Thin film deposition on Cu for SRF cavity production via DC magnetron sputtering at INFN-LNL

Dorothea Fonnesu INFN Legnaro National Laboratories

UniPD Science Meeting May 14th, 2024

Outline

DC Magnetron Sputtering

Nb₃Sn for accelerating cavities

2

NbTi for haloscopes

3

Thin film deposition on Cu for SRF cavity production via DC magnetron sputtering at INFN-LNL

dorothea.fonnesu@Inl.infn.it

2

Outline

DC Magnetron Sputtering

Nb₃Sn for accelerating cavities

NbTi for haloscopes

Thin film deposition on Cu for SRF cavity production via DC magnetron sputtering at INFN-LNL

3

DC Magnetron Sputtering (DCMS)

DC Magnetron Sputtering

ADVANTAGES

- → Different target materials
- → Different target/magnetron geometries
- → Different substrate materials

SC thin films for SRF cavities

6

Outline

DC Magnetron Sputtering

Nb₃Sn for accelerating cavities

NbTi for haloscopes

Thin film deposition on Cu for SRF cavity production via DC magnetron sputtering at INFN-LNL

dorothea.fonnesu@Inl.infn.it

7

Nb₃Sn for accelerating cavities: why?

- Nb close to its ideal performance
 With Nb₃Sn:
- Lower R_{BCS} for a given temperature
- Operation at 4.5 K (instead of 2 K)
- Improve cryo plant efficiency by factor 3-4
- Potential demonstrated by vapour diffusion cavities: $Q_0 \sim 2 \times 10^{10}$ at 20 MV/m (4.4 K, 1.3 GHz) [2]

[1] S Posen and D L Hall 2017 *Supercond. Sci. Technol.* 30 033004[2] S Posen et al 2021 *Supercond. Sci. Technol.* 34 025007

Nb₃Sn on copper: why?

DCMS Nb/Cu successful technology (LEP-II, LHC, ALPI, ISOLDE, FCC-ee)

Compared to bulk Nb:

- significant **thermal stability**
- much **cheaper** than bulk Nb
 - \rightarrow large scale production
- cryocooler based **conduction cooling**

[1] DOI: 10.5170/CERN-1996-003.191

Nb₃Sn on copper via DCMS: goals

Long term: scalable process to coat Nb₃Sn/Cu SRF accelerating cavities

Short term: produce Nb₃Sn films on Cu (small samples) which exhibit

🐵 bulk like T_c

- correct stoichiometry (Nb-Sn ratio)
- left correct A15 phase
- lense and crack-free morphology

Conditions must be satisfied before further development toward SRF application

Nb₃Sn on copper: challenges

Complicated phase diagram: ~ 18 - 26 Sn At% > 930 °C to form only A15 Nb-Sn \lesssim Temperature limit = **650** °C (6 GHz) \rightarrow weakening point of copper (400 °C) \lesssim Sn and Cu are miscible \rightarrow intermediate buffer layer needed

[1] A Godeke 2006 *Supercond. Sci. Technol.* 19 R68

Standard sample production process

Nb₃Sn on copper: first trends

*#*1 – T_c-oriented study of dependencies from sputtering parameters

Nb₃Sn on copper: where to look

#2 - Fix cathode power and deposition pressure, keep temperature low

- Samples with best T_c on sapphire
- stick to lowest T_{dep} (\leq 630 °C)
- Investigate role of:
 - 1. annealing time \rightarrow decrease
 - 2. buffer layer thickness \rightarrow increase

Nb₃Sn on copper: SC transition curves

Recipe:

1 um Nb₃Sn $T_{dep} = 650 \degree C$ $p_{dep} = 2 \times 10^{-2} \text{ mbar}$ $P_{cathode} = 15 \degree W$ No annealing

Nb₃Sn on copper: where we are

- shorter t_{ann} has no effect on Cu and Cu+Nb1 um BL
- shorter t_{ann} has positive effect on sapphire
- thicker Nb BL (1 $\mu m \rightarrow 30$ 50 μm) comparable to sapphire

Role of buffer layer?

INFN

Accomodation effects

Nb buffer layer

Morphology and composition

Nb₃Sn on copper: outlook

ONGOING (on our side):

- $T_{dep} = 500 \text{ °C} \rightarrow \text{find lower limit}$
- buffer layer thickness dependencies
- EDS composition analysis
- XRD analysis

ONGOING (within I.FAST):

- SQUID magnetometry
- SEM surface and FIB cross-section imaging

Thank you!

Backup

ANNEALING TIME Sapphire substrate

dorothea.fonnesu@Inl.infn.it

Sputtering chamber

- Planar DCMS on small flat samples
- Single Nb₃Sn stoichiometric target
- Argon atmosphere
- T substrate regulated via IR lamps
- Film thickness $1\,\mu\text{m}$

DCMS cylindrical configuration

Thin film deposition on Cu for SRF cavity production via DC magnetron sputtering at INFN-LNL

27

Plasma

Sputtering

$$E_{\text{th}} = E_{\text{b}} \begin{cases} \frac{1+5.7(M_{\text{i}}/M_{\text{a}})}{\Lambda} & \text{for } M_{\text{i}} \le M_{\text{a}} \\ \frac{6.7}{\Lambda} & \text{for } M_{\text{i}} > M_{\text{a}} \end{cases} \qquad \Lambda = \frac{4M_{\text{i}}M_{\text{a}}}{(M_{\text{i}}+M_{\text{a}}^2)} \end{cases}$$

$$Y(E)dE \propto \frac{1 - \sqrt{(E_{\rm b} + E)/\Lambda E_0}}{E^2 (1 + E_{\rm b}/E)^3} dE$$

Structure zone diagram

Nb₃Sn Experimental Set-up

- Commercial Nb₃Sn stoichiometric planar target (4" diameter)
- System base pressure: 5 x 10⁻⁹ mbar
- Heated sample holder: up to 950 °C via IR lamps

Nb₃Sn Experimental Set-up (PID)

Thin film deposition on Cu for SRF cavity production via DC magnetron sputtering at INFN-LNL

dorothea.fonnesu@Inl.infn.it

Experimental Set-up

Standardized procedure (1) Fixed number and type of substrates

- 5 substrates per run:
 - 3x sapphire
 - 1x copper
 - 1x copper + Nb buffer layer

Sample characterization

Standardized procedure (2): fixed measurement routine and T_c extraction method

Nb₃Sn coupling

dorothea.fonnesu@Inl.infn.it

Copper

36

Copper vs. Nb costs

Type I Nb ~ 420 \$/Kg (year 2014)

Cu ~ 6 \$/kg (year 2014)

~ factor 70 difference

37

Dipping (Nb₃Sn target production via LTD)

Fluxons

$$\eta = \frac{\phi_o B_{c2}}{\rho_n}$$

$$k = \frac{2\pi J_c \phi_0}{d}$$

A. Gittleman and Rosenblum (GR) model

In this seminal work⁵⁷ no thermal and Hall terms were considered: $\mathbf{F}_{\text{thermal}}=0$, $\alpha_H=0$ in Eq. (1). Thus:

$$\rho_{vm,GR} = \frac{\Phi_0 B}{\eta} \frac{1}{1 - i\frac{\omega_p}{\omega}}.$$
(2)

In this model η and ω_p can be directly calculated from the data by simple inversion. In the high-frequency limit ($\omega \ge \omega_p$) $\rho_{vm,GR} \rightarrow \rho_{ff}$, being $\rho_{ff} = \Phi_0 B / \eta$ the free flux flow resistivity. Equation (2) gave for many years the theoretical

First SC haloscope

\rightarrow Hybrid Geometry

Cavity designed at $\ensuremath{\mathsf{LNF}}$

Cavity coated at LNL with 4 um NbTi layer

 $Cu \ endcaps \ to \ reduce \ vortex \ motion \ dissipation$

Q ₀ ^{Max}	1.3×10 ⁶	
Rs ^{Cu}	4.9 mW	$ $ \overline{Q}
G _{cones}	482 W] 1
G _{cyl}	6270 W	
Freq. (TM010)	9.1 GHz	

$$\frac{1}{Q_0} = \frac{R_s^{\text{cyl}}}{G_{\text{cyl}}} + \frac{R_s^{\text{cones}}}{G_{\text{cones}}}$$

(half cell)

Deposition via DCMS:

- allows easy deposition (NbTi \neq Nb₃Sn)
- allows easy exploration of Ti concentration
- allows application of mask for copper cones

[1] D. Alesini, Phys. Rev. D 99, 101101(R) (2019)

NbTi pinning

 α -Ti precipitates act as pinning centers in NbTi alloys

D. C. Larbalestier and P. J. Lee," *Proceedings Particle Accelerator Conference*, Dallas, TX, USA, 1995

- Pinning Force has a maximum with Ti content (we expect similar pinning for Nb_{0,31}Ti_{0,69} and Nb_{0,38}Ti_{0,62})
- α-Ti precipitates density and dimension depends on thermal treatments
- ► Data only for wires → no data for thin films

Surface Preparation

- 1. Ultrasonic degreasing in Rodatel-30 soap
- 2. Ultrasonic in deionized water
- **3. Electropolishing** in H₃PO₄: Butanol at 3:2 volume ratio
- 4. Chemical polishing in SUBU-5 solution
- 5. Surface passivation with sulfamic acid
- 6. Ultrasonic, ethanol rinsing and drying
- 7. 100 bar High Pressure Water Rinsing

Surface preparation is a key process for SRF cavities

Thin film depensiviem on Coston SAFLeavity on dustivo ria D& range text mapped to the VD TECHNIQUES

dorothea.fonne

Ra < 100 nm

Defects on the cavity surface

Large grain boundaries

Pitting + NbTi coating on Cu cones

NbTi Coating Set-up

- DC Magnetron Sputtering
- Single NbTi target
- ► Ar pressure 6 · 10⁻³ mbar
- ► T substrate 500 °C
- ► Film thickness 2,5 3.5 µm
- ► Base pressure: < 9. 10⁻⁹ mbar @roomT

NbTi characterisation

Thin film deposition on Cu for SRF cavity production via DC magnetron sputtering at INFN-LNL

dorothea.fonnesu@Inl.infn.it

NbTi pinning force

Flash annealing tests (HZDR)

Original idea: can a "bad sample" improve with FLA? (seems not...)

- $1 \mu m Nb_3 Sn$ on sapphire, Cu, Cu+ $1 \mu m Nb$ buff
- coating parameters: T_{coat} = 450 C, p_{coat} = 2 x 10⁻² mbar, P = 20 W
- two sets:
 - 1 set annealed, t_{ann} = 24 h (shown here)
 - 1 set not annealed

NEXT: test effect on "good sample"

Technical issues

Two headaches:

1. Leaks

- runs to be repeated several times due to CF copper gaskets not standing the temperature gradient (both time and temperature-wise)
- OFHC copper gaskets by Pfeiffer are granted for -196 200 °C T range
- other companies offer up to 400 °C
- OFE copper might be an option

2. IR lamps

• not designed to stand high temp for long times, fail each 3 - 4 runs

What's your experience? Any advice?

