of many orders of magnitude: 

our range of interest  is 10−6 𝑒𝑉 to 10−3 𝑒𝑉

GHz frequency range

How to detect them?

Axion Photon

𝑷𝒂𝜸→𝜸 = 𝒌 ⋅ 𝑩𝟐𝝎𝟎𝑽
𝑸𝒂𝑸𝒄

𝑸𝒂 +𝑸𝒄

Conversion 
Power

Magnetic Field
Axion Quality 
Factor (106)

Cavity
Quality Factor

D. Kim et al. JCAP03(2020)066

Volume

Cu NbTi

5 cm

𝜔 = 9𝐺𝐻𝑧

Y. K
. Sem

ertzid
is

e S. Yo
u

n
, Scien

ce A
d

va
n

ces, vo
l. 8

, fasc. 8
, feb

.2
0

2
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MATERIAL CHOICE

Magnets – DCAccelerators Cavities – RF

Complete
Flux Expulsion

RF + static magnetic field
is a quite new regime for superconductive devices

Meissner state – no magnetic field

Mixed state – flux vortex formation 

Vortexes are pinned by defects
Flux PINNING 
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MATERIAL CHOICE

Material Tc Hc2 Note

Nb 9.2 K 0.4 T Not suitable at high Magnetic field

NbTi ~ 9.5 K ~ 14 T Simple preparation

MgB2 ~ 32 K ~ 15 T Preparation is a challenge

Nb3Sn ~ 18.3 K ~ 30 T Preparation is a challenge

REBCO ~ 93 K ~ 100 T Available in tapes

NbTi was the obvious choice (although not the best performing) 
to build and test a SC haloscope for the first time
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MATERIAL CHOICE

Higher Ti content gives higher 

pinning force 𝐹𝑝 ∝
1

𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

up to a maximum

J. C. McKinnell, P. J. Lee, and D. C. Larbalestier, 
IEEE Transactions on Magnetics, vol. 25, no. 2, Mar. 1989

Nb0,38Ti0,62

Low Ti

Nb0,31Ti0,69

High Ti
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MATERIAL CHOICE

Nb0.38Ti0.62
1 mm sheet

Nb0.31Ti0.69
5 mm bulk
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FABRICATION

DC Magnetron Sputtering

• Single NbTi target

• Ar pressure 6 · 10-3 mbar

• T substrate 500 °C

• Film thickness 2.5 – 3.5 µm

• No bias voltage
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Nb0.31Ti0.69

Nb0.31Ti0.69

Nb0.38Ti0.62

Nb0.31Ti0.69

Nb0.31Ti0.69

Nb0.38Ti0.62

MATERIAL CHARACTERIZATION

A. Alimenti et al., Sensors, 2023

G. Ghigo et al., Materials, 2022

Nb0.31Ti0.69  is better or similar at most

Nb0.38Ti0.62

Nb0.31Ti0.69

Nb0.38Ti0.62

Done at INFN Torino

Done at Roma 3 university

Nb0.31Ti0.69

High Ti

Low Ti

Low Ti
High Ti
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CAVITY CHARACTERIZATION

7 GHz



AXION SEARCH: SLIDE 33 OF 39

CAVITY CHARACTERIZATION

9 GHz

All measures at 4 K
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CAVITY CHARACTERIZATION

Defects on the cavity surface

Large grain boundaries Pitting + NbTi coating 
on Cu cones

All measures at 4 K



SLIDE 35 OF 39

CONCLUSIONS
QUANTUM COMPUTING

• The pure Al cavity showed better performances than the Al alloy cavity even with non-optimized surface:

𝑸𝑳 = 𝟐. 𝟐 ± 𝟏. 𝟎 ⋅ 𝟏𝟎𝟓 comparable with state-of-the-art results

• The Qubit was successfully characterized but needs fabrication optimization

AXION SEARCH

• Four NbTi on Cu cavities have been fabricated and characterized and are ready to be used in axion search 
experiments. Good performance obtained compared to state-of-the-art at 2 T and 4K 

NbTi Nb3Sn REBCO

7 GHz 3.9 GHz 5.4 Gz

𝟗 ⋅ 𝟏𝟎𝟓 1⋅ 𝟏𝟎𝟔 1.5⋅ 𝟏𝟎𝟕

These results have been presented at SRF 2023 conference in Grand Rapids (June 2023, USA), 
HTSHFF workshop 2023 (September 2023, Catania)
and at Quantum technologies for fundamental physics workshop (September 2023, Erice) by me  

Sam Posen, Quantum Technologies for Fundamental Physics Workshop,
Erice, Italy, Sept 2023

Woohyun Chung, Quantum Technologies for Fundamental Physics Workshop,
Erice, Italy, Sept 2023

Giovanni Marconato, Quantum Technologies for Fundamental Physics Workshop,
Erice, Italy, Sept 2023

(by vapor Sn diffusion)
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FUTURE DEVELOPMENTS

Source 𝑸𝟎

Eigenmode 232000 ± 13000

Modal Network 230000 ± 20000

𝐺 = 171.76 Ω

• Fabrication and surface treatments improvements on the 7.46 GHz

• Scaling to 8.50  GHz for future developments:



AXION SEARCH: SLIDE 37 OF 39

FUTURE DEVELOPMENTS

• Nb3Sn by DC Magnetron Sputtering for high Magnetic field applications
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Sn content (At%)

Cu/Nb 1 um

Sapphire

Cu

Cu/Nb 30 um

 Full annealing

 Half annealing

 Data by Godeke

Coating pressure 2e-02 mbar

Material Tc Hc2

NbTi ~ 9.5 K ~ 14 T

Nb3Sn ~ 18.3 K ~ 30 T
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CONCLUSIONS
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BACKUP

Rabi spectroscopy Ramsey spectroscopy



SLIDE 41 OF 39QUANTUM COMPUTING:

BACKUP



AXION SEARCH: SLIDE 42 OF 39

BACKUP

𝑷𝒂𝜸→𝜸 = 𝒈𝜶𝜸𝜸
𝟐

𝝆𝒂
𝒎𝒂

𝑩𝟐𝝎𝟎𝑽𝑪
𝑸𝒂𝑸𝒄

𝑸𝒂 + 𝑸𝒄

Conversion Power

Coupling Constant Dark Matter Axion 
Density

Axion Mass Magnetic 
Field

Axion Quality 
Factor (106)

Cavity 
Quality 
Factor

D. Kim et al. JCAP03(2020)066

Resonant 
Frequency

Volume

𝒅𝒇

𝒅𝒕
∝
𝑩𝟒𝑽𝟐𝑪𝟐

𝑲𝑩
𝟐𝑻𝒔𝒚𝒔

𝟐
𝑸𝒂𝑸𝒄

𝟏

𝟏 + Τ𝑸𝒂 𝑸𝒄

Scan Rate

System Noise

Magnetic 
Field

Axion Quality 
Factor (106)

Cavity 
Quality 
Factor

Volume

Semertzidis and Youn, Sci. Adv. 8, eabm9928 (2022)
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BACKUP

Safe zone

Unsafe zone

Depinning frequency

Pinning forceFluxon viscosity

Fluxon Dissipation
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BACKUP
NbTi pinning force dependency on Ti content

H. Hillmann and K. Best,
IEEE Transactions on Magnetics, 1977

J. C. McKinnell, P. J. Lee, and D. C. Larbalestier, IEEE Transactions on Magnetics, 1989

Nb0,38Ti0,62

Nb0,31Ti0,69
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BACKUP
Hybrid structure advantages

Using copper ends the quality factor is limited 
𝑄0
𝑚𝑎𝑥 ≃ 1,3 ⋅ 106

But less dissipation due to fluxon movement! 
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