* 06/05: 8.30-10.30 (Synthetic Biology)
e 7/05:14.30-15.30

* 14/05: 14.30-15.30

* 20/05: 8.30-10.30

e 27/05: 8.30-10.30

* 11/06: 14.30 - 16:30 (final test)



Assembly of the algal CO:-fixing organelle, the pyrenoid,
is guided by a Rubisco-binding motif

Moritz T. Meyer!, Alan K. Itakura’f, Weronika Patena’, Lianyong Wang!, Shan He!, Tom

Emrich-Mills®, Chun S. Lau®, Gary Yates®. Luke C. M. Mackinder?, Martin C. Jonikas!®.
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New frontiers are coming

* the evolutionary transition from endosymbiont to organelle
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New Discovery:
" nitroplast

A nitrogen-fixing organelle, or “nitroplast,” has
been identified in a marine alga on the basis of
intracellular imaging and proteomic evidence.
This discovery sheds light on the evolutionary
transition from endosymbiont to organelle.
The image depicts the cell architecture and
synchronized cell division of the alga
Braarudosphaera bigelowii with nitroplast
UCYN-A (large brown spheres).

BEYOND
SYMBIOSIS

Evidence mounts for a nitrogen-
fixing organelle pp.160& 217
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Evolution and function of the nitroplast

Multiple organelles in eukaryotic cells, including mitochondria, chloroplasts, and nitroplasts, evolved from the
integration of endosymbiotic bacteria. In Braarudosphaera bigelowii, the chloroplast fixes inorganic carbon to
produce glucose, which feeds the respiratory chain in mitochondria that produces adenosine triphosphate
(ATP), which in turn fuels nitrogen fixation in the nitroplast. Glucose, ammonia, and ATP generated by the
organelles, together with externally incorporated compounds (phosphorous, mineral nutrients, and vitamins),
are the building blocks for cell metabolism, resulting in cell growth and division.
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Nucleus

Aerobic
@— bacterium
gy
Methanogen _—
Aerobic
Q— bacterium ' .
Nuelsaid B. bigelowii
, Chloroplast
Proteins 5
(@)
: Glucose éo \
: a (@) ; o—0 Cellular I Cell growth
Light, CO,, N, P ' (e} metabolism and division

O
| @%ATP
| -\00\ o > Ammonia
Nitroplast

The nitroplast: A nitrogen-fixing organelle, Volume: 384, Issue: 6692, Pages: 160-161, DOI: (10.1126/science.ado8571)




Braarudosphaera bigelowii/UCYN-A lightdark
cycle is highly coordinated.
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Structural characterization during the light cycle
soft x-ray tomography (SXT)
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Origin of Chloro-Nucleo communication

(a) (b)
Eukaryote host

_ Mitochondrion
Ny
« Nu S)
So

\
Vg

2nd Eukaryote host

Secondary
endosymbiosis

TRENDS i Plan! Science

Figure 1. Origin of plastids by primary and secondary endosymbiosis. (a) Acquisition of a cyanobacterium by primary endosymbiosis, and subsequent secondary
endosym biotic acquisition of the resulting eukaryotic alga. The intermediate algal nucleus {Nu} forms the nucleomormh, which is subsequently reduced. N indicates the
nucleus of the second sukaryote host. Broken arrows indicate gene transfer. (b} Photomicroscope image of a cell of Paulinella. Cell length is ~25 um. The photograph
shows the scales of the theca, a filopodium, and a large, dividing photosynthetic body or ‘chromatophore’. Photograph kindly supplied by Birger Marin.



Nuclear genome

Chloroplast genom

PSII cytochrome bgf PSI ATP synthase



Chloroplast protein regulation

eChloroplast genome only
. <:> contains 120 genes
eChloroplast proteome about
IR b
eSynthesis of chloroplast proteins
during acclimation is a concerted
mechanism between plastid and

nuclear genome

So what?



Which signals induce acclimation?
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SYNTHETIC BIOLOGY



SynBio’s iconic DBTL cycle. Note that the cycle outputs
products, not just information and understanding
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Plant Physiology*

A pilot oral history of plant synthetic biology

Jaya Joshi®"*" and Andrew D. Hanson ®***

The whole field of synthetic biology (SynBio) is only about 20 years old, and plant SynBio is younger still. Nevertheless, within
that short time, SynBio in general has drawn more scientific, philosophical, government, and private-sector interest than any-
thing in biology since the recombinant DNA revolution. Plant SynBio, in particular, is now drawing more and more interest in
relation to plants’ potential to help solve planetary problems such as carbon capture and storage and replacing fossil fuels and
feedstocks. As plant SynBio is so young and so fast-developing, we felt it was too soon to try to analyze its history. Instead, we set
out to capture the essence of plant SynBio’s origins and early development through interviews with 8 of the field’s founders,
representing 5 countries and 3 continents. We then distilled these founders’ personal recollections and reflections into this
review, centering the narrative on timelines for pivotal events, articles, funding programs, and quoting from interviews. We

have archived the interview recordings and documented timeline entries. This work provides a resource for future historical
scholarship.



Trends in publications in SynBio as a
whole and in plant SynBio (A) and a
breakdown of 2022 plant SynBio
publications by category (B).

Plant SynBio publications in 2022
were 7.3% of the total.

>

25000

g e All SynBio @ Plant SynBio

= 20000 A ®

3=

£ @

Q

“s 15000 A ®

®

Q

g 10000 A &

c

o =

8 ®

©

= 5000 - e

= @

0‘..".."......z:...,..otf"
1995 2000 2005 2010 2015 2020
Year

B
2022 Plant SynBio publications %
Reviews and Perspectives 76 415
Bioprospecting and parts characterization 37 20.2
Tools (including modeling) 31 16.9
Plant parts in heterologous host 26 14.2
Engineering in plants 1005
Plant enzyme engineering 3. 158

Total 183




The context of modern plant physiology
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PlantACT! — how to tackle the climate crisis

Greenhouse gas (GHG) emissions have created a global climate crisis which
requires immediate interventions to mitigate the negative effects on all aspects
of life on this planet. As current agriculture and land use contributes up to 25%
of total GHG emissions, plant scientists take center stage in finding possible
solutions for a transition to sustainable agriculture and land use. In this article,
the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a
road map of how and in which areas plant scientists can contribute to finding im-
mediate, mid-term, and long-term solutions, and what changes are necessary to
implement these solutions at the personal, institutional, and funding levels.

Highlights

Agricutture contrbutes to global climate
change by producing 20-25% of green-
house gases (GHGs).

CO. is released from deforestation and
land conwversion, methane from rice
paddy fields, and nitrous oxides from
overfertilization.

An increasing world popuation requires
a change in the agro food systems, in-
cluding a reduction in chemical fertilizers
and pesticides as well as the production
and access to food.



Land-based carbon fluxes

e Schematic representation of Annual growth rate of atmospheric
the terrestrial carbon cycle. carbon pool (5.2) —
Annual growth rate of ' | ' |
atmospheric carbon pool
(blue arrow) is the differential
of emissions from fossil fuels
(9.6 gigatons of carbon, Gt C),
land use change (1.2 Gt C),
and uptake of carbon into
terrestrial (3.1 Gt C) and
oceanic (2.9 Gt C) carbon
pools.

 Data for carbon emissions
from agriculture have been

Atmosphere
Photosynthesis (875)

(130)

Emissions
from
agriculture

L AN
s VSRR TR

taken from the Food and X — /" soiland
Agriculture Organization of , : | : ~- permafrost "
the United Nations (FAO) ' / / GO et ation
(www.fao.org/3/cb3808en/cb f I \_ Microbial (3.1)

3808en.pdf). The FAO data "%, biomass

include greenhouse gases (110)
other than CO2, converted to
CO2 equivalents.

Trends in Plant Science



Root architecture

° Changes in I’OOt aI’ChiteCture, Nutrient Sufficient Conditions  Nutrient Deficient Conditions
induction of root-based \4
transport systems and
associations with beneficial
soil microorganisms allow
plants to maintain optimal
nutrient content in the face |
of changing soil A
environments. Inhibition of Primary |

Root Elongation

Lateral Root
Elongation

Morgan, J. B. & Connolly, E. L. (2013) Plant-Soil ._
Interactions: Nutrient Uptake. Nature Education \\ Root Hair Elongation
Knowledge 4(8):2 < o



The shape of a plant’s root system influences
Its ability to reach essential nutrients




|s there a link between mineral nutrition and
photosynthesis regulation?
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The decline of plant mineral nutrition under rising

CO.: physiological and molecular aspects of a 't,;e;i';f;?on
ia the xyl
bad deal V|atsea;y em

Alain Gojon, " Océane Cassan, ' Lién Bach, " Laurence Lejay, ' and Antoine Martin @ '

Reduced mass
flow and root |
nutrient
acquisition |

(A) Dilution in biomass and C
The elevation of atmospheric CO2 content
concentration has a strong impact  T(¢)pisruption of N assimilation
on the physiology of C3 plants, far
beyond photosynthesis and C
metabolism.

(B) Lowered transpiration

, (D) Regulations of root N
Chloroplast uptake and signaling

Diminished
export of B9
reducing

equivalent

major threats on crop quality,
nutrient cycles, and carbon sinks in
terrestrial agro-ecosystems. The
causes of the detrimental effect of Nirare

reductase

high CO2 levels on plant mineral
status are not understood. 'Diminished nitrate reduction @ @ @ @ ' Diminished N uptake

Trendsin Plant Science




Reduced stomatal |
.conductance and
¥ transpiration
Reduced

translocation
via the xylem

sap

Trends in
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The decline of plant mineral nutrition under rising
COs: physiological and molecular aspects of a
bad deal

Alain Gojon, " Océane Cassan, ' Lién Bach, ' Laurence Lejay, " and Antoine Martin

1%

Reduced mass

(A) Dilution in biomass and C fow andioot |

For nitrogen, this detrimental effect _ content
Is associated with direct inhibition
of key mechanisms of nitrogen
uptake and assimilation.

nutrient
acquisition |

(C) Disruption of N assimilation (é) Lowered traﬁspiration

, (D) Regulations of root N
Chloroplast uptake and signaling

B) Lowered stomata opening

Diminished
export of B9
reducing

equivalent

C) Diminished photorespiration

Nitrate
reductase

'Diminished nitrate reduction @ @ @ @ ' Diminished N uptake

Trendsin Plant Science
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The decline of plant mineral nutrition under rising
CQOo: physiological and molecular aspects of a
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Alain Gojon, " Océane Cassan, ' Lién Bach, ' Laurence Lejay, " and Antoine Martin © '+

Metabolic pathways by which eCO2 can
modify the availability of reducing power
needed for the two steps of nitrate reduction.

Red and green arrows indicate the metabolic
routes that can be slowed or accelerated by
eCO2, respectively. eCO2 boosts the rate of
the Calvin-Benson cycle, increasing the
demand of reduced ferredoxin (Fd) by
ferredoxin-NADPH reductase (FNR) to provide
NADPH for the C fixation pathway. This can
reduce the availability of Fd for nitrite
reductase (NIR), which has a lower affinity
than FNR for Fd. At the same time, eCO2
decreases the rate of photorespiration. The
reduced production of 2-oxoglutarate (2-OG)
by a lower photorespiration can decrease the
export of malate (Mal) to the cytosol, which is
needed to provide NADH for nitrate reductase
(NR).
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OAA, oxaloacetic acid.
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Strategies for identifying genotypes _ content

that will maintain robust nutrient
status in a future high-CO2 world.

(C) Disruption of N assimilation (é) Lowered transpiration

(D) Regulations of root N
uptake and signaling

Diminished
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Nitrate
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Improving genotypes

a) Domestication of
teosinte to modern
maize favored
productivity

b) Targeted engineering
of modules will allow
us to produce a wide
range of desired
outcomes

c) Plants suited to their
own environment



PLANT SCIENCE

Synthetic genetic circuits as a means of
reprogramming plant roots

Jennifer A. N. Brophy'2*, Katie J. Magallon®, Lina Duan’, Vivian Zhong?, Prashanth Ramachandran’,
Kiril Kniazev! , José R. Dinneny*
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Synthetic
Genetic
Circuits
Reprogram
Plant Roots

Image credits, Jennifer Brophy, Stanford University



The workflow

1.

Controlling the activity of genes is an important step in

engineering

. Thisresearc

to achieve s

olants for improved bioenergy crops.

N developed synthetic genes that can be combined
necific patterns of gene expression within the plant.

. The expression of the synthetic genes is programmed in the form

of Boolean (“AND,” “OR,” and “NOT”) logic gates that work in a
similar way to computer circuit boards.

Using the synthetic gene circuits, the researchers successfully
created predictable, novel expression patterns of fluorescent

proteins.
Finally, they

used similar gene circuits to redesign root

architecture by tuning the number of root branches.
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The impact

* To understand biological functions and design new
biotechnology applications, scientists need to precisely
manipulate gene expression. This is the process that converts
Instructions in DNA into proteins and other products that
allow cells to do their jobs in an organism. Controlling specific
patterns of gene expression in plants is challenging. One
potential solution is synthetic genetic circuits. However,
tuning circuit activity across different plant cell types has
proven difficult.

* This research developed new genetic circuits that allow
precise control of the root architecture. As roots are important
for the uptake of water and nutrients, this approach will allow
the design of tailored root architectures. This will in turn
help researchers to engineer bioenergy crops with improved
characteristics for growth in marginal lands.



https://www.energy.gov/science/doe-explainsbioenergy-research
https://www.energy.gov/science/doe-explains-biofuels

Summary — part |

To establish synthetic gene circuits capable of predictably
regulating gene expression in plants, scientists adapted a
large collection of bacterial gene regulators for use as
synthetic activators or repressors of gene expression in
plants, also known as transcription factors. Using a transient
expression system, the researchers demonstrated that the
synthetic transcription factors and their target DNA sequences
(promoters) are able to direct specific and tunable control of
gene expression. They designed synthetic promoters that
responded to one synthetic transcription factor to work as
simple logic gates that responded to one input, while more
complex gates required synthetic promoters that responded to
multiple inputs. The research found these logic gates to control
expression in predictable ways according to the specific
Boolean rules encoded in the engineered genes.



Summary — part |

To implement synthetic gene circuits in a multicellular context,
the researchers used Arabi/dopsis roots as a model system
where endogenous promoters drove tissue-specific expression
of the synthetic transcription factors. The gene circuits
generated novel expression patterns that were the result of
successfully performing logical operations. The researchers
further used one of the logic gates to quantitatively control the
expression of a hormone signaling regulator to tune the
amount of root branching in the root system of Arabidopsis.
These results demonstrate that it is now possible to program
gene expression across plant cell types using genetic circuits,
providing a roadmap to engineer more resilient bioenergy
crops.



SYNTHETIC BIOLOGY

Synthetic gene circuits take root

Complex spatial patterns of gene expression are
engineered in plants to modulate root morphology

Engineering spatial Attributes of A.thaliana as a
transcriptional Model system
patte rns in the root osir::: size- requiring less growth
of the model plant

Arabidopsis S —
thaliana to alter its
morphology.

-Large progeny for genetic analysis

-Small genome size (125Mb)-
completely sequenced

-Small number of chromosomes (n=5)
-Amenable to transformation

- Spectrum of genetic and molecular
resources




SYNTHETIC BIOLOGY

Synthetic gene circuits take root

Complex spatial patterns of gene expression are
engineered in plants to modulate root morphology

A long-standing aim of synthetic
biology has been to engineer
genetic circuits that are able to
confer prescribed spatiotemporal
patterns of gene expression.

FIRST ISSUE to be solved

A Long-range signalling

>

Short-range signalling

; . L1 - L2 D L3 @ Organizing centreA

Bb A P

. Quiescent centre

Cortex and
endodermal
stem cell

Columella
| ) stem cell

. Epidermis
' [— Vascular
(4 D Cortex

. Endodermis

. Root cap

[ Columella

Nature Reviews | Genetics
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Goals = - —

* unlock the next tier in the technology tree of translational biology

* a powerful demonstration of a predictive and quantitative basic
understanding of genetic regulation in higher eukaryotes.

* This effort constitutes a milestone in the genetic engineering of a
whole, fully developed multicellular organism and points to the
challenges ahead.



The Cauliflower Mosaic Virus 358 Promoter: IMPORTANT: Species-speci1

Combinatorial Regulation of Transcription in
Plants

Capsid protain

PHaILiP N. BENFEY AND NaM-HA1r CHuA
Virus associated

/ protein {VAP)
* Early studies of the cis and trans regulation T
of plant and animal genes showed that
spatiotemporal patterns of transcription
follow a combinatorial logic F A

T=77

* The 35s RNA and its spliced derivatives Gl BN @ o m TR
serves as polycistronic mRNA for viral '

Yak

proteins.
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The Cauliflower Mosaic Virus 35S Promoter:

Combinatorial Regulation of Transcription in
Plants

Puarrir N. BENFEY AND NaM-HAar CHUA

* Early studies of the cis and trans regulation of
plant and animal genes showed that
spatiotemporal patterns of transcription
follow a combinatorial logic

e CAF - GATA1 - ASF1 trans-factors

A
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BS B4 B3 B2 Bi1 A1 Tata
Subdomains | i [ 1 [ |

-343-301-208-155-105 90 —46 +8
Sequence CA  GATA as-1

Facors @ @




Fig. 4. Schematic representa-
tion of expression patterns
conferred by 35S subdomains
in tobacco and petunia petals.
Expression conferred by the
combinations of 35S subdo-
mains listed on the left are
shown in schematic sections
through mature petals of to-
bacco and petunia. Only the
salient features of the expres-
sion patterns are indicated.
For 4 x B2 + A in petunia,
the expression pattern of the
single high expressing plant is
shown. The cell types repre-
sented are indicated in the last
row. LE, lower ecpidermis;
Me, mesophyll; Tr, trichome;
UE, upper epidermis; V, vas-
cular tissue,

Bi+A

B2+A

B3+A

B4+A

B5+A

Petuia




* Whether a gene is expressed in a cell type depends on the
combination of DNA binding sites in its regulatory region and
whether these sites are occupied by activator or repressor
transcription factors (TFs) present in these cells. These
regulatory combinations can be described as boolean logical
operations.

* For example, a gene may be transcribed only if its activator is
present while its repressor is absent, a logic operation known as a
“NIMPLY gate.” (material non-imptication). It also became clear
that TF proteins themselves are modular, with DNA binding and
regulatory activity being physically and functionally separated.



DNA o Promoter
site. : : -

A) Binding & transcription

Natural GAL4 protein
LexA’ ? No binding
DM-
W
Promoter
Hybrid protein

FIGURE 2.10 Transcription Factors Have Two Independent Domains

WORN . ER————
: Promoter
e  SNC : : i

No binding

VET— P T ——
DNA LexA Promoter

—— site

(A) One domain of the GAL4 transcription factor normally binds to the GAL4 DNA recognition sequence and the other binds the transcription
apparatus. (B) If the LexA sequence is substituted for the GAL4 site, the transcription factor does not recognize or bind the DNA. (C) An artificial
protein made by combining a LexA binding domain with a GAL4 activator domain will not recognize the GAL4 site, but (D) will bind to the LexA
recognition sequence and activate transcription. Thus, the GAL4 activator domain acts independently of any particular recognition sequence.

It works as long as it is held in close contact with the DNA.



* Indeed, there persists a humbling gap between our understanding
of the endogenous genetic circuitry that controls gene expression
patterns in animals and plants and our ability (or lack thereof) to
engineer these patterns

* LIMITATION: engineering synthetic TFs and the synthetic
promoters responsive to them can take multiple iterations of
testing and optimization, whereas the turnaround time to generate
a transgenic plant or animal is several months.

SECOND ISSUE to be solved




* |[tis possible to transiently express multiple transgenes in
the leaves of the tobacco relative Nicotiana benthamiana
and measure the circuit performance using green
fluorescent protein (GFP) fluorescence in just 2 days

* Using this platform,

: they developed a
SynthE?IC - : Sp:fltial synthetic circuits libra ry of SynthetiC TFs
transcrlptlonal . A ) in whole organisms b d bacterial
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implemented at the
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_D_ repression domains.
to enginegrhialagical MMPW Combined with
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Constructing synthetic e

° ° ° ° Jennifer A. I‘wl1 Ij;:[;h{:m:::ﬁj Magallon, Lina Duan', Vivian Zhong?, Prashanth Ramachandran’,
genetic circuits in plants it
* Generation of a collection of synthetic transcriptional @
regulators.
¢ D e S i g n Of: Hybrid protein

transcriptional activators [1. composed of bacterial DNA binding
proteins, 2. VP16-activation domains, and 3. SV40 nuclear
localization signals (NLSs)]

+

synthetic repressors that rely on steric hindrance to achieve
repression (composed of only DNA binding proteins and NLSs)



: i PSL;I:’;;;Ei::CEenetic circuits as a means of
C O n St r u Ctl n g Synt h etl C reprogramming p|ar|t roots

Jennifer A. N. Brophy"®*, Katie J. Magallon®, Lina Duan’, Vivian Zhong?, Prashanth Ramachandran’,

genetic circuits in plants

* Generation of a collection of synthetic transcriptional regulators.

* Design of transcriptional activators [1, composed of bacterial
DNA binding proteins, 2. , and 3. SV40
nuclear localization signals (NLSs)].

. _is a transcription factor encoded by the

UL48 gene of Herpes simplex virus-1 (HSV-1).

° TAD
[ |
IS one of the most 1 49 410 452 490

efficient TADs. Itis fused to — i R

. . ndirec inds to Binding proteins:
host transcription factors to through Oct1 and HCF Ii::gﬁ'p{,f:f' TFiD, T
. . . . , Mediator, ;
Increase their activity. SAGA, NuA4, p300, PCAF,

and SWI/SNF
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C onstru Ctl ng Synth et| C ge N et| C Synthetic genetic circuits as a means of

reprogramming plant roots

° ° °
Jennifer A. N. Brophy™**, Katie J. Magallon’, Lina Duan', Vivian Zhong?, Prashanth Ramachandran’,
Kiril Kniazev’, José R. Dinneny*

* Generation of a collection of synthetic transcriptional regulators.
* Design of transcriptional activators [1. composed of bacterial

DNA binding proteins, 2. VP16-activation domains,and-
hl

. - large T antigen (Simian Vacuolating Virus 40 TAg) is a
hexamer protein that is a dominant-acting oncoprotein derived
from the polyomavirus SV40.

NLSgy40 1.ag125-132 PKKKRKV




* Schematics of the synthetic transcriptional activators built to
control gene expression in plants. Small bent arrow denotes the

transcription start site.

Transcriptional activation
| b

> PR
oA’ \\ 6X’

binding Activation NLS binding Minimal
protein domain sites promoter

* Similar to previous synthetic promoter designs, activatable plant
promoters were created by fusing six copies of the DNA sequence
(operator) bound by these transcription factors (TFs) to a minimal
plant promoter [positions —66 to +18 of the cauliflower mosaic

virus (CaMV) 35S promoter]



* Schematics of the synthetic transcriptional repressors built to
control gene expression in plants. Small bent arrow denotes the
transcription start site.

Transcriptional repression

|
i
A
DNA"/ ‘ / 1X
binding NLS Constitutive binding
protein promoter  site

* Repressible promoters were built by placing one operator
sequence at the 3' end of a full-length CaMV 35S promoter (Fig.
1B). This design was selected to avoid disrupting 35S promoter
activity when adding operators.



* mCherry only control -

* To enable quantitative measurements of GXPhIFO:-GFP
gene expression, they used the synthetic

promoters to drive expression of green
fluorescent protein (GFP) and
normalized GFP expression to a

prad8 0. mlherry

constitutively expressed mCherry F -
encoded on the same T-DNA. They also §1Ug
Introduced an to GFP to prevent 5
Agrobacterium from expressing the 5 101
reporter and confounding fluorescence L 100
measurements b Eél
5 10" |
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only control
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* AmtR, the master regulator of nitrogen control in
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Module optimization
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ETHYLENE
RESPONSE
FACTOR2
(ERF2AD)
instead of VP16

domain to the
AmtR-based
synthetic repressor
either had no effect
or only modestly
increased
repression

of TF binding sites in
the AmtR-activatable
promoter resulted in a
collection of
promoters of varying
strength.

operator between the
TATA box and the
transcription start site
further improved
repression and
dynamic range



Boolean logic operations

* Synthetic TFs built with the AmtR and PhlF DNA binding proteins,
which demonstrated strong activation and repression in our initial

TF designs, served as the inputs to all circuits, and GFP served as
the output.

* Circuit activity was measured in N. benthamiana leaves, which
were infiltrated with multiple Agrobacterium strains, each

containing one plasmid that encoded either an input TF or the
output

R ouTtpuT

OUTPUT INPUTS

&) O8%
INPUT OUTPU [S2J0UTPUT INPUT

@0

C



Nicotiana benthamiana

* Most circuits involved several design-build-test cycles, which
were facilitated by the rapid N. benthamiana-based assays and
the modular nature of the synthetic biology parts generated here.
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Optimization is needed
different versions

* To create functional circuits, both
the promoter architecture and the
synthetic TFs needed to be
optimized

* We found that the arrangement of
operators in the OR promoter
affected fold change, with the best
design containing alternating pairs
of operators
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Tuning logic behaviour in N. benthamiana
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* OR gate variants. The number and location of AmtR and

PhlF operators were varied in the output promoter.




Tuning logic behaviour in N. benthamiana
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* ANIMPLY B gate variants. Different combinations of
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Tuning logic behaviour in N. benthamiana
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* ANIMPLY B gate variants. Different combinations of

AmtR- and PhlF-based synthetic TFs were tested.




Tuning logic behaviour in N. benthamiana
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Tuning logic behaviour in N. benthamiana
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AmtR- and PhlF-based synthetic TFs were tested.
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Tuning logic behaviour *

N. benthamiana

* The AIMPLY B gate, which worked
well when its output genes were
encoded on separate plasmids,
had an erroneously reduced “
input” state when both output
genes were encoded on the same
plasmid

* (A) Arabidopsis MATRIX
ATTACHMENT REGION 10
(AtMAR10) was tested as an
insulator between expression
cassettes on the output promoter
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The matrix attachment regions (MARs) associated
with the Heat Shock Cognate 80 gene (HSC80)
of tomato represent specific regulatory elements
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Input promoters + logic gates

* Functional plant circuits were transferred to themodel plant A.
thaliana to test their capacity to generate specific spatial patterns
of gene expression across root tissues. The tissue-specific
promoters of SOMBRERO (proSMB, expressed in the entire root
cap) and PIN-FORMED4 (proPIN4, expressed in columella, root
cap,and stele) were used to drive expression of ourinput TFs
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Patterning gene expression i L

using logic gates. Al T ancm TR
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plots show quantified reporter expression for
three T2 plants from a single transgenic line.
Green boxes indicate cell layers that should be
ON and gray bars indicate states that should
be OFF to implement correct logic. Expression
levels of individual cells in each root layer are pro35S-PhIFO::GUS-GFP-NLS 6XQacRO::GUS-GFP-NLS_pSMB::LmrA-VP16
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significant differences in expression (P <0.01,
Student’s two-tailed t test). Additional
independent lines in fig S6.
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Patterning gene expression
using logic gates.

Successful gates qualitatively matched the
expected expression patterns and produced
a significant difference between GFP expres-
sion in tissues expected to be ON versus those
expected to be OFF. By this definition of
success, TRUE, FALSE, A BUFFER, and NOT

A gates were successful. For NOT A, the
difference between the lowest ON (cortex)
and highest OFF (root cap) states was only
1.2x; this finding suggests that further opti-
mization may be necessary for applying the
circuit in other contexts (Fig. 3C).
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SOMBRERO, BEARSKIN1, and BEARSKIN2 Regulate Root
Cap Maturation in Arabidopsis“™

Tom Bennett,? Albert van den Toorn,?! Gabino F. Sanchez-Perez, 2! Ana Campilho,? Viola Willemsen,?
Berend Snel,? and Ben Scheres@2

a Department of Molecular Genetics, University of Utrecht, 3584 CH Utrecht, The Netherlands
b Theoretical Biology and Bioinformatics, University of Utrecht, and Netherlands Consortium for Systems Biology, 3584 CH
Utrecht, The Netherlands

* the cellular maturation of root cap is redundantly regulated
by three genes SOMBRERO (SMB), BEARSKIN1 (BRN1), and




Tuning

The gates that did not work revealed differ-
ences in circuit behavior between Arabidopsis
and N. benthamiana. For example, the first B
BUFFER gate produced a spatially expanded
expression pattern relative to the input promo-

ter, with aberrant expression in the quiescent

center (QC) and neighboring initial cells (figs.
S5 and S6). Similarly, the A NIMPLY B pattern
was incorrect in Arabidopsis; expression was
missing in several root cap cell layers (figs. S5
and S6).
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The gates that did not work revealed differ-
ences in circuit behavior between Arabidopsis
and N. benthamiana. For example, the first B
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expression pattern relative to the input promo-
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After tuning, all gates qualitatively matched
the expected expression patterns (Fig. 3C). How-
ever, three had expression in a single cell layer
that was either aberrantly high (B BUFFER,
endodermis) or low (OR, stele; NOR, QC). Thus,
quantitative analysis highlights the challenge
of implementing circuits across cell types in
heterogeneous tissue and additional optimi-
zation would be required for these gates to
achieve significant differences across every
tissue layer.



Root architecture to demonstrate how precise
spatial control over gene expression may be used
to engineer development

Lateral roots allow plants to radially v
sample soil, and the number of lateral 7
roots that a plant generates affects its |
ability to search for water and essential
nutrients in the environment




Root ideatypes

The close relationship between root growth
and plant fitness has led to proposals of ideal
root architectures for plant growth in specific
environments

Root phenotypes forimproved nutrient capture:
an underexploited opportunity for global
agriculture

Jonathan P. Lynch'?

]Depa rementof Plant Science, The Pennsylvania State University, University Park, PA 16802, USA; 2School of Biosciences, Universi ty

of Nottingham, Sutton Bonington, Leicestershire, LE12 5SRD, UK

No root cortical Root cortical
senescence senescence

Nitrogen

Nitrogen

Phosphorus mp- Phosphorus

Potassium Potassium
Water Water

Fig.6 Root cortical senescence (RCS) improves nutrient capture. The root
cross-section image shows a barley (Hordeum vulgare) root with intact root
cortex (left side of image) or lacking a cortex because of RCS (right side of
image). RCS reduces the nutrient and respiratory costs of maintaining root
tissue, permitting greater root growth, soil exploration, and nutrient capture
from soils with suboptimal nutrient availability, as shown by the top images
of barley root phenotypes as simulated in SimRoort (Schneider et al., 2017).
Reduction of radial water and nutrient transport in axial root tissue with RCS
has small effects on total plant nutrient acquisition, since lateral roots, which
acquire the majority of nutrients and water, do not form RCS. From
Schneider & Lynch (2018).
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Root architecture to demonstrate how precise
spatial control over gene expression may be used
to engineer development
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Fig. S8. Root gravitropism and slr-1 expression in engineered plants.
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Growth and Luminescence Observatory for Roots
(GLO-Roots) automation: GLO-Bot.

(A) Schematic of the GLO-Bot Cartesian gantry system
includes: (1) The Growth and Luminescence
Observatory 1 (GLO1) imaging system published

in Rellan-Alvarez et al., 2015, which houses two
cameras and a rotating stage for root imaging, (2) a
station for general watering or treatment with diluted
luciferin solution prior to imaging, (3) a barcode
scanner to identify the rhizotron and load a specific
watering and imaging protocol, (4) a robotic arm,
which moves in the x-, y-, and z-directions and has a
hook at the end to pick up rhizotrons, and (5) an area
for plant growth, which can be seen in the photograph
of GLO-Bot (B). (C) Automation updates required
modification of the GLO-Roots growth vessel design to
include a black acrylic plate and hooks for rhizotron
handling as well as dividers within the growth boxes
and guides along the bin top, which allow the
rhizotron to hang and shield the roots from light.
Copper tape along the edge of the bin top enables
positioning. Gray-scale bars denote 30 cm.
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https://elifesciences.org/articles/76968#bib39




Uncovering natural variation in root system
architecture and growth
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