

ANALISI STRUTTURALE CON MIDAS GEN TIPOLOGIE DI ANALISI

Prof. Ing. Flora Faleschini Ing. Klajdi Toska

VMSSE 2023/2024

La classificazione sismica del territorio, così come le norme tecniche per le costruzioni, sono sempre state in evoluzione continua fino ai giorni d'oggi.

Codice ISTAT		Categoria secondo la	Categoria secondo la	Zona ai sensi del
2001	Denominazione	classificazione precedente	proposta del GdL	presente documento
2001		(decreti fino al 1984)	(1998)	(2003)
08036007	Castelnuovo Rangone	N.C.	III	3
08036008	Castelvetro di Modena	N.C.	11	2
08036009	Cavezzo	N.C.	III	3
08036010	Concordia sulla Secchia	N.C.	III	3
08036011	Fanano	N.C.	III	3
08036012	Finale Emilia	N.C.	III	3
08036013	Fiorano Modenese	N.C.	11	2
08036014	Fiumalbo	N.C.	III	3
08036015	Formigine	N.C.	11	2
08036016	Frassinoro	11	III	2
08036017	Guiglia	N.C.		3
08036018	Lama Mocogno	N.C.	III	3
08036019	Maranello	N.C.	11	2
08036020	Marano sul Panaro	N.C.	III	3
08036021	Medolla	N.C.	III	3
08036022	Mirandola	N.C.		3
08036023	Modena	N.C.		3
08036024	Montecreto	N.C.	III	3
08036025	Montefiorino	N.C.	III	3

Per i comuni non classificati come sismici: Verifica per solo carichi gravitazionali

Comuni classificati sismici per la prima volta nel 2003.

Ricostruiamo quindi il caso di una struttura a telaio, realizzata prima delle attuali norme tecniche, tramite un "progetto simulato".

Anche se il metodo agli stati limite fu introdotto almeno dalle norme tecniche del 1976 si è continuato a usare il metodo alle tensioni ammissibili fino alle NTC08.

Caratteristiche geometriche della struttura:

Altezza interpiano : 3.2m

Campate di 5 metri in entrambe le direzioni.

Pilastri con sezioni 30x30 cm

Travi nella direzione longitudinale (x) 30x50 cm

Travi perimetrali 30x50 cm

E travi secondarie nella direzione trasversale (y) 30x30 cm

Ricostruiamo quindi il caso di una struttura a telaio, realizzata prima delle attuali norme tecniche, tramite un "progetto simulato".

Anche se il metodo agli stati limite fu introdotto almeno dalle norme tecniche del 1976 si è continuato a usare il metodo alle tensioni ammissibili fino alle NTC08.

Carichi su superficie:

Elemento	Piano tipo	Copertura	Tipo
Solaio	2 . 7 kN/m ²	2.7 kN/m ²	G ₁
Pacchetto arch.	2.0 kN/m ²	1.5 kN/m²	G ₂
Divisori	1.6 kN/m ²	0.0 kN/m ²	G_2
Esercizio	2.0 kN/m ²	0.5 kN/m ²	Q _k
Neve	0.0 kN/m²	1.2 kN/m ²	Q _{sk}

Carichi lineari:

Tamponamento 8.0 kN/m G,

Per semplicità in questo momento non consideriamo la presenza di scale o ascensori.

Quanti "casi" diversi da dimensionare?

1 Travi interne principali (piano 1 e 2) Travi interne principali in copertura

3) Travi esterne principali (piano 1 e 2) Travi esterne principali in copertura

5 Travi interne secondarie Travi esterne secondarie (piano 1 e 2) Travi esterne secondarie in copertura

Caratteristiche dei materiali e tensioni ammissibili (DM92)

Calcestruzzo classe C25/30 Acciaio Fe B 440 k $\overline{\sigma}_{c} = 6 + \frac{R_{ck} - 15}{4} (N/mm^{2}) = 9.75 N/mm^{2}$ $\overline{\tau}_{c0} = 0.4 + \frac{R_{ck} - 15}{75}$ (N/mm²) = 0.60 N/mm² n=15 $\overline{\tau}_{c1} = 1,4 + \frac{R_{ck} - 15}{35}$ (N/mm²) = 1.83 N/mm²

$$\bar{\sigma}_s = 255 \ N/mm^2$$

1 – Travata principale interna:

 $M_{Ed,max} = 65.3 \ kNm$ $M_{Ed,min} = -108.2 \ kNm$

 $V_{Ed,max} = 125.3 \ kN$

Sezione A:

1 – Travata principale interna:

 $M_{Ed,max} = 65.3 \ kNm$ $M_{Ed,min} = -108.2 \ kNm$

 $V_{Ed,max} = 125.3 \ kN$

Sezione A:

Flessione:

J

Posizione dell'asse neutro (rispetto al quale si annullano I momenti statici della sezione reagente):

$$bx_{c}\frac{x_{c}}{2} + nA'_{s}(x_{c} - c) = nA_{s}(d - x_{c})$$
$$x_{c} = \frac{n(A_{s} + A'_{s})}{b}(-1 + \sqrt{1 + \frac{2b(A_{s}d + A'_{s}c)}{n(A_{s} + A'_{s})^{2}}},$$

$$Y_{c,i} = \frac{bx_c^3}{3} + nA'_s(x_c - c)^2 + nA_s(d - x_c)^2$$

Le tensioni nella sezione risultando (Navier):

$$\sigma_c = \frac{M}{J_{c,i}} x_c \qquad \sigma_s = n \frac{M}{J_{c,i}} (d - x_c) \qquad \sigma'_s = n \frac{M}{J_{c,i}} (x_c - c)$$

Se ipotizziamo armatura semplice a flessione ($A'_s = 0$):

$$x_{c} = \frac{nA_{s}}{b}(-1 + \sqrt{1 + \frac{2bd}{nA_{s}}})$$

$$\sigma_{c} = \frac{2M}{bx_{c}(d - \frac{x_{c}}{3})} \qquad \sigma_{s} = \frac{M}{A_{s}(d - \frac{x_{c}}{3})}$$

7

1 – Travata principale interna:

 $M_{Ed,max} = 65.3 \ kNm$ $M_{Ed,min} = -108.2 \ kNm$

 $V_{Ed,max} = 125.3 \ kN$

Sezione A:

Flessione:

 $A_s = 1071 mm^2$ $A'_s = 307 mm^2$

$$x_{c} = \frac{n(A_{s} + A'_{s})}{b}(-1 + \sqrt{1 + \frac{2b(A_{s}d + A'_{s}c)}{n(A_{s} + A'_{s})^{2}}}) = 166.1 \text{ mm}$$

$$I_{c,i} = \frac{bx_c^3}{3} + nA'_s(x_c - c)^2 + nA_s(d - x_c)^2 = 1.92 \ x \ 109 \ mm^4$$

$$\sigma_c = \frac{M}{J_{c,i}} x_c = 9.36 \, N/mm^2 < \bar{\sigma}_c = 9.75 \, N/mm^2$$

 $\sigma_s = n \frac{M}{J_{c,i}} (h - x_c) = 248.5 \, N/mm^2 < \bar{\sigma}_s = 255 \, N/mm^2$

1 – Travata principale interna:

 $M_{Ed,max} = 65.3 \ kNm$ $M_{Ed,min} = -108.2 \ kNm$

 $V_{Ed,max} = 125.3 \ kN$

TAGLIO:

• Resistenza della trave non armata a taglio: Non è necessaria armatura a taglio se $\tau < \tau_{c0}$, quindi ll taglio al di sotto del quale non è necessaria armatura a taglio è:

 $V_{c0} = 0.9\tau_{c0}bd = 74.5 \ kN$ $V_{Ed} > V_{c0} \Rightarrow$ è richiesta specifica armatura taglio!

• La resistenza del calcestruzzo armato a taglio viene valutata convenzionalmente col confronto $\tau < \tau_{c1}$

 $V_{c1} = 0.9\tau_{c1}bd = 227$ kN

• La resistenza dell'armature (staffe Φ 8, 2 bracci) :

$$V_{st} = \frac{A_{st}}{s} 0.9 d\bar{\sigma}_s$$
$$s = \frac{A_{st}}{V_{st}} 0.9 d\bar{\sigma}_s = 84mm \cong 80mm$$

9

1 – Pilastro esterno (piano 1 con M massimo):

 $M_{Ed} = 27.9 \ kNm$ $N_{Ed} = 282 \ kN$

 $V_{Ed} = 17.5 \ kN$

Verifica:

 $x_c = 192.5 mm$

$$\sigma_c = 9.12 \frac{N}{mm^2} < \overline{\sigma}_c = 9.75 N/mm^2$$

 $\sigma_s = 47.9 \, N/mm^2 < \overline{\sigma}_s = 255 \, N/mm^2$

 $V_{c0} = 42.2 \text{ kN} > V_{Ed} = 17.5 \text{ kN}$ Non è richiesta specifica armatura taglio!

Staffe Φ 8, 2 bracci, passo 20 cm

 Per i pilastri calcolati a compressione semplice la tensione ammissibile assume il valore ridotto:

10

$$\overline{\sigma}_{c} = \mathbf{0}.7\overline{\sigma}_{c} = \mathbf{6}.82 \ N/mm^{2}$$

$$N_{max} = 640 \ kN$$

$$\sigma_{c} = \mathbf{6}.4\frac{N}{mm^{2}} < \overline{\sigma}_{c} = \mathbf{0}.7\overline{\sigma}_{c} = \mathbf{6}.82 \ N/mm^{2}$$

TIPOLOGIE DI ANALISI STRUTTURALI METODI DI ANALISI

In generale i metodi di analisi per il calcolo della risposta strutturale all'azione sismica sono:

- Analisi statica lineare
- Analisi dinamica lineare
- Analisi statica non lineare
- Analisi dinamica non lineare

I metodi lineari prevedono l'esecuzione di un'analisi elastica e il conseguente calcolo delle deformazioni e delle sollecitazioni in ogni elemento. Per tenere conto degli effetti di non linearità sono corrette con opportuni coefficienti e confrontate poi, per la verifica, con valori limite corrispondenti al tipo di elemento e al livello di prestazione richiesta. I risultati dei metodi lineari si discostano da quelli reali se il comportamento della struttura si discosta da quello elastico(es. strutture irregolari, edifici alti, etc.).

I metodi non lineari implicano analisi dinamiche al passo o statiche (pushover). Le analisi dinamiche al passo prevedono l'integrazione diretta dell'equazione del moto mentre le statiche non lineari prevedono l'applicazione alla struttura di forze orizzontali monotone crescenti fino al raggiungimento di uno stato ultimo prefissato.

Determinazione dello spettro di risposta:

- Comune: Mirandola
- Vita nominale: $V_N = 50$ anni
- Coefficiente della destinazione d'uso:
 c_u=1
- Categoria di sottosuolo = B
- Categoria topografica = T1
- Fattore di struttura: q=?

FASE 3. DET	ERMIN	AZIONE	DELL'A		DI PR	OGET	ГО
Stato Limite							
Stato Limite conside	erato SLV 💌	info					
Risposta sismica locale							
Categoria di sottosu	iolo B 💌	info	S _s =	1,200	C _c =	1,430	info
Categoria topografic	ca T1 💌	info	h/H=	0,000	S _T =	1,000	info
Courses arises total			(h=quota sito, H=	altezza rilievo topo	grafico)	_	_
Spettro di progetto elastico (SIF)	Smorza	mento (%)	5	n =	1.000	info
	()	omorza		2.0	<u>ה יר</u>		1
 Spettro di progetto inelastico 	(SLU)		Fattore q.	3,9	Regol. in alte	ezza si	, into
Compon. verticale					_		1
Spettro di progetto			Fattore q	1,5	η =	0,667	Into
Elaborazioni		Spettri d	li risposta —				
Grafici spettri di ris	sposta 🗖 🔪	S _{d,0} [g] 0,40					
Parametri e punti spettri di ris	sposta	Se [g] 0,30					
	. /	0,25	\downarrow				
		0,20					
Spettro di progetto - compon	ente orizzontele	0,15					
Castles di progetto - compon		0,05		\sim			
Spettro ai progetto - compon	iente verticale	0,00			-		
Spettro elastico di riferimente	ο (Cat. A-T1, ξ = 5	596)	U	1	2	3	T [s] 4
	EAC		1	1050		EA OF	

Determinazione dello spettro di risposta:

- Comune: Mirandola
- Vita nominale: $V_N = 50$ anni
- Coefficiente della destinazione d'uso:

C_u=1

- Categoria di sottosuolo = B
- Categoria topografica = T_1
- Fattore di struttura: q=?
 q = q_o x k

 $q_o = 3 \times 1.3 = 3.9$

k = 1 (struttura regolare in altezza)

Tab. 7.3.11 – Valori massimi del valore di base q₀ del fattore di comportamento allo SLV per diverse tecniche costruttive ed in funzione della tipologia strutturale e della classe di duttilità CD

	q_0		
Tipologia strutturale	CD"A"	CD"B"	
Costruzioni di calcestruzzo (§ 7 4 3 2)			
Strutture a telaio, a pareti accoppiate, miste (v. § 7.4.3.1)	4,5 α_u/α_1	$3,0 \alpha_u/\alpha_1$	
Strutture a pareti non accoppiate (v. § 7.4.3.1)	$4,0 \alpha_u/\alpha_1$	3,0	
Strutture deformabili torsionalmente (v. § 7.4.3.1)	3,0	2,0	
Strutture a pendolo inverso (v. § 7.4.3.1) 2,0			
Strutture a pendolo inverso intelaiate monopiano (v. § 7.4.3.1)	3,5	2,5	

Per strutture regolari in pianta, possono essere adottati i seguenti valori di α_u/α_1 :

a)	Strutture a telaio o miste equivalenti a telai	
	- strutture a telaio di un piano	$\alpha_u/\alpha_1 = 1,1$
	 strutture a telaio con più piani ed una sola campata 	$\alpha_u/\alpha_1 = 1,2$
	- strutture a telaio con più piani e più campate	$\alpha_u/\alpha_1 = 1.3$

q = 3.9

Determinazione dello spettro di risposta

Parametri indipendenti

STATO LIMITE	SLV
a _q	0,140 g
Fo	2,588
T _C *	0,269 s
Ss	1,200
C _c	1,430
ST	1,000
q	3,900

Parametri dipendenti

S	1,200
η	0,256
Τ _B	0,128 s
T _c	0,385 s
T _D	2,160 s

Determinazione dello spettro di risposta

Periodo fondamentale della struttura:

 $T=C \times H^{3/4}=0,075 \times 9,6^{3/4}=0,41 \text{ s}$

 $T_{C} \le T < T_{D}$

L'ordinata dello spettro di progetto è:

$$S_d(T_1) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C}{T}$$
$$S_d(T_1) = 0,105$$

SLV — Elastico

Determinazione delle forze sismiche

Analisi dei carichi – Piano tipo:

Flomonto	Carico			Coefficiente di	Peso sismico	Massa
Elemento	Canco	про		combinazione	W (kN)	(W/g)
Solaio	2.7 kN/mq	Permanenti strutturali	G1	1	1012	103.16
Pavimento	2 kN/mq	Permanenti non strutturali	G2	1	750	76.45
Divisori	1.6 kN/mq	Permanenti non strutturali	G2	1	600	61.16
Tamponamento	8 kN/m	Permanenti non strutturali	G2	1	640	64.24
Esercizio	2 kN/mq	Variabile	Q	0.3	225	22.94
				Totale	3227	329.00

Quindi, ipotizzando che i carichi siano identici su tutti i livelli abbiamo che il carico su ciascun piano i, è:

 $W_i = 3227 \ kN$

Determinazione delle forze sismiche

Analisi	dei	carichi –	- Copertura:
---------	-----	-----------	--------------

Elemento	Carico			Coefficiente di	Peso sismico	Massa
Liemento	Carico	про		combinazione	W (kN)	(W/g)
Solaio	2.7 kN/mq	Permanenti strutturali	G1	1	1012	103.16
Pacchetto cop.	1.5 kN/mq	Permanenti non strutturali	G2	1	562	57.34
Tamponamento	4 kN/m	Permanenti non strutturali	G2	1	320	32.62
Esercizio	0.5 kN/mq	Variabile	Q	0.3	56	5.73
				Totale	1950	199

Quindi, ipotizzando che i carichi siano identici su tutti i livelli abbiamo che il carico su ciascun piano i, è:

 $W_c = 1950 \, kN$

Determinazione delle forze sismiche

Analisi dei carichi – Peso proprio:

Per la semplicità dei calcoli assegnammo il peso

proprio degli elementi strutturali ai rispettivi piani.

Piani intermedi:

Peso pilastri:

$$W_p = (A_p h_p \rho_c) n_p = (0.3x 0.3x 3.2x 25)x 24 = 172.8 \, kN$$

Peso travi principali:

$$W_{t,p} = (A_{t,p}l_{t,p}\rho_c)n_{t,p} = (0.3x0.5x25x25)x4 + (0.3x0.5x25x15)x2 = 487.5 kN$$

 $W_{c.str} = 709 \, kN$

Peso travi secondari:

$$W_{t,s} = (A_{t,s}l_{t,s}\rho_c)n_{t,s} = (0.3x0.3x15x25)x4 = 135 kN$$

Peso proprio totale piani intermedi: $W_{i,str} = 795 \ kN$

Peso proprio totale copertura:

(Peso pilastri per meta altezza)

Determinazione delle forze sismiche

Il carico gravitazionale complessivo da associare al sisma è:

$$W_x = \sum W_i = 10703 \ kN$$

La normativa prevede un coefficiente λ che tiene conto della maggiore o minore probabilità che tutti i carichi variabili, al momento del sisma, insistano sulla struttura con la stessa intensità, ed assume i seguenti valori:

- $\lambda = 0.85$ se la costruzione ha almeno **3 orizzontamenti** e se T₁ < 2T_c;
- $\lambda = 1$ negli altri casi.

In questo caso il numero degli orizzontamenti è 3, quindi:

$$W_{tot} = \lambda \sum W_i = 9097.5 \ kN$$

La massa gravitazionale risulta:

$$M_{tot} = \frac{W_{xtot}}{g} = \frac{9097.5}{g}$$

Determinazione delle forze sismiche

Noto il valore della componente orizzontale dello spettro di progetto $S_d(T_1)$, e della

massa gravitazionale ($\frac{W_{tot}}{g}$), la forza sismica equivalente si ricava come:

$$F_x = S_d(T) \frac{W_{xtot}}{g} = 0.105g \cdot \frac{9097.5}{g} = 955.24 \, kN$$

Ripartizione delle forze sismiche ai piani

La forza F_{χ} si distribuisce linearmente nei piani dell'edificio, quindi all'piano i-esimo la forza sismica sarà dato da:

$$F_{xi} = F_x \frac{z_i W_{xi}}{\sum z_i W_{xi}}$$

Dove:

 z_i è la quota del piano i-esimo

 W_{xi} è il carico gravitazionale del piano i-esimo

Quindi:

$z_1 = 3.2m$	$W_{x1} = 4022 \ kN$	 $F_1 = 191.70 \ kN$
$z_2 = 7.4m$	$W_{x2} = 4022 \ kN$	 $F_2 = 383.37 \ kN$
$z_3 = 9.6m$	$W_{x3} = 2659 \ kN$	 $F_3 = 380.18 kN$

Ripartizione delle forze sismiche ai piani

Ripartizione delle forze sismiche ai piani

Nel caso di traversi infinitamente rigidi flessionalmente, il momento (come anche il taglio e lo sforzo normale) avrà la stessa distribuzione su tutte le pilastrate. Lo schema è quello di una trave incastrata alla base e vincolata con un incastro scorrevole superiormente.

M

F_H

Considerando il pilastro dell'ultimo livello (h=3.2) abbiamo:

$$F_{H} = \frac{F_{3}}{24} = 15.84 \ kN$$

$$M_{1} = M_{2} = \frac{F_{H}.h}{2} = 25.34 \ kNm$$
Mentre nel piano terra (h=3.2):
$$F_{H} = \frac{F_{xtot}}{24} = 39.8 \ kN$$

$$M_{1} = M_{2} = \frac{F_{H}.h}{2} = 63.68 \ kNm$$

$$M_{1} = N_{2} = \frac{F_{H}.h}{2} = 63.68 \ kNm$$

Ripartizione delle forze sismiche ai piani

Nel caso di traversi non infinitamente rigidi flessionalmente i risultati dei parametri della sollecitazione risulterebbero leggermente diversi:

- I pilastri alle estremità risultano caricati assialmente per metà del valore ottenuto prima (le aree di influenza sono la metà di quelle dei pilastri centrali).
- Gli stessi risultano anche meno sollecitato a taglio mentre negli altri sono sollecitati più o meno uniformemente

Scelta del tipo di struttura o del piano nel quale si vuole analizzare.

Convertire o meno il peso proprio degli elementi modellati, in massa.

Scelta del tipo di struttura o del piano nel quale si vuole analizzare.

 Definizione dell'eccentricità accidentale per l'applicazione dell'azione sismica.

Visualizzazione dei risultati di un analisi time-history non solo per i nodi ma anche a livello di piano (spostamenti, interstory drift).

Definizione dei livelli della struttura

Definizione del piano rigido nei vari livelli.

Il software crea in automatico un rigid-link che collega tutti i nodi di piano con il centro di massa del piano stesso.

Andiamo a modellare una struttura a tre piani.

Altezza interpiano : 3.2m

Campate di 5 metri in entrambe le direzioni.

Pilastri con sezioni 30x30 cm

Travi nella direzione longitudinale (x) 30x50 cm

Travi perimetrali 30x50 cm

E travi secondarie nella direzione trasversale (y) 30x30 cm

copiare o meno gli attributi degli elementi o nodi

Per completare il modello basta creare tutte le travi nella direzione y.

Come prima, si estrudono i nodi del primo telaio nella direzione y per una lunghezza di 15 metri (3 campate da 5 m).

		Gen 2019 - [Untitled *]
View Structure Node/Element	Properties Boundary Load Analysis Results Purhove erty Plastic Section Scale Tapered Thickness Material Properties Factor - Group	er Detain Query Tools
Material Time Dependent Material Image: the state of the stateo	Plastic Section Inelastic Properties	s Damping Tables 모든 N N 는 D M L M 는 T 에 M 은 트 로 L M N 사는 65 등 유
Tree Menu 9 X 4 C MDAS/Gen X		
Node Element Boundary Mass Load	Properties	X Material Data
Extude Elements	Material Section Triidness ID Name Type Standard DB AR Mon DC ID I Name Type Standard DB I ID I NAME Type Standard DB I II I NAME Type Standard DB I II I I I I I I I I I I I I I I I I I	dd dd dd dd dd dd dd Biastoty Data Type of Design Concrete Steel Standard D8 v
Benerit Kitubute Benerit Kitubute Benerit Kitubute Beteral : secton : Secton : Beta Angle : 0 v [Deg]		number Concrete Standard (MTCLBRC) ▼ @ tootropic Type of Material @ tootropic Orthotropic Steel Modulus of Eastory : 0.0000+400 Web/Lus of Stantory : 0.0000+400 Presen's Ratio : 0.0000+400 Thrend Coefficient : 0.0000+400
Generation Type ® Translate Rata: Project Translation © Equal Distance dx,dy,dz: 0, 1500,0 gm Number of Times : 1 🔄		Cose Weight Density: 0 64/cm^33 Image: the approximation of the app
Merging Tolerance		Curlicitie mode view of mode vi
	There are stilled due	

Definiamo adesso materiali e sezioni degli elementi

Scegliamo un calcestruzzo di classe C25/30 come materiale.

Definiamo adesso materiali e sezioni degli elementi

Creiamo le tre tipologie di sezioni definite inizialmente. Anche se geometricamente la sezione di alcune travi e pilastri può essere la stessa, è sempre consigliabile creare due tipologie diverse nel modello strutturale.

Assegnazione dei materiali e delle sezioni

L'assegnazione di questi attributi può essere fato in maniere molto semplice con il «drag and drop»

Basta selezionare gli elementi a cui si vuole attribuire il materiale e/o sezione e successivamente trascinare il tipo di materiale all'interno della finestra del modello.

Le proprietà non assegnate ad alcun elemento sono evidenziate in blu.

Assegnazione dei materiali e delle sezioni

Assegnammo cosi anche le sezioni ai diversi elementi già creati in precedenza.

Arriviamo quindi a questo modello finale.

Per quanto riguarda i vincoli assegnammo ai nodi alla base dei semplici vincoli ad incastro.

ANALISI STRUTTURALE CON MIDAS GEN ANALISI STATICA LINEARE

ANALISI STATICA LINEARE

ANALISI STATICA LINEARE

Assegnazione dei carichi

Per semplicità utiliziamo il «Floor Load» per il carico distribuito nei vari piani. Per il carico dovuto alle tamponature invece utilizziamo il carico distribuito sugli elementi.

ANALISI STRUTTURALE CON MIDAS GEN ANALISI STATICA LINEARE

Assegnazione dei carichi

Per semplicità utiliziamo il «Floor Load» per il carico distribuito nei vari piani. Per il carico dovuto alle tamponature invece utilizziamo carico distribuito suali elementi.

Tipo

G1

G2

G2

Q

ANALISI STRUTTURALE CON MIDAS GEN

ANALISI STATICA LINEARE

Assegnazione dei carichi

Dopo la definizione possiamo assegnare il *«Floor Load»* nei vari piani

Tipo di «Floor Load» prima creato.

Orditura del solaio (unidirezionale o bidirezionale). In questo caso «One way».

Selezione dei nodi che definiscono il piano su cui agisce il carico. La prima linea definisce anche il senso di orditura del solaio.

Eventualmente il «Floor Load» può essere convertito in «Beam Load».

ANALISI STRUTTURALE CON MIDAS GEN

Assegnazione dei carichi

Dopo la definizione possiamo assegnare il *«Floor Load»* nei vari piani.

ANALISI STRUTTURALE CON MIDAS GEN

ANALISI STATICA LINEARE

Assegnazione dei carichi

Prima della definizione dei carichi sismici è necessario definire le masse della struttura.

ANALISI STRUTTURALE CON MIDAS GEN

Static Load Case 9 [Vento Y ;]

Assegnazione dei carichi

Prima della definizione dei carichi sismici è necessario definire le masse della struttura.

Per convertire il peso proprio degli elementi in massa bisogna spuntare, sotto «Structure Type», il comando «Convert Self-weight into Masses».

ANALISI STRUTTURALE CON MIDAS GEN ANALISI STATICA LINEARE

Static Load Case 8 [Vento_X ;]
Static Load Case 9 [Vento_Y ;]

Definizione del centro di massa e di rigidezza

ANALISI STRUTTURALE CON MIDAS GEN ANALISI STATICA LINEARE

Assegnazione dei carichi

Anche se il carico verticale del tamponamento all'ultimo piano grava interamente sulla trave inferiore, meta della sua massa sismica deve essere di assegnata al piano copertura.

Piano al quale assegniamo una aggiuntiva rispetto a quelle precedentemente definite.

In questo caso: 32.62 kN/g

Punto dove assegniamo la massa. distribuzione simmetrica secondo entrambi gli assi x e y possiamo assegnare la massa al baricentro dell'edificio.

ANALISI STATICA LINEARE

a mano, in questo caso non lo consideriamo.

Assegnazione dei carichi

Carico di Vento e carico Sismico.

In questo caso possiamo calcolare il valore del carico da normativa e inserirlo come carico concentrato nei vari piani, oppure sfruttare i tool all'interno del software per la loro definizione.

Calcolo del periodo con il metodo semplificato.

Direzione del sisma. Per facilitare le successive combinazioni è preferibile considerare il sisma una volta in x e poi in y.

ANALISI STRUTTURALE CON MIDAS GEN ANALISI STATICA LINEARE

ANALISI STATICA LINEARE

	> 🔂 🔒 🗟	÷												Gen 2019	[C:\Users\ni	cola\Deskt
View			Properties		jary L		Analysis	Results		Design	Query					
• +		😽 Stresses 👻	🚰 Strain 👻	JO Bean	/Element	÷		Mode	ihapes -	A Influ. L	lines -	💹 T.H Results 👻	8 4 8		"Unknown	Load Facto
<u>ا</u> تا -	Deformations	* E Diagram *	-1	14-Local	Direction			Modal	Damping Ratio.	A Influ	Surfaces -	T.H Graph/Text *		FQ.	Tendon Lo	oss Graph
Load	TT Forest			17 Dicel	acomont 0	 Darticinati	on Easter	L.* Nodal I	Deculto of DS	WH Mawin	a Tracar v	IE Stage/Step Craph	Column Shortening	tory Shear		
Combination	Troites	Desults		I Dispi		articipati tsii	on Pattor	Notari	de chane	Mavia	g hacer ·	Time History	Graph for C.S	orce Ratio		
Combination		Kesuits	<u> </u>			tali		MO	ue snape	WIOWIN	y Loau	Time History		Wilse.		
	🕒 🖫 🗐 🔨 💽	K 🕺 🗗 🚺) 🖻 📜	L\$ L\$ >	<u> 1 (8) 1</u>	R		- K			2 🛱 🏹	🛅 🖉 : 🖸 🖉 🛅	🕮 📮 🛃 , 🎽	1	ô Ö	
Tree Menu		ч ×	۵ 🚺	MIDAS/Ge	ı ×											
Menu Tables	Group Works	Report														
Works			Ν.													
Structure	15 ies · 4															
	Base:1F		Load	d Combinat	ions											
9	Base:2F			,						r.						
9	Base:3F		(General St	eel Design	Concret	e Design S	RC Design	Cold Formed Steel	Design Foot	ing Design					
• Nod	base:hoot es : 96			Load Com	pination Lis	t					Load	Cases and Factors				
E > Een	ients : 186				No N	ame	Active	Туре	Des	cription		Loa	dCase	Facto	or 🔺	
L>	Beam : 186			*							*					
Propertie	is											-				
	1 : C25/30															
😑 🧵 Sec	tion : 3															
I	1 : T_30x30															
ļ	2:T_30x50															
Boundar	ies															
📋 🌧 Sup	ports : 24															
	Type 1 [1111111]															
E Masses	Discharger Massac									E					-	
	ts to Masses : 4	. 1													-	
1. The second	Type 1 [P. Strutturale	e ; scale=1]														
10	Type 2 [P. Non Strutt	turale ; scale=1]														
- in the second s	Type 3 [Sovracarico	Variabile ; scale=0														
Static Lo	Type 4 [Soviacalico	variabile_copertur														
⊡ ∏ Stat	ic Load Case 1 [P. Str	utturale ;]														
- (Self Weight [SZ=-1]															
	Floor Loads : 3	0														
	ic Load Case 2 [P. No Flement Beam Loads	· 32														
R	Floor Loads : 3									-						
🖯 🚺 Stat	ic Load Case 3 [Sovra	acarico Variabil		•						F.					-	
	Floor Loads : 2	and a Marahita														
E I Stat	ic Load Case 4 [Sovra Floor Loads : 1	acanco Vanabile_c		_												
E T Stat	ic Load Case 5 [Neve	e]		Сору		Import		Auto Genera	ition	Spread Shee	t Form	Copy into	Steel Design		•	
	Floor Loads : 1			la Nama:	Cilliner	eloicola ^{1D}	erkton\i c =:-	midae\tels	ia lesempio dir	Prover		Make Land Combination	Theat	Class		
E 🚺 Stat	c Load Case 6 [Sisma	_X:]		ne Name:	C: Jusers	s y licula (P	esktop (Lezio	/ in_muas (tela	o (esempio un	browse		make Load Compination	sneet	Close		
10	static Seismic Loads	[N1C2018] X 1				_	_	_							_	J
7E	Static Seismic Loads	[NTC2018]														
🚺 Stat	ic Load Case 8 [Vento	_X:]														
Stat	ic Load Case 9 IVento	2 Y:1														

Visualizzazione dei risultati

Le combinazioni di carico si possono inserire manualmente (consigliabile!), cliccando su «Spread Sheet Form» è possibile creare in formato tabellare le combinazioni inserendo per ciascun carico il coefficiente di combinazione, oppure in modo automatizzato cliccando su «Autogeneration».

ANALISI STATICA LINEARE

		Visualizzazione dei risultati
	Gen 2019 - [C:\Users\nicola\Desktop'	
Very Statuture NodeSteneent Properties Boundary Load Analysis Result Result <thresult< th=""> <thresult< th=""> Re</thresult<></thresult<>	Gen 2019 - [CAUSers/inicols/Desktop)	Fetors for Variable Actions Image: Colspan="2">Image: Colspan="2" Image: Colspan="" Image: Colspan="2" Image: Col

OK Cancel

. . .

ANALISI STATICA LINEARE

Rispetto all'analisi statica lineare in quella dinamica cambia solo il metodo di calcolo della forzante sismica.

A partire dal modello già creato per la SL, con i carichi e masse sismiche già definite, andiamo ad impostare l'analisi dinamica lineare (modale).

1- Prima di tutto nella definizione dei casi di carico cambiamo il tipo dei casi che prima abbiamo chiamato «Sisma_X» e «Sisma_y» da «Earthquake» a «User Defined».

Cosi facendo i carichi orizzontali rimangono nel modello (ricordare che vengono usati anche per il calcolo del centro di rigidezza) ma non entrano nelle combinazione di carico.

Static L	oad Cas	es		×
Nar Typ Des	me : be : scription :	P. Struttura Dead Load (le D)	Add Modify Delete
	No	Name	Туре	Description 🔺
•	1	P. Struttural	Dead Load (D)	
	2	P. Non Strut	Dead Load (D)	
	3	Sovracarico	Live Load (L)	
	4	Sovracarico	Roof Live Load (LR)	
	5	Neve	Snow Load (S)	
	6	Sisma_X	User Defined Load (USER)	
	7	Sisma_Y	User Defined Load (USER)	=
*				
•			III	*
				Close

		Gen 2019 - [C:\Use
View Structure Node/Element	Properties Boundary Load <mark>Analysis</mark> Results Pushover Design Query Tools	
Main Control Data Main Control I The P-Delta Buckling Eigenvalue Heat Hydra	Image: Stage Analysis Control Image: Stage Analysis Control Image: Stage Analysis Control Image: S	थ ा द ⊲ 🗃 🗢 💻 📭 । . ► 🛤 🏄 🔁 💽 🔒
Tree Menu 🛛 🖓 🗙	4 MIDAS/Gen ×	
Vienu Tables Group Works Report uctures Stories : 4 Nodes : 96 Elements : 186 perties Material : 1 Section : 3 undaries Supports : 24	Eigenvalue Analysis Control Type of Analysis Gegen Vectors Cype of Analysis Eigen Vectors E	Impostazione dell'analisi modale
sses Floor Diaphragm Masses : 1 Loads to Masses : 4 tic Loads Static Load Case 1 [P. Strutturale ;] Static Load Case 2 [P. Non Strutturale ;] Static Load Case 2 [Sovracarico Variabile_copertur Static Load Case 4 [Sovracarico Variabile_copertur Static Load Case 5 [Neve :] Static Load Case 5 [Neve :] Static Load Case 5 [Sisma_X :] Static Load Case 6 [Sisma_X :] Static Load Case 7 [Sisma_Y :] sponse Spectrum Analysis Response Spectrum Functions : 1 - Function 1 [SLU (q=3.9); Normalized Accelerati	Number of Frequencies : 9 Strum Sequence Check Frequency range of interest Search From : 0 [cps] To : 1600 [cps] Remove Eigenvalue Analysis Data OK Cancel	calcolare.

ANALISI DINAMICA LINEARE

												_								
							Gen 201	L9 - [C:\Us	sers\nicola	Desktop\Lezion	_midas\telaio	eser								
View Structure Node/Element Properties	Boundary Load Analysis	Results Pushover I	Design Query	Tools									'isuc	alizz	zazi	one	de	ei m	nodi	di
Load • Reactions ▼ • Stresses ▼ • Stresses ▼ • Deformations ▼ • Diagram ▼ Combination • Stresses ▼ • HY Results ▼ • MY Results ■ • MY Results ■	Image: Construction of the second	Mode Shapes *	H Influ. Lines *	T.H Results *	Column Si Graph	nortening for C.S	Story She	Ten ar io	known Loa Idon Loss G	d Factor Graph Text Outp	Results	v	ibra	ire	sia	gro	afico	amer	nte d	che
Combination Results	Detail	Mode shape	Moving Load	Time History			Mis	sc.		Text	Tables	ir	ו for	ma	to to	abe	llar	e.		
	R R X ® K	- K	- i :e :e Þ) 🕹 i 🗷 İ 🗍 🖉 🖥	🗳 📮 🛒	N N	AN . 6	5 🔒 🖥	1									-		
ree Menu 🛛 🕹 🕹	4 🕅 MIDAS/Gen 🗙																			
Mode Shapes																				
Vibration Mode Shapes					4			🔯 Resi	ult-[Eigenva	lue Mode] ×										
Load Cases(Mode Numbers)						Node	Mode	UX	c l	UY		Z	RX	(R	(RZ	:		
Mode 1											EIGENVAL	UE ANA	LYSIS							
Multi-Modes							Mode	(rod/o	Freque	ency (avala/aca)	Pe	riod	Tolera	nce						
							1	(rau/s	7.7142	(cycle/sec)	277	0.8145	0.0	000e+000						
Components							2		9.1149	1.4	607	0.6893	0.0	000e+000						
Md-XY Md-YZ Md-XZ							4		23.1551	3.6	152	0.2714	0.0	000e+000						
Md-XYZ							5		26.0092	4.1	195	0.2416	0.0	000e+000						
							7		36.4531	4.4	104	0.2243	0.0	000e+000						
Vide formed							8		37.9909	6.0	64	0.1654	0.0	000e+000						
Values Values							9		40.8256	6.4 M	DAL PARTICIP	0.1539	0.0 S PRINTOUT	000e+000						
Animate Contour							Mode	TRAN	N-X	TRAN-Y	TRA	AN-Z	ROTIN	I-X	ROTI	N-Y	ROTH	I-Z		
							NO N	ASS(%)	SUM(%)	MASS(%) SUM(6) MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)		
Apply Close							2	90.1513	90.1513	0.0000 87.7	0.0000	0.0000	0.0002	0.0002	0.0002	0.0002	0.0000	0.0000		
							3	0.0000	90.1513	0.0000 87.7	0.0000	0.0000	0.0000	0.0002	0.0000	0.0002	89.9640	89.9640		
						-	4	0.0000	90.1513	9.9781 97.6	0.0000	0.0000	0.0013	0.0015	0.0000	0.0002	0.0000	89.9640		
							6	0.0000	98.6154	0.0000 97.6	0.0000	0.0000	0.0000	0.0015	0.0000	0.0015	8.6687	98.6327		
							7	0.0000	98.6154	2.3194 100.0	0.0000	0.0000	0.0003	0.0018	0.0000	0.0015	0.0000	98.6327		
	11 11						8	0.0000	99,9999	0.0000 100.0	0.0000	0.0000	0.0000	0.0018	0.0003	0.0017	1.3673	98.6327		
	👅 🐘						Mode	TRAN	N-X	TRAN-Y	TR	AN-Z	ROTI	4-X	ROTI	N-Y	ROTH	I-Z		
	I 🚺						No	MASS	SUM	MASS SUI	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM		
							2 1	984.2197	984.2197	0.0000 957.4	344 0.0000	0.0000	0.0000	0.0139	0.0315	0.0000	0.0000	0.0000		
			- 👖				3	0.0000	984.2197	0.0000 957.4	0.0000	0.0000	0.0000	0.0139	0.0000	0.0315	86300.837 8	86300.837		
		• 1	1				4	0.0000	984.2197	108.9349 1066.4	0.0000	0.0000	0.0872	0.1012	0.0000	0.0315	0.0000	86300.837 86300.837		
						1	6	0.0000	1076.6259	0.0000 1066.4	193 0.0000	0.0000	0.0000	0.1012	0.0000	0.2379	8315.7316	94616.568		
							7	0.0000	1076.6259	25.3223 1091.7	16 0.0000	0.0000	0.0167	0.1179	0.0000	0.2379	0.0000 5	94616.568		
							8	15.1155	1091.7414	0.0000 1091.7	16 0.0000	0.0000	0.0000	0.1179	0.0429	0.2808	0.0000 9	94616.568		
							3	0.0000	10010414	0.0000 1001.1	0.0000	0.0000	0.0000	0.1110	0.0000	0.2000	.0	00020.100		

Visualizzazione dei risultati

Visualizzazione dei risultati

* Per le combinazioni dei carichi vale quanto già detto per l'analisi statica lineare.
* La visualizzazione/controllo dei risultati è pressoché identica nei due casi.

Visualizzazione dei risultati

ANALISI DINAMICA LINEARE

Visualizzazione dei risultati

Sempre sullo stesso modello impostiamo l'analisi statica non lineare (Pushover).

Condizione di carico iniziale. Si può scegliere di eseguire un analisi statica non lineare per i carichi gravitazionali oppure importare i carichi da un analisi precedente.

Carichi gravitazionali con i coefficienti della combinazione sismica.

Load Case	Sovracarico Variabile	_cope ▼	Scale Factor 0.3
Static Load C	ase	Scale	Add
P. Strutturale P. Non Strutt	urale	1 1	Modify
Sovracarico V	ariabile	0.3	Delete
Sovracarico V	ariabile_copertura	0.3	

Numero di iterazioni. Più alto è il numero di iterazioni, più raffinata sarà l'analisi. Generalmente 50 è sufficiente, mentre il numero di passi tra un iterazione e l'altra può essere al massimo 20.

Criterio di convergenza. Può essere basato sul controllo di spostamento, controllo di forza o di energia.

Criteri per fermare l'analisi

Opzioni per la definizione automatica di sezioni a fibre e impostazioni su come trattare eventuali vincoli non lineari presenti nel modello.

non

ANALISI STATICA NON LINEARE

Define Pushover Hinge Type/Properties	Add/Modify Pushover Hinge Properties	
Show Assigned Hinge Data	Name : Description :	
Pushover Hinge Name Element Type Add Modify/Show Delete Copy	Element Type Material Type Wall Type 	Tipo di elemento e di materiale.
	Definition Hinge Type Moment - Rotation (M-Theta) Moment - Curvature (M-Phi Lumped) Consider Hinge Length Integration Point Fiber Model Fiber Model Moment - Curvature (M-Phi Distributed) Moment - Curvature (M-Phi Distribu	 Definizione della cerniera in termin di momento – rotazione o momento – curvatura. Nel secondo caso puto
Close	Axial-Moment Interaction Type iber Section None P-M Interaction Auto Generation User Defined Section : I:T_30x30 Axial-Shear Interaction Type of RC Ison Auror Image: None P-Q Interaction Out-of Type Nonlinearity of Fiber Wall Component Properties	essere applicato sia a un modello a fibre che a cerniere concentrate. Definizione della sezione a fibre se
Componenti alle quali	Component Hinge Location Skeleton Curve Fx [8J-end v] Eurocode 8 : 2004 v Properties Fy [8J-end v] Eurocode 8 : 2004 v Properties Fz [8J-end v] Eurocode 8 : 2004 v Properties	è il modello che si sta adottando. Interazione tra momento/taglio co
si vuole attribuire una cerniera plastica.	Mx I8J-end Trilinear Type Properties My I8J-end Eurocode 8 : 2004 Properties Mz I8J-end Eurocode 8 : 2004 Properties Yield Surface Properties Masonry Properties Shear Span(Lv)	lo sforzo normale.
	OK Cancel Apply	

urocode 8

Add/Modify Pushover Hinge Properties											
Name :	Name : Description :										
Element Type				Material Type	Wall Type						
 Beam/Colur 	nn 💿 Wall			RC / SRC (enca	ised)	(Membrane					
Truss	C Gener	ral Link		Steel / SRC (file	ed)	Distance					
Point Spring	g Support			Masonry		OPlate					
Definition					Hinge Typ	e					
Moment - R	otation (M-Theta))			Ckolat	nn Madal					
Moment - C	urvature (M-Phi L	umped)		Skelet	Unimodel					
Conside	er Hinge Length		Integration Po	bint	Fiber I	Model					
Moment - C	urvature (M-Phi D	Distribut	ted)								
Axial-Moment I	nteraction Type			Fiber Section							
None	P-M Inte	eraction	n	Auto Generatio	n 🎯 L	lser Defined					
P-M-M in St	atus Determinatio	n		Section :	1:T_30x30	~					
Axial-Shear Int	eraction Type of F	RC		Fiber Name :		▼					
None	🔘 P-Q Inte	eraction	n i	Out-of-plane Nonlinearity of Fiber Wall							
Component Pro	perties										
Component	Hinge Locatio	n	Skel	eton Curve							
Fx Fx	I&J-end	-	Eurocode 8 :	2004	-	Properties					
Fy Fy	I&J-end	-	Eurocode 8 :	2004	-	Properties					
🕅 Fz	I&J-end		Eurocode 8 :	2004	[Properties					
Mx Mx	I&J-end		Trilinear Type			Properties					
V My	I&J-end	-	Eurocode 8 :	2004		Properties					
mz Mz	I&J-end		Eurocode 8 :	2004	Properties						
Yield	Surface Propertie	s	Masonry Properties Shear Span(Lv)								
				OK	Cance	I Apply					
_											

Tipo di cerniera

curva di inviluppo (ne secondo caso non è necessario inserire

le armature).

102

X

Component Properties

MIIO Milmay

Y-Axis (+) Y-Axis (-) Z-Axis (+) Z-Axis(-)

1

P(Compression

P (Tension

Mmax = max (|MUy(+)|, |MUy(-)|, |MUz(+)|, |MUz(-)|)

- 2nd Yield Surface

1

OK Cancel

My

P (compression)

P (tension)

1

Pmax(c)

MU0 1

Y-Axis... Z-Axis...

siccome

ha

la

il

di

per

bisogno

ANALISI STATICA NON LINEARE

Visualizzazione dei risultati

Proporzionale alle masse e al primo modo

Proporzionale alle masse

Si vede che con la distribuzione di forze proporzionale alle masse si ha una risposta peggiore della struttura

Visualizzazione dei risultati
ANALISI STRUTTURALE CON MIDAS GEN ANALISI STATICA NON LINEARE

