New model for pyrenoid structure, biogenesis and regulation in different conditions
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A chloroplast protein atlas reveals punctate
structures and spatial organization of biosynthetic

pathways
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In brief

Localization analyses of 1,034 candidate
chloroplast proteins reveal insights into
chloroplast architecture and functions in
Chlamydomonas reinhardtii.

Highlights
e 1,034 candidate chloroplast proteins localized by
fluorescent tagging

e This protein atlas reveals chloroplast structures, functional
regions, and components

e Dual-organelle localizations suggest extensive cross-
compartment coordination

e Atlas-trained machine learning predicts localizations of all
C. reinhardtii proteins
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FLAG and 3xFLAG Amino Acid Sequences

FLAG 1

-Tyr-Lys-Asp-Asp-Asp-Asp-L
Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys Protein

Enterokinase
Cleavage Site

3xFLAG 1

Asp-Tyr-Lys-Asp-His-Asp-Gly-Asp-Tyr-Lys-Asp-His-Asp-lle-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys

Enterokinase
Cleavage Site

Protein




Large-scale affinity purification mass
spectrometry (AP-MS) approach

38 candidates
» 2 different labeling protocols
e Co-localization criteria
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Large-scale affinity
mass spectrometry

CAH1
LCIA 2
HLA3

" Hco,-\_gj/'
M LCIBW Cre02.g086850
3 re16.9663400
Lcic oo

Len 5 @ @ psan  HDS1

HCOy"

purification
(AP-MS) approach

Periplasmic space E Cytosol é’, Stroma Stroma Starch plate Thylakold lumen
T L]
: s Important to look closer in
E &
g z FAP12 P:’
a §  surBiL, @ b
a ::Q L R . .
o Yera "
b N\ o.., | this interactome
Yet4 Pyrenoid [ ]
B2 v EBERA Cre04 g225050 matrix X
Photo- ca71 " Cre03.9145907
system | ®: oect
assembly CGLSgy  uies, ‘® “‘Aﬂ
CO, rDI5 s -
ceL13 nerizs, @ 1
. FAP113 CPLD54 PSBP3’ . .
crra ok . @, coLas R - STT7
coL21 Yoq »
@ SEP @ ieéf:ﬂom .
‘e GFY5.. Cre08ga7s7so| |« = 5
CSKG.' O B 1 [y, o HCOy CAH3 .THIC
.

was the transfer of
inorganic carbon from the
external environment to the

A, 120 ¢ TEF9
. { IACA. Cre01.9g053950 o.* % S 4
Inorganic E’ 79 g co, W Cré06.g271850
carbon flux Bure2 CrR13.957103 e ToL18
R Cre04.9222800 = ()
B crers geasos? HSP22E sum7 * K2 o @ cre01.gosa700
9 s e v‘;. . FTT2 S 3
4 ,‘-ACA:s .~ O % O " . (! co, */Cre02.088950
o PF . x 3
. Inorganic carbon 20 e LCi34 RBCS2 . |
i « O oRe RECX-lIke
PFKI X e G recs1 &)
Bait (gradient fill) e /

DPE2 P
Starch s% Y ]

Orcret6.ge63150
metabolism STAG @

Interactor (solid fill)

P {
HCO; transporter/ §® ™" CMP’ Cref1gos4se0y, A | cret3.g573250

putative transporter STA2 STA1 WAGIN i
Characterized CCM/pyrenoid 4 B @R
component (solid ou(eyr line) 4 Y o

, Previously unidentified CCM/pyrenoid
~-“ component (dashed outer line) CO, fixation and pyrenoid
Previously identified matrix components
interaction

Novel interaction

Pyrenoid core
{:. *Cre16.9655050|RBCX-like, Cre06.g273050/CGLD10, Cre09.9g386200|OPR36, + 5 more HCIPs

. Cre10.g452250 Cre09.9416850 . Cre03.g156750|CCTS, Cre03.9168450|CCT8, Cre05.9232750|CNK4, + 16 more HCIPs

Thylakoids
. Cre11.g467778, Cre16.9692901 ' Cre06.9266900, Cre02.g142146

. Cre12.g524500|RMT2, Cre07.9g328200|PSBPS6, Cre11.g475850|ZNJ1, + 6 more HCIPs
. Cre07.9339750|FeC, Cre19.9750547|NDA2, Cre02.g111450|TEF4, + 8 more HCIPs

o,

{ Cre10.9429100, Cre03.9213313

.Cre1s.gss47so . Cre01.g014000
} Cre17.9729800|ALB3.2, Cre01.g056696, Cre03.9176833

Chloroplast envelope
. Cre05.9g230850, 28269781|Ycf78, Cre13.9587100|PCYA1, + 34 more HCIPs

Plasma membrane
@ Cre08.9360600|ERM4, Cre14.9613950|ABC2, Cre16.9657350, Cre17.9700750|GFY3, + 25 more HCIPs

Extracellular
. Cre03.9144564|MMP13, Cre02.g093750|NRX2, Cre09.g393700|MMP3, + 21 more HCIPs

pyrenoid.

They identified 3 proteins
that might be involved in
bicarbonate transport.



The cellular organelle in algae responsible for one-third of global

CO2 fixation
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Localizations and physical interactions
of candidate CO2-concentrating
mechanism (CCM) proteins were
determined

The data reveal three previously
undescribed pyrenoid layers and 89
pyrenoid proteins

Plasma membrane inorganic carbon
transporters LCI1 and HLA3 form a
complex

Carbonic anhydrase 6 localizes to the
flagella, changing the model of the CCM



One potential approach for improving yields
Is the transfer of a CCM into higher plants to
iIncrease CO2-fixation rates



EPYC1, a novel protein correlated with RUBISCO activity
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Co-immunopurification Mathematical models
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The Eukaryotic CO,-Concentrating Organelle
Is Liquid-like and Exhibits Dynamic Reorganization

Elizabeth S. Freeman Rosenzweig,’* Bin Xu,*'! Luis Kuhn Cuellar,*'" Antonio Martinez- Sanchez, Miroslava Schaffer
Mike Strauss,® Heather N. Cartwright,® Pierre Flt}ncaray Jirgen M. Plltzkl:} Frlednch Forster,”® Ned S. Wingreen,”
Benjamin D. Engel,** Luke C.M. Mackinder,> %12 and Martin C. Jonikas'-2811.1213

The Pyrenoid Exhibits Both Fission and De Novo Assembly

To enable the first observations of pyrenoid matrix dynamics in living
cells, we expressed pyrenoid matrix proteins tagged with the
fluorescent protein Venus and imaged them in 3D with fluorescence
time-lapse microscopy during photoautotrophic growth.



A Chiorophyil autofluorescence
22 min -7 min

tracked inheritance of the pyrenoid matrix by monitoring Venus-tagged Rubisco small

subunit 1 (RBCS1) or Venus-tagged EPYC1 and recorded chlorophyll autofluorescence
to follow cellular orientation and chloroplast division

Elongation and then fission



Pyrenoid recall liquid materials with a
bridge between two daughter pyrenoids
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The structural basis of Rubisco phase separation
in the pyrenoid
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Fig. 1] EPYC1 consists of five tandem sequence repeats, each of which contains a Rubisco-binding region. a, A representative (n=15) transmission electron
microscopy (TEM) image of a C. reinhardtii cell. Scale bar, 1pm. b, Cartoon depicting the chloroplast and pyrenoid in the image shown in a. The blue dots i
indicate the locations of Rubisco enzymes clustered in the pyrenoid matrix. ¢, We hypothesized that pyrenoid matrix formation is mediated by multivalent 27 ARRGSWRESSTATVQAS---RASSA——--TNR-_VSPTREVLPANWRQELESLRNGNGS 76 Repeat1
interactions between Rubisco and the intrinsically disordered protein EPYC1. d, We designed an array of 18 amino acid peptides tiling across the full-length 77 SSAASSAPAPARSSSE\SWRDAHPASSAPA—--RSSSA-——SKKAVTPSRSALPSNWKQELESLR —--55 137 Repeat?2
EPYC1 sequence. e, Incubation of the array with purified Rubisco allows the identification of peptides that bind to Rubisco. f, Image of the Rubisco binding
signal from the peptide tiling array. g, The Rubisco binding signal was quantified and plotted for each peptide as a function of the position of the middle of 138 PAPASSAPAPARSSSAS ASSAPA---RS85-~-~SKKAVTPSRSALPSNWKQELESLRS--5S 197 Repeat3
the peptide along the EPYC1 seguence. The initial 26 amino acids of EPYC1 correspond to a chloroplast targeting peptide (cTP), which is not present in the 198 PAPASSAPAPARSSSASWRDAAPASSAPA---R5S5A—--SKKAVTPSRSALPSNWKQELESLRS-N-S5 258 Repeat4
mature protein’. The results are representative of three independent experiments. h, The positions of EPYC1's five sequence repeats are shown to scale 259 PAPASSAPAPARSSSASWRDA-PASSSSSSADFQGTNPWTGKSKPEIKRTALPADWRKGL 317 Repeats
with g. The predicted a-helical regions are shown as wavy lines. i, Primary sequence of EPYC]1, with the five sequence repeats aligned. In h and i, the regions T e : Lky khppkzg *
represented by peptides subsequently used for the structural studies are underlined in red (EPYC1,5,) and pink (EPYC1,, 25). EPYCly5 25 is an exact match
to the underlined sequence of Repeats 2 and 4, and it has a one-amino-acid-difference from the corresponding region in Repeat 3 (dashed underline). Non-polar and hydrophobic Polar and hydrophilic Basic Acidic
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Fig. 2 | EPYC1 binds to Rubisco small subunits. a, Peptide EPYC1,.,,,
corresponding to the first Rubisco-binding region of EPYC1, was incubated
at saturating concentrations with Rubisco prior to single-particle
cryo-electron microscopy. b-e, Density maps (b,d) and cartoons (c,e)
illustrate the side views (b,c) and top views (d,e) of the density map of
the EPYC1 peptide-Rubisco complex. The dashed boxes in b indicate the
regions shown in Fig. 3a-f.



The pyrenoid, a Rubisco-containing organelle that enhances
carbon fixation, mixes internally and undergoes phase
transitions.

Chlamydomonas reinhardltii
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Liverwort Hornwort

* About 100 species
e Similar to liverwort

* Hornlike sporophyte



Hornwort pyrenoids, carbon-concentrating structures,
evolved and were lost at least five times during the
last 100 million years

Juan Carlos Villarreal' and Susanne S. Renner

Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich 80638, Germany

ERAS

Edited by John Raven, University of Dundee, Dundee, United Kingdom, and accepted by the Editorial Board September 24, 2012 (received for review August

Pyrenoids are generally found in algae but they are also present in a group of plants

called hornworts, suggesting they had an important role during water-to-land

transition in the sreen lineagea i i
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Gains and losses of the pyrenoid (and putative CCM)
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Pyrenoids evolved from five to six times.



wrap-up

* Pyrenoids convert 30% of world CO, into organic carbon

* Pyrenoid-Llike structures could increase RUBISCO’s performances in
C3 plants

* High-throughput approaches allowed to identify proteins involved in
pyrenoid formation and transmission to new generations

* The pyrenoid undergoes a reversible phase transition during cell
division
* Hornworts as possible organisms to engineer plant pyrenoids



One potential approach for improving yields
Is the transfer of a CCM into higher plants to
iIncrease CO2-fixation rates



Chlamydomonas reinharati
is described

1803

[

Pyrenoids are described in the
green alga Spirogyra sp.
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Pyrenoids: CO,-fixing phase separated liquid organelles

James Barrett ', Philipp Girr ', Luke C.M. Mackinder’

3D cryo-tomography reveals detailed
organization of the pyrenoid

Key questions and outlook
» Evolution

= Underlying structural
principles

> Nucleation and division
> Plant engineering
Chlamydomonas reinharati

becomes a model organism  Pyrenoid linked to CCM Pyrenoid proteome
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Pyrenoid structure ' F&re?woidg éo;tain” Pyrenoid is described as liquid-liquid phase
investigated by TEM Rubisco separated with mulitple distinct protein regions
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Pyrenond

James Barrett

B EPYC1 phase separates with
Rubisco to form the pyrenoid matrix

EPYC1

Pyrenoid matrix
Thylakoids
Pyrenoid tubule/minitubule
formation zone
Pyrenoid tubules

EPYC1

c Minitubules connect the D
pyrenoid matrix to the stroma

Pyrenoid tubules deliver CO,
to the pyrenoid matrix

Fig. 4. The Chlamydemonas pyrenoid iz at the heart of
the CO, concentrating mechanism and enables efficient
CO, fixation. A) TEM image of Chlangrdammms reinhardtii
grown in light and under air levels of CO; where a
complete pyrenoid is assembled. Zoom highlights key
structural parts of the pyrenoid. Thylakoids false col-
oured green for clarity. Top left diagram is for orientation
of panels B-D. B) The pyrenoid matrix iz predominantly
composed of Rubisco-EPYCl condensate. Multiple
Rubisco binding regions on EPYCl enable complex
coacervation with the Rubisco holoenzyme which iz a
hexadecameric assembly of 8 large and & small subunits.
C) As thylakoids enter the pyrenoid they form pyrenoid
tubules. Minitubules (dashed lines) form within the py-
renoid tubules and connect the pyrenoid matrix to the
stroma. They are postulated to enable the large flux of
metabolites in and out of the pyrenoid. Inset: cross-
section (X-section) of minitubules within a pyrenoid tu-
bule. D) Pyrenoid tubules are proposed to deliver CO: to
Rubisco in the pyrenoid matrix. Current data supports
that HCO5 enters from the stroma into the thylakoid
lumen wia bestrophin-like channels. In the acidic lumen
HCOj3 is converted to CO:; via CAH3 and subsequently
diffuses into the pyrenoid matrix. LCIB/LCIC is proposed
to convert stromal CO; to HCO3 via active CO» uptake
and CO; recapture from the pyrenoid. Minitubules are
not shown for clarity.



A Matrix Rubisco-linker
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Starch Interaction Fig. 5. Key unanswered questions in the Chlamydomonas pyrenoid. A) Molecular basis for pyrenoid localization at key ultrastructural features (clockwise from top

Dissolution Nucleation ~ Domain left). A predicted pyrenoid tubule-enriched Rubisco-binding protein that could contribute to canonical positioning and localization of the pyrenocid matrix, as in B,
perhaps contributed by RBMP1/2. The unknown oeccupancy of the Rubisco-linker interaction that underpins LLPS of the matrix, where the dashed line demarcates a

‘ Degradative low Rubisco, high linker occupancy and a high Rubisce, low linker occupancy scenario. A putative protein interaction that spans the inter-starch gaps in the sheath to

Q\ AVA Enzyme tether adjacent plates, possibly fulfilled by LCI9, as highlighted in Mackinder et al. [20]. A starch-associated Rubisco-interacting protein that tethers the starch sheath

\ q (] : to the matrix, possibly underpinning an alternative starch-centric nucleation model, as in B, perhaps performed by SAGA1/2 [42] among others. A putative

A \ w . Phosphorylation thylakeid-associated, starch-binding protein that could explain the canonical positioning of the starch plates in pyrenoid-less strains. The uncharacterized occupancy
EIaSt_'c LS - ) - . and oligomeric state of the Rubisce-linker interaction in the dilute stromal phase. B) Potential control mechanisms underpinning the dynamics of the pyrenoid.
Ripening . @ @ Methylation Dissolution, clockwise from top left. The dissolved state of the pyrenoid, showing canenical positioning of the starch plates and retention of a portion of the matrix at
7 4\ O . a the tubule intersection, possibly forming an interdependent assembly point. A methylated state of Rubisco that could disrupt linker interactions and contribute to

7 ( V Felf:‘rlg\se dissolution. Potential linker perturbations that could contribute to phase transitions, including PTMs (phosphorylation and methylation) as well as degradation

(Ostwald ripening + coalescence) — {concentration effect) and charge perturbation (pH and ion concentration). Nucleation, from top left. Tubule-enriched matrix tethers, that could nucleate a
(Ses figurs 1) - Elastic Network canonically positioned pyrenoid, consistent with A. Spontaneous nucleation at a region of low elastic density in the stroma. Starch-centric nucleation, seeded by

. starch-matrix tethers, consistent with A. Growth, multiple explanations for pyrencid growth following de nove formation. Division, possibilities for ultrastructural
Growth Division e distribution through cleavage furrow-induced pyrenoid fission.
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Putting the RuBisCO pieces together R,BisCO assembly

Numerous plant chaperone genes were inserted into bacterial cells to promote
the folding and assembly of the plant RuBisCO enzyme inside E. col.

TODD O. YEATES AND NICOLE M. WHEATLEY

SCIENCE - 8Dec2017 - Vol 358, Issue 6368 - pp. 1253-1254 - DOI: 10.1126/science.aar3107

Genes taken from plant cells
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In planta condensates behave like liquid-liquid phase-
separated microcompartments.
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Immunogold labelling




EPYC1-mediated condensation of Rubisco has no
negative impact on growth and photosynthesis.
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A pyrenoid-localized protein SAGA1 is necessary for Ca**-binding
protein CAS-dependent expression of nuclear genes encoding

inorganic carbon transporters in Chlamydomonas reinhardtii

Dalsuke Shimamura’

-Takashl Yamano'

- Yukl Nilkawa" - Donghul Hu' - Hideya Fukuzawa'
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pNAS PLANT BIOLOGY

SAGAI and SAGA2 promote starch formation around
proto-pyrenoids in Arabidopsis chloroplasts

Nicky Atkinson®°(2), Rhea Stringer{2), Stephen R. Mitchell* (), David Seung®' {2, and Alistair J. McCormick®®"’
A uly 27, 2023, accepted December 11, 2023 ® SAGA1 ::mCherry
localizes to the
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chloroplasts with
atypical spherical
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adjacent (A), and
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starch granule
labeled. The lighter-
staining pattern is
highlighted with an
asterisk. (Scale bar,
0.5um.)
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proto-pyrenoids in Arabidopsis chloroplasts
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starch granule
labeled. The lighter-
staining pattern is
highlighted with an
asterisk. (Scale bar,
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E. Enclosed (circularity = 0.96)
A. Adjacent (circularity = 0.72)
S. Stromal (circularity = 0.63)
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New frontiers are coming



Origin of Chloro-Nucleo communication

(a) (b)
Eukaryote host

_ Mitochondrion
Ny
« Nu S)
So

\
Vg

2nd Eukaryote host

Secondary
endosymbiosis

TRENDS i Plan! Science

Figure 1. Origin of plastids by primary and secondary endosymbiosis. (a) Acquisition of a cyanobacterium by primary endosymbiosis, and subsequent secondary
endosym biotic acquisition of the resulting eukaryotic alga. The intermediate algal nucleus {Nu} forms the nucleomormh, which is subsequently reduced. N indicates the
nucleus of the second sukaryote host. Broken arrows indicate gene transfer. (b} Photomicroscope image of a cell of Paulinella. Cell length is ~25 um. The photograph
shows the scales of the theca, a filopodium, and a large, dividing photosynthetic body or ‘chromatophore’. Photograph kindly supplied by Birger Marin.



Nuclear genome

Chloroplast genom

PSII cytochrome bgf PSI ATP synthase



Chloroplast protein regulation

eChloroplast genome only
. <:> contains 120 genes
eChloroplast proteome about
IR b
eSynthesis of chloroplast proteins
during acclimation is a concerted
mechanism between plastid and

nuclear genome

So what?



Which signals induce acclimation?
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Evidence mounts for a nitrogen-
fixing organelle pp.160& 217

New Discovery:
nitroplast

A nitrogen-fixing organelle, or “nitroplast,” has
been identified in a marine alga on the basis of
intracellular imaging and proteomic evidence.
This discovery sheds light on the evolutionary
transition from endosymbiont to organelle. The
image depicts the cell architecture and
synchronized cell division of the alga
Braarudosphaera bigelowii with nitroplast UCYN-
A (large brown spheres).



Science | Alaaas

Evolution and function of the nitroplast

Multiple organelles in eukaryotic cells, including mitochondria, chloroplasts, and nitroplasts, evolved from the
integration of endosymbiotic bacteria. In Braarudosphaera bigelowii, the chloroplast fixes inorganic carbon to
produce glucose, which feeds the respiratory chain in mitochondria that produces adenosine triphosphate
(ATP), which in turn fuels nitrogen fixation in the nitroplast. Glucose, ammonia, and ATP generated by the
organelles, together with externally incorporated compounds (phosphorous, mineral nutrients, and vitamins),
are the building blocks for cell metabolism, resulting in cell growth and division.
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The nitroplast: A nitrogen-fixing organelle, Volume: 384, Issue: 6692, Pages: 160-161, DOI: (10.1126/science.ado8571)




Braarudosphaera bigelowii/UCYN-A lightdark
cycle is highly coordinated.
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Structural characterization during the light cycle
soft x-ray tomography (SXT)
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