

ASG SUPERCONDUCTORS

COMPANY PROFILE

Columbus MgB2 Unit

www.asgsuperconductors.com

A superconductor is a material that shows zero resistance below a critical temperature (T_c)

Superconductors are defined by 3 main parameters: J_c : critical current density T_c : critical temperature H_c : critical magnetic field

Transport method

current (I) passes through the sample and the voltage (V) is measured along it

•The criteria to determine the Ic is 1 μV cm

Copper wires Vs Superconducting wires

11 x 8 cm² copper @T= 300K NbTi@T=1.8K 12800 Amps

SC electric machine (generator, motor)

- 2-3x size reduction
- weight and volume reduction
- higher efficency
- cost saving

Power Cables Energy Storage Fault Current Limiter

MRI machine

Paramed image

 The progress in MRIs is strongly linked to the creation of new devices with alwaysstronger fields

- Stronger the magnetic field
- Stronger the signal
- Better the images
- The main magnetic field is created by a large superconducting electromagnet in which a current flows
- The weak resistance of superconductors allows very strong currents to flow with no heating in the material, and hence enables to get very high field values of several tesla.

Siemens image

MRI with copper wire (FONAR)

Risonanza magnetica con avvolgimento in superconduttore MgB2 (PARAMED)

- 200 tons
- 200 KWatt power needed

- 25 Tonnellate
- 16 KWatt di potenza impegnata
- Cryogenics required:
 - liquid Helium or cryocooler

Technical superconductors

	LTS			HTS	
	NbTi	Nb₃Sn	MgB ₂	BSCCO	YBCO
Wire type					Cross-sectional view of Y-Coated Conductor
Т _с (К)	9 K	18 K	39 K	108 K	90 K
B _{c2} (T)	10 T	28 T	Up to 70 T	>100 T	>100 T
Operation in dry magnets above 10 K	NO	NO	YES	YES	YES
Ductile compound	YES	NO	NO	NO	NO
Flexible wires	YES	NO	YES	YES	YES
Superconducting splices	YES	YES	YES	NO	NO
Low cost (< 5 \$/m)	YES	NO	YES	NO	NO (not before 5 years)
Long lengths (>2 Km)	YES	YES	YES	NO	NO

Thanks to its features MgB₂ represent a new option in the medical-MR field

- low cost in comparison to HTS
- higher temperature margin in comparison to LTS
- liquid helium crisis: demand will exceed the supply
- MRI industry is working towards conduction cooled system instead of LHe baths

MgB₂ properties

Relatively high Tc, simple structure and common materials

Nagamatsu et al. 2001 Superconductivity at 39K in magnesium diboride Nature 410 63-4

No evidence of "weak link", no need of high degree of texturing

D.C Larbalestrier et al. 2001 Strongly linked current flow in polycrystaline form of the superconductor MgB_2 Nature 410

PIT process for the fabrication of wire

G.Grasso et .al. 2001 Large transport current in unsintered MgB₂ SC tapes APL Volume 72, number 9

High critical field

Iwasa Y et al. 2006 A round table discussion on MgB₂: towards a wide market or a niche production? IEEE Trans. Appl. Supercond 16 1457-64

Large critical current density

Zeng et al. 2003 Superconducting MgB₂ thin film on silicon carbide substrate by HPCVD APL 82 2097-9

Low density

Compound	Mass density	
Copper	8,96 g/cm ³	
NbTi	6 g/cm ³	
Nb3Sn	5,4 g/cm ³	
YBCO	6,35 g/cm ³	
BSCCO-2223	6,5 g/cm ³	
MgB ₂	2,6 g/cm ³	

Ready for industrial production 2 different manufacturing process ex-situ and in-situ technique

Early stage company, 2013, Based in Cambridge UK granted by UK SMART for R&D activities on MgB₂

Interested in industriall production of wires or wires+magnet

Located in Portorico MgB₂ wires for Cryo-free MRI MRI magnet, open 1.5T, 3T

Interested in the MgB₂ technology

Bruker BEST

1000 m of MgB2 wire already demonstrated in collaboration with IFW Dresden

Patents on MgB2 wires Several R&D activities Published paper

2003	2005	2006	
Columbus Superconductors	R&D target	Columbus Superconductors	
srl	First 1.6 km MgB ₂ long wire in a single unit length	SpA	
75% CNR+Researchers 25% ASG		ASG became the main shareholder to sustain industrial investment and to start the business plan	
Superconducting wire	Superconducting magnet	MRI	
Superconductors	ASG Superconductors	PARAMED	
6			

World leader in the Cutting-edge technology of a superconducting material MgB2 and its transformation into Long, versatile and very reliable superconducting wires.

Specialist in advanced MRI-enabled solutions. OPEN MRI systems is the only superconductive MRI with a "totally open" magnet design, that allows Multi-position imaging.

WORLD LEADER IN TERMS OF SUPERCONDUCTING MAGNETIC SYSTEMS DESIGN, CONSTRUCTION AND TESTING CAPABILITIES FOR RESEARCH, MEDICAL AND POWER QUALITY APPLICATIONS.

MAGNETS

MED-TECH

MGB2

230 EMPLOYES (including subsidiaries), with an Engineering staff of 70

38,000 m² production plant over **4** plants in Liguria (Italy)

Design and manufacturing of **SUPERCONDUCTING MAGNETS** and ancillary systems in the field of:

COLUMBUS MGB2 WIRE UNIT

This unit is a **world leader in cutting-edge magnesium diboride (MgB2) technology** and the transformation of this superconducting material into long, versatile and **highly reliable superconducting wire.**

MgB2 is one of the most recent solutions adopted by the superconductor industry, the **high superconducting temperature** (Tc= 40 K) means that MgB2-based systems can be cooled by **modern cryocooling devices**, without the costly, problematic and hazardous use of liquid helium.

MgB2 wire technology is already tested and used in energy, power, medical and high energy physics.

MGB2 WIRES FOR CABLES MGB2 WIRES FOR MAGNETS MGB2 WIRES FOR MRI

MGB2 CABLES

- MgB₂ chemical synthesis also fully implemented
- Wire unit length today up to 2- 4 Km in a single piece
- It will be possible up to 12-13 Km with the full scale up of the process
- Columbus MgB₂ wires production for MRI and cables application has exceeded 600 Km of fully tested and qualified wires

Conductors configuration: different shape, aspect ratio, number of filaments, materials

Home made MgB₂ powders Precursor quality, doping synthesis temperature, granulometry

Powder optimization

- Purity and granulometry control
- Grain connectivity
- MgO at grain boundaries
- Pinning and/or doping control

TAPE SOLUTION FOR MRI

Original MR-Open conductor

- Wire product we used to validate our MgB₂ technology
- It showed us that MgB₂ can be produced with high yield and low cost

 still in production today
- Two-fold improvement in performance 50% less wire needed

2018

Wire 4
15
1.5
Monel
Nickel
Nb
12%
>650A
600
150

ROUND WIRES

IOP Publishing Supercond. Sci. Technol. 27 (2014) 044024 (7pp)

rconductor Science and Technology doi:10.1088/0953-2048/27/4/044024

Development of superconducting links for the Large Hadron Collider machine

Amalia Ballarino

CERN, European Organization for Nuclear Research, 1211 Geneva 23, Switzerland

Supercond. Sci. Technol. 27 (2014) 044024

Figure 3. Different generations of MgB₂ Columbus round wires. From left: (a) S1 octagonal wire with nickel matrix and central copper stabilizer surrounded by iron barrier; (b) S2 quasi-square wire with Monel matrix and nickel barrier around the filaments; (c) S3 round wire with Monel matrix and nickel barrier around the filaments; (d) and (e) SEM cross section imaging of wire S2 [8]: porosity and detachment in between the two MgB₂–Ni reaction layers.

Diameter of MgB ₂ wire, Φ	$0.8 \text{ mm} \le \Phi \le 1 \text{ mm}$	
Diameter of superconducting filaments	$\leq 60 \ \mu m$	
Filaments twist pitch	$\leq 100 \text{ mm}$	
Filaments twist direction	Right-handed screw	
Critical current at 25 K and 0.9 T	≥ 186 A	
Critical current at 25 K and 0.5 T	≥ 320 A	
Critical current at 20 K and 0.5 T	\geq 480 A	
Bending radius (after final heat treatment)*	$\leq 100 \text{ mm}$	
Tensile strain at room temperature*	$\geq 0.28\%$	
Copper fraction of the wire total cross section	$\geq 12\%$	
RRR of copper stabilizer	> 100	
<i>n-value</i> ** @ 25 K and 0.9 T	> 20	

More than 500 km already deliverd and qualified

A Ballarino

22

Various issues:

Powder optimization

- Purity and granulometry control
- Grain connectivity
- MgO at grain boundaries
- Pinning and/or doping control

Sheath materials

- Mechanical properties of the raw metals
- MgB₂ / sheath reaction

Optimization of intermediate (500-800°C) and final thermal treatment (900°C)

Application voted design

Layout of the conductor: shape, dimensions, number of filament Magnetic, electrical, thermal and mechanical properties

Powder granulometry control

Control of **powder production** process is crucial to achieve optimal particle size

Commercial MgB₂

MgB₂ from commercial Boron

MgB₂ from special Boron

With controlled powder it is possible to obtain better **homogeneity of the filament** cross section and also **thinner filaments**

Powder granulometry control

MgO at grain boundaries: TEM analysis

MgB₂ grains are covered with **amorphous MgO** layer of ~50 Å, comparable with MgB₂ coherence length: working in **oxygen cleaner conditions** is mandatory!

•

Essential for wire Jc enhancement

• In field behaviour

Reduction of raw materials

Footprint Reduced space for installation

BEST PATHS CABLE LAYOUT

Best Paths project: testing installation

Principle of the testing installation with 2 parallel cooling circuits

SC LINK PROJECT

Development of long superconducting lines for the powering of the LHC magnets via remote power converters

Total currents to be transferred: up to \sim 190 kA per line

Length: from a minimum of 150 m to a maximum of about 600 m with a significant vertical transfer for the locations where the power converters are to be located at the surface

POWER DEVICES (DEMO PROJECT)

•Successful test of the 36 kV FCL took place at IPH - Berlin

- •Two coils each based on 25 km-long wires are DC powered, and have the purpose of saturating several iron yokes
- •This FCL is in discussion to protect a substation in the Italian grid for installation in 2019

Superconducting light generator for large offshore wind turbines

COLLABORATIVE PROJECT

- To demonstrate the feasibility of SMES 500KJ/200KW Cooling without using cryogenic liquid
- To evaluate the technical and economical benefit that a SMES can bring to the real world network

ÎCas)

Innovative Magnetic Density Separation for the optimal use of resources and energy

Figure 1: schematic lay-out of the superconducting coil system.

SEA TITAN

IMPROVEMENT OF THE EFFICIENCY IN A PTO (POWER TAKE-OFF) FOR WAVE ENERGY CONVERTER

WEC (heaving point absorber)

Participant Organization name	Acronym	Country
Wedge Global S.L.	WEDGE	Spain
CIEMAT	CIEMAT	Spain
WavEC - Offshore Renewables	WavEC	Portugal
CorPower Ocean	CORPOWER	Sweden
Centipod LTD	CENTIPOD	UK
Hydrocap Energy SAS	HYDROCAP	France
OCEM Energy Technology srl	OCEM	Italy
Columbus Superconductors	CLBS	Italy
Engie - Cofely Fabricom	ENGIE	Belgium
EDP Centre for New Energy Technologies	EDP CNET	Portugal
Asociación Española de Normalización	UNE	Spain