
Superconductive Materials

Part 11
Basic Principle of SRF
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Outline

In this lecture we will address these questions:

• Why is important the R&D on accelerating cavities?

• Superconductivity means no resistance. Why can’t we reduce the losses to zero?

• Why is niobium the material choice which requires costly  helium cooling?

• What are the fundamental and technical limitations of niobium SRF cavities?

• What are possible future materials and what are the challenges? (next lesson) 
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And now finally…

...RF Superconductivity
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Surface Resistance of Superconductors
Superconducting currents are transported by Cooper 
pairs formed of two electrons

Flow without friction → DC supercurrents are lossless

At T > 0 K there is a small fraction of unpaired electrons

Cooper pairs have a finite inertia. Under RF fields a time-
varying E-field is induced in the material. Normal 
electrons see this field, move and dissipate    

Rs > 0

𝑛𝑛(𝑇) ∝ 𝑒−∆/kB𝑇
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Basic ingredients for RF superconductivity
• Two fluid model (Gorter-Casimir)
• Maxwell electrodynamics
• London equations
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Basic assumptions of two fluid model
• all free electrons of the superconductor are divided into two groups:

• superconducting electrons of density ns

• normal electrons of density nn 

• The total density of the free electrons is n = ns + nn

• As the temperature increases from 0 to Tc, the density ns decreases from n to 0

Surface Resistance in the two fluid model
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Electrodynamics of normal conductors
We can derive the skin depth starting from the fundamental equation of electrodynamics:

6

𝛻 ∙ 𝑬 =
𝜌

𝜀0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 ∙ 𝑩 = 0

𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡

Maxwell’s equations

𝑫 = 𝜀0𝜀 𝑬

𝑩 = 𝜇0𝜇 𝑯

𝑱 = 𝜎 𝑬

Linear and isotropic

Material’s equation
Drude’s model+ +

𝑬 = 𝑬𝟎𝒆
𝒊𝝎𝒕



7Cristian Pira   Superconductive Materials  11 Basic principles of SRF

Skin depth
For a good conductor at RF frequencies: ωε << σ

7

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡

𝑩 = 𝜇0𝜇 𝑯

𝑱 = 𝜎 𝑬

𝜕𝑫

𝜕𝑡
~0

𝛻 × 𝑯 = 𝑱 𝛻 × 𝛻 × 𝑯 = σ 𝛻 × 𝑬

𝛻 ×

𝑯 = 𝑯𝟎𝒆
𝒊𝝎𝒕

𝜵𝟐𝑯 = 𝒊𝝈𝝁𝟎𝝁𝝎𝑯
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Skin depth (2)

Solution (semi-infinite slab):

8

𝜵𝟐𝑯 = 𝒊𝝈𝝁𝟎𝝁𝝎𝑯

Hy(x,t)

Ez(x,t)

x

z

y

𝑯𝒚 = 𝑯𝟎𝒆
ൗ−𝒙
𝜹𝒆 ൗ−𝒊𝒙

𝜹

𝑬𝒛 = −
𝟏 + 𝒊

𝝈𝜹
𝑯𝒚

𝜹 =
𝟐

𝝁𝟎𝝁𝝈𝝎
AC fields penetrate a thickness δ (the skin depth)
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Surface impedence

9

𝒁 =
𝑬∥
𝑯∥

= 𝑹𝒔 +𝒊𝑿𝒔

Surface resistance

Surface reactance

𝒁𝒏 =
𝑬𝒛
𝑯𝒚

For the semi-infinite plane conductor:

𝑬𝒛 = −
𝟏 + 𝒊

𝝈𝜹
𝑯𝒚

𝒁𝒏 =
𝟏 + 𝒊

𝝈𝜹

𝑹𝒔 = 𝑿𝒔 =
𝟏

𝝈𝜹
=

𝝁𝟎𝝁𝝎

𝟐𝝈
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Anomalous skin effect
What happen at low T (and high frequency)?

σ(T) increases  δ decreases

The skin depth (the distance over which fields vary) can become 
less than the mean free path of the electrons (the distance 
they travel before being scattered) 

10

ℓ

d

𝑹𝒔 =
𝟏

𝝈𝜹

𝜹 =
𝟐

𝝁𝟎𝝁𝝈𝝎

𝐽(𝑥) ≠ 𝜎 𝐸(𝑥)
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Anomalous skin effect (2)
Non local relationship introduced by Reuther and Sondheimer:

11

ℓ

d

𝑱 =
3𝜎

4𝜋ℓ
න
𝒓(𝒓 ∙ 𝑬)𝑒− ൗ𝑟 ℓ

𝑟4
𝑑3𝒓

Non-locality enters the problem when the response to a field can 
only be determined correctly by integrating over a volume of the 
size of ℓ3 (3D case), where ℓ is
comparable to or longer than the
distance δ, the depth over which
the E-field varies
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Surface resistance – some numbers

12

For Cu @ 300 K and 1.5 GHz:

𝑹𝒔 =
𝟏

𝝈𝜹
=𝜹 =

𝟐

𝝁𝟎𝝁𝝈𝝎
= 𝟏. 𝟕 𝛍𝐦

σ (300 K) = 5.8 x 107 1/Ωm

μ0=1.26x10-6 Vs/Am

μ=1

𝟏. 𝟕 𝛍𝐦 𝟏𝟎𝐦𝛀
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Surface resistance – some numbers (2)

13

Surface resistance of Cu at 1.5 GHz as a function of temperature

Rs=1/sd

Rs(4.2 K)  1.3 𝐦𝛀

Rs(300 K)  10 𝐦𝛀

RRR = s(4.2K)/s(300K) = 300

…in spite of the resistivity 
decreasing by a factor 300 from 

300 K to 4.2 K, Rs only decreases by 
a factor of ~8! 

)()( xx Ej s
Anomalous skin effect l>δ
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Surface Resistance in the two fluid model

Electrodynamics of SC is the same as NC, only that we have to change s → s1 –  i s2
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compared to δ = 1.7 μm for Cu at 1.5 GHz 
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Recall the definition of the surface impedance:
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Rs ∝ 𝜔2

Surface Resistance in the two fluid model
𝑅𝑠 =

1

2
𝜇0𝜔

2𝜎1𝜆𝐿
3

use low-frequency cavities to reduce power dissipation

Rs temperature dependence

ns (T) ∝ 1-(T/Tc)
4 near Tc

σ1 (T) ∝ nn (T) ∝ e-(Δ/KBT) at T<<Tc

𝑹𝒔 ∝𝝎𝟐𝝀𝑳
𝟑ℓ𝒆−𝜟/𝒌𝑩𝑻 T<Tc/2
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Mattias and Bardeen (1958) used time dependent perturbation 
theory to derive RS for weak RF fields

Within this theory no simple formula can be derived. Several 
approximate formula can be found in the literature for some 
limits. A good approximation of RBCS in the dirty limit for T<Tc/2 
and ω<Δħ is:

Rs within BCS theory

𝑅𝐵𝐶𝑆 ≅
𝜇02𝜔

2𝜆𝐿
3𝜎𝑛∆

𝑘𝐵𝑇
ln

𝐶1𝑘𝐵𝑇

ℏ𝜔
exp −

Δ

𝑘𝑏𝑇

C1 ~9/4
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Rs within BCS theory

http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html

There are numerical codes (Halbritter, 1970) to calculate RBCS as a function of w, T and material parameters (x0, lL, Tc, D, l)

RBCS Nb ≈ 20 nΩ

http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html
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BCS vs two fluid model
The treatment within BCS theory and two-fluid model give qualitatively similar results

Quantitatively they can differ by an order of magnitude

The BCS treatment gives qualitatively correct results for low field

To treat experimental data approximate formulae are useful, e.g. 

   Here A  accounts for all material parameters

𝑅S =
𝜔2A

𝑇
exp −

Δ

𝑘𝑏𝑇
𝑅S =

𝜔2A

𝑇
exp −

1.76𝑇𝑐
𝑇
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The RF surface resistance

This equation implies RS :
• Has a minimum for medium purity
• Is proportional to 𝜔2

• Decreases exponentially with temperature
• Vanishes as T→0 K
• Is independent of RF field strength

𝑅BCS = 𝜔2𝜆3𝜎0𝜇0
2exp −

Δ

𝑘𝑏𝑇

In the following we will compare these assumptions to experimental data and modify 
the formula if necessary
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Material purity dependence of Rs
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R if ℓ >> 0 (“clean” limit)

if ℓ << 0 (“dirty” limit)

Rs has a minimum for ℓ = π0/4

C. Benvenuti et 
al., Physica C 
316 (1999) 153.

Nb on Cu,1.5 GHz, 4.2 K

“clean”

“dirty”

Nb films sputtered on Cu

• By changing the sputtering species, the mean free path was varied

• RRR of niobium on copper cavities can be tuned for lowest RS
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The RF surface resistance

This equation implies RS :
• Has a minimum for medium purity
• Is proportional to 𝜔2

• Decreases exponentially with temperature
• Vanishes as T→0 K
• Is independent of RF field strength

𝑅BCS = 𝜔2𝜆3𝜎0𝜇0
2exp −

Δ

𝑘𝑏𝑇
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The RF surface resistance
NC

SC

𝑅BCS = 𝝎𝟐𝜆3𝜎0𝜇0
2𝐞𝐱𝐩 −

𝜟

𝒌𝒃𝑻

400MHz

800MHz
1200MHz

𝑅𝑆(0K) ≠ 0

𝑅𝑆 = 𝑅BCS(T) + Rres

Measurement of the surface resistance at low field of niobium 
at three frequencies  with the Quadrupole Resonator

Frequency dependence for RBCS and Rres are almost identical

Is there a common cause?
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The RF surface resistance

This equation implies RS :
• Has a minimum for medium purity
• Is proportional to 𝜔2

• Decreases exponentially with temperature
• Vanishes as T→0 K
• Is independent of RF field strength

𝑅BCS = 𝜔2𝜆3𝜎0𝜇0
2exp −

Δ

𝑘𝑏𝑇
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The residual resistance

Possible contributions to Rres:

• Trapped magnetic flux and thermal currents

• Lossy oxides, metallic hydrides

• Normal conducting precipitates

• Grain Boundaries

• Interface Losses 

• Magnetic Impurities

For Nb Rres (~1-10 nΩ) dominates Rs at low frequency (f < ~750 MHz)
and low temperature (T < ~2.1 K)

B. Aune et al., Phys. Rev. STAB 3 (2000) 092001.

Nb, 1.3 GHz

2 K
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Trapped Magnetic Flux

• Well understood contribution to Rres

• When a cavity is cooled down in an ambient DC magnetic field not all flux is 

expulsed – Incomplete Meissner effect

• In fact fields of a few µT (order earth magnetic field) can be completely trapped

• In cryomodules thermal currents can cause additional magnetic fields which 

can be trapped
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Trapped magnetic flux

When a cavity is cooled down in an ambient DC 
magnetic field not all flux is expulsed –  Incomplete 
Meissner effect

Trapped magnetic field can also result from 
thermoelectric currents

Dissipation due to oscillating vortex segments, 
driven by the RF field
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Trapped Magnetic Flux Measurements

Typical levels of trapped magnetic flux in cavities are 
between 100-1000 nT

Experimental configuration used 

at Fermilab on Bulk cavities
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Trapped Flux – Real Example
QPR RF test

𝑸𝟎 ∝
1

𝑅𝐵𝐶𝑆 + 𝑅𝑟𝑒𝑠 + 𝜼 𝑺 𝑩

A. Romanenko, A. Grassellino, O. Melnychuk, D. A. Sergatskov, J. Appl. Phys. 115, 184903 (2014) 

http://upload.wikimedia.org/wikipedia/commons/b/b5/EfektMeisnera.svg
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Normal conducting precipitates
Islands of NbH precipitates at the surface

• Bulk hydrogen conc. > 10 wt.ppm
• Cooling rate < ~1 K/min between 90 – 150 K
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The residual resistance
BCS DOS
Smeared DOS Point contact tunneling experiments on 

Nb and Nb3Sn have found finite density of 
states (DOS) inside the energy gap

The physics remains not fully understood, 
however subgap states will yield a finite 
RS(0K) irrespective of physical mechanism   

A. Gurevich Supercond. Sci. Technol. 30 (2017) 034004
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The RF surface resistance

This equation implies RS :
• Has a minimum for medium purity
• Is proportional to 𝜔2

• Decreases exponentially with temperature
• Vanishes as T→0 K
• Is independent of RF field strength

𝑅BCS = 𝜔2𝜆3𝜎0𝜇0
2exp −

Δ

𝑘𝑏𝑇
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The RF surface resistance

This equation implies RS :
• Has a minimum for medium purity
• Is proportional to 𝜔2

• Decreases exponentially with temperature
• Vanishes as T→0 K
• Is independent of RF field strength ?

𝑅BCS = 𝜔2𝜆3𝜎0𝜇0
2exp −

Δ

𝑘𝑏𝑇
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The RF surface resistance

This equation implies RS :
• Has a minimum for medium purity
• Is proportional to 𝜔2

• Decreases exponentially with temperature
• Vanishes as T→0 K
• Is independent of RF field strength

𝑅BCS = 𝜔2𝜆3𝜎0𝜇0
2exp −

Δ

𝑘𝑏𝑇

Not only do RBCS and Rres depend on the RF field strength there can also be additional extrinsic losses 
limiting the cavity performance 
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Performance of SRF cavities
There are two parameters which define the performance of an SRF cavity: quality factor and the accelerating gradient

B
E

The quality factor:

The accelerating gradient can be limited by 
the peak surface electric field (field emission) 
or the  peak surface magnetic field (quench)

Eacc ∝ Bpeak 

Q =
𝐺

𝑅𝑠

Q = 2𝜋𝑓0
𝑈

𝑃𝑑
𝑃𝑑 =

1

2
𝑅𝑠න

𝑠

𝐻2𝑑𝑠

G = Geometrical Factor

There are two principal ways to increase performance:  Shape and material optimization
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RF critical field: superheating field (Hsh)
Penetration and oscillation of vortices under 
the RF field gives rise to strong dissipation and the 
surface resistance of the order of Rs in the 
normal state

The Meissner state can remain metastable 
at higher fields, H > Hc1 up to the superheating 
field Hsh at which the Bean- Livingston surface barrier 
for penetration of vortices disappears and the 
Meissner state becomes unstable

Type II SC

Hsh is the maximum magnetic field at which a type-II 

superconductor can remain in a true non-dissipative state 
not altered by dissipative motion of vortices
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Superheating Field: theory
Weak dependence of Hsh on non-magnetic impurities

𝐻𝑠ℎ(𝑇) ≅ 𝑐(𝜅)𝐻𝑐 1 −
𝑇

𝑇𝑐

2

𝑐 𝜅 the ratio of the superheating field and the
thermodynamic critical field

T. Yogi, G. J. Dick, and J. E. Mercereau. Critical rf magnetic
fields for some type-i and type-ii superconductors. Phys.

Rev. Lett., 39(13):826–829, Sep 1977.
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Superheating Field: experimental results

RF magnetic fields higher 
than Hc1 have been measured in 

both Nb and Nb3Sn cavities. HRF 
in Nb3Sn is << predicted Hsh

Use high-power (~1 MW) and short 
(~100 μs) RF pulses to achieve the 
metastable state before other loss 
mechanisms kick-in
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Superheating Field  - real world
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SRF Cavities Extrinsic Limitations

• Mechanical Vibrations

• Multipacting

• Thermal breakdown (Quench)

• Field Emission
Eacc ∝ Bpeak 

Eacc = 0.29 Bp for TESLA type cavities
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Performance limitations
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Multipacting
Resonant process with emission of electrons from the surface of the cavity
Multipacting is characterized by an exponential growth in the number of electrons in a cavity

Multipacting requires 2 conditions:

• Electron motion is periodic (resonance condition): cavity frequency = n x cyclotron frequency

• Impact energy is such that secondary emission coefficient is >1

1 point Multipacting 2 points Multipacting
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Multipacting (power curves)
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Multipacting (Q VS Eacc)



46Cristian Pira   Superconductive Materials  11 Basic principles of SRF

How to removes multipacting

1. Preventive strategy

2. Healing strategy
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T-Map experiment

T-Map 
sensor

Niobium 
surface

Thermal 
paste

Pogo stick
Connector 
leads

Use temperature map to look for quench mechanism/site:

T-Map board

Ryan Porter    Nb3Sn Workshop 2020
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T-Map experiment

Ryan Porter    Nb3Sn Workshop 2020

First quench site disappears after many quenches:
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T-Map experiment

Ryan Porter    Nb3Sn Workshop 2020

Observe quenches happening in two different spots:
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Performance limitations
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Quench (Thermal Breakdown)
Localized heating at normal-conducting defects
Local magnetic field enhancement at sharp edges
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Thermal Breakdown
Quench is the final limitation set by the critical field of the material
A quench can however occur at much lower fields if the magnetic field locally exceeds the critical field or the 
temperature exceeds the critical temperature at sub mm size defects of high resistivity

At high fields these defects will heat up its surrounding area above Tc and a normal conducting area will spread 
causing a quench 
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Cures for Quench

Prevention: avoid the defects
• Use material with high thermal conductivity: high purity niobium or niobium on copper cavities

• Careful electron beam welding or seamless cavities

• Eddy-current scanning of Nb sheets

Post processing
• In production usually the cavity is chemically etched again

• Big defects with sizes of 1 mm can be mechanically grinded away. This requires knowledge of the quench 
position from online diagnostics during cold test and optical inspection afterwards
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Quench localization and visualization
Quench sites can be located with temperature mapping

Afterwards the location can be  visualized with an optical inspection system 
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Cavity Quench

Ryan Porter    Nb3Sn Workshop 2020
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Near quench behavior
• Measure temperature of sensor near the quench point as field is increased

Temperature

Max Field

Time

Ryan Porter    Nb3Sn Workshop 2020
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Performance limitations
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Field emission
• Under high RF fields electrons can be released from the surface and accelerated 

Field emitters found on dissected cavities (size 0.5-10μm with sharp edges)

• Released electrons will impact on the 
cavity wall creating x-rays and heating

 
→ Reduced Q-value
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Cures for Field Emission
Prevention:
Semiconductor grade acids and solvents

High Pressure Rinsing with ultra-pure water

Clean-room assembly

Simplified procedures and components for assembly

Clean vacuum systems (evacuation and venting without re-contamination)

Post-processing:
Helium processing

High Peak Power (HPP) processing
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How to removes Field emission

Solution to field emission → high pressure water rinsing (100 atm) 

and an ultra-clean assembly → remove field emitters and preserve cleanliness
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SRF Cavities Intrinsic Limitations

• Q-disease

• Q-slope

Eacc ∝ Bpeak 
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The hydrogen Q-disease
• If a cavity is cooled down slowly around 50-150K Q decreases 

• Effect correlated to hydrides 

• Some cavities recover after warm up to RT

• 800°C baking is always effective
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Performance limitations
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The high field Q-slope

( E. Kako et al. - SRF ’99 - Santa Fe )

( L. Lilje et al. - SRF ’99 - Santa Fe )

K. Saito et al. (SRF ’97, Abano Terme )

 C1-03 / S-3 (  EP cavity )

KEK 3 

1E+9

1E+10

1E+11

0 10 20 30
Eacc ( MV/m )

Q0      

quench

1E+09

1E+10

1E+11

0 10 20 30
Eacc (MV/m)

Q0      

C1-16  ( 1.3 GHz )

no electrons

no X-rays

RF

power

Observations:
• Strong decrease of Q0 above Eacc > 20 MV/m  (in Tesla cavities Bp > 85 mT )
• Field emission not involved ( no e -, no X rays )
• T map: global heating in the area of max B-field
• Limitation by RF power supply or quench
• Seemingly a typical feature of BCP cavities
• Solved with EP instead of BCP and baking treatments
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Baking Effect on BCP Cavities
• “in-situ” baking discovered on BCP cavity
• slope improvement ( 90 <  T <  120°C )  -  degradation ( T > 150°C ) 

 C1-05 ( BCP cavity )

1E+08

1E+09

1E+10

1E+11

0 10 20 30
Eacc ( MV/m )

   Q0      

no baking
90°C - 48h
110°C - 48h
4.2 K (no baking)
4.2 k ( 90°C )
4.2 K ( 110°C )

quench

( B. Visentin et al. – EPAC ’1998 - Stockholm )

 C1-05 ( BCP cavity )

1

10

100

1000

0,2 0,3 0,4 0,5 0,6 0,7

1/T  ( K 
-1

 )

RS

(nW)       

no baking

90°C - 48h

110°C - 48h

Baking reduces RBCS but increases Rres:
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Baking Effect on EP Cavities
• Same phenomenon on  E.P. cavities

• before baking: Q-slope identical to BCP 

• after baking: Q-slope improvement

 C1-03 / S-3 ( EP cavity )

KEK 9 & 10

1E+09

1E+10

1E+11

0 10 20 30 40
Eacc ( MV/m )

Q0      

no baking

110°C / 30h

quench

RF power

limitation

( Saclay cavity – EP & tested @ KEK )

1E+09

1E+10

1E+11

1E+12

0 10 20 30 40

Eacc (MV/m)

Q0

C1-03 / S-3 ( EP - KEK 9 )
D1-22 ( EP - Saclay A1 )
C1-15 ( BCP - Saclay I1 )
C1-16 ( BCP - Saclay P1 )
C1-10 ( BCP - Saclay N1 )

Q-slopes before baking 

( BCP and EP cavities )

RF Power

Limit
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Performance limitations



68Cristian Pira   Superconductive Materials  11 Basic principles of SRF

State of the art Nb cavities

• Nb is reaching fundamental limits in quality factor 
and accelerating gradient

• Unfortunately so far we can have only one or the 
other and only for elliptical niobium cavities. 

• There is still margin for improvement of non-
elliptical cavities. 

• For performance far beyond the state of the art of 
elliptical cavities materials other than Nb need to 
considered

Nitrogen Doping

Is this the fundamental limit?

Specific shape
High RRR niobium
High temperature treatment
Clean room assembly
High pressure rinsing

120°C
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