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Outline

In this lecture we wWill address these questions:

 What is an accelerating cavity?
e Superconductivity means no resistance. Why can’t we reduce the losses to zero?
 Why is niobium the material choice which requires costly helium cooling?

 What are the fundamental and technical limitations of niobium SRF cavities? (2nd part)

» What are possible future materials and what are the challenges? (3rd part)
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Why is important the R&D on accelerating cavities?
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How works an accelerator?

T target
1

source Accelerating cavities revelators
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Sub-atomic microscopes and time machines

The high density of energy produced
allows to reproduce and study the
evolution of first instant of the Universe

The collision between two particles bunches or a
particles bunch and a target provide information on the
elementary particles

Elementary Particles

Leptons Quarks

Particle Dara Group, LEML, ® 2000. Supported by DOE and NS
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Theim

Fundamental physics
Biological & chemical sciences
Materials science

Research

Materials research

Beams of photons, neutrons
and muens are essential
tools to study materials at the

atomic level.

Protein modelling
Synchrotron light allows
scientists to solve the 3D
structure of proteins e.g. the
Chikungunya virus.

Cleaning flue
gases of thermal
power plants

Energy &
Environment

Controlling power plant
gas emission

In some pilot plants, electron
beams are used to control
emission of sulphur and
nitrogen axides.

of deep seated tumours.
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Hadron therapy Positron Emission lon implantation for Hardening materials
Proton and ion beams are Tomography (PET) electronics Replacing ateel with X-ray
well suited for the treatment Radicisotopes used in PET-CT  Many digital electronios rely cured carbon composites can

accelerators. trangistors and chips. by 50%.

scanning are produced with on ion implanters to build fast reduce oar energy consumption

Non-destructive
testing

[ Cultural heritage

Authentication
Cargo scanning

Material
identification

Cultural heritage

Particle beame are used for
non-destructive anafysia of
works of art and ancient relios.

Safe nuclear
power

T Replacing ageing

research reactors

Prospects

Energy

Accelerator technologies may
bring the power of the sun
“down to earth”, treat nuclear
waste and allow for safer
operation of reactors.

Slide from TIARA website



Industrial applications

Cargo Scan with X-ray

Sterilisation and irradiation of food for
preservation ("cold pasteurisation")
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X-ray traversed region of cargo: A — walls; B — lightly
loaded region; C — intermediately loaded region; D —
heavy loaded region

lonic implantation (semiconductors)

Treatment of polymeric materials: cross-linking
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Cristian Pira Superconductive Materials 10 Introduction to accelerators



Synchrotrons
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Material Test Facility for Nuclear Fusion Reactors

[ Injector {wﬂke‘u"]] [ Alvarez Drift Tube Linac ]

(5MeV-40MeV)

Radio-frequency Quadrupole (RFQ) Linac
Four-vane RFQ (0.1MeV-5MeV)

L'International Fusion
Materials Irradiation
Facility (IFMIF)

Cristian Pira

@ rradiation damage: =20dpa/y
® Neutron flux: 10"n/cm’-s
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Energy production with accelerators (ADS)

An accelerator-driven subcritical reactor is a nuclear reactor design formed by coupling a
substantially subcritical nuclear reactor core with a high-energy proton accelerator (600
MeV — 1 GeV). It could use thorium as a fuel, which is more abundant than uranium

High-intensity proton accelerator Proton beam

Advantages: 3 [s;i'm?E'MI L QPI [ -

To accelerator

e Use thorium as fuel, much more abundant To grid
than uranium and plutonium

» Short life span of waste products (in the
order of 100 years versus hundreds of
thousands of years of current reactors)

4 4 :

Electricity generation

Spallation target

* Intrinsically safe reactor (controlled fission)
Sub-critical core
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Radioisotope production

Theranostics possible with specific radionuclides

Coincidence
Processing Unit

Sinogram/
Listmode Data

Cyclotron for the radioisotope production

A 70 MeV Cyclotron installed at LNL INFN in the
framework of Laramed project

.p
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n PET - Positron Emission Tomography

Annihilation Image Reconstruction
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Radiotherapy

4-20 MeV , vacuum
Qo O 4

heavy metal target
electron beam

linear accelerator

Metal foil for the x-ray
production

copper anode
Figure 1 PP

patient i i & ¥ ray beam

Collimation
system
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Hadrontherapy

Form of radiotherapy for the treatment and cure

of tumors that are often surgically inoperable or
resistant to traditional radiotherapy treatments
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= Ansections @he Vivginian-Pilot

. Tuesday, April 23rd 2024
44°F(+
Water I reatment G News
e-Pilot Evening Edition

NEWS

Jefferson Lab receives $7.5 million grant to adapt technology to break down
‘forever chemicals’

Forever chemicals

Witipedia: POPs - “Persistent Oigamic Pollutants ™

pollutants “resistant to degradation through chemical,

blologlcal and photolytic processes™ — typically halogenated
organic compounds < strong bond halogen carbon

How to remove?
Ebeam treatment of waler
[dﬂ”?ﬂl&kﬂﬂ”b/ﬂlhﬂﬂfs d/'/wﬂy} big benefit = no addition of further chemicals required

& very cost-effective generation of free radicals
— “activate” water with beam

And no, we don’t (radio)activate your water!
HZO — e;q + HO +H + HOZ + H30+ + OH™ + HZOZ + Hz © stay below 10 MeV < neutron activation threshold

& create oxidants and reductants (not just any, some of the strongest) - Yet, public acceptance oft an issue — “treatment” vs “irradiation”

Treatment of “Forever Chemicals” in Wastéwater with -Eiectrr_"m E-E-a ms — |, Vennekate IPAC 23
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Water Treatment Technology already exist

* Deagu dyeing treatment plant in South Korea (2006)

- 1 MeV, 400 kW accelerator — 10,000 m3/h

* Guanhua Knitting Factory wastewater treatment in China (2020)

- 7 accelerators in total — 30,000 m3/h

‘Wastewater Treatment Facility in b ’

* Current technology: HV DC accelerators Dacgu Dyeing Industrisl Complex

- based on 1970s BINP developed ELV-type
- usually limited to 1-2 MeV few 100s kW

S scaling by adding multiple machines

Treatment of “Forever Chemicals” in Wastewater with Electron Beams = J, Vennekate IPAC 23
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Water Treatment Superconductive (SRF) version on R&D phase

" _— . ’ . . * collaboration with local sanitation district ~lr? L)
— combine cryocoolers & Nb,Sn cavities to build compact irradiation sources —_—

* UITF — existing 10 MeV SRF CW machine C&EI vo wonc awoms: v
Focusing - 3 . ics
° 2018 G. CiOVBtI et al. Solenoid — Cvromo\dula ;gf:nﬂ?: * first study on 1,4-dioxane ﬁ' ;ﬁi-g?;:sxg?ie;{lﬁ::gx::e?ﬁ;ifﬁ::emmdl
ThemlonisGun ;'{5@ . - also pollutant, not biodegradable e N
1 MeV & 1 MW A 4 ;. - usually treated with ozone (bromate) and/or peroxide & UV light (low transm.)
* great success — significant reduction @ low dose < no chemical added & no bromate formation(!)
water targets
High Power
Window
1 MeV penetration depth e” in water ~ 3-4 mm 10
- - SE (85pg/L)
- ELY @~ SE (8.95 pglL)
= nOt Very pl’aCtlcal ol —&— SE :7.5ul:L|
e ] —#— SE (0.48 pglL)
w—" O 06 .
move to 10 MeV (remember threshold) — 3-4cm e :1::":::
N, ; [P Bp
E 04 @ UPW (78.5 pgiL)
single cell = multi-cell cavity i O UPW (S5 00)
s = o
'—_-._.______1.__—_—__
S not new for SRF but for CC . e
1.5 2 25

Delivered Dose (kGy)

Jefferson Lab
Treatment of “Forever Chemicals” in Wastewater with Electron Beams = J, Vennekate IPAC 23
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Accelerators installed worldwide

50000 - - :
-3 \edical Accelerators

45000 - -4 |ndustrial Accelerator Total

Discovery Science Accelerators

40000

====|0on Implantation
35000 | =@=E-Beam Material Processing
Electron Beam Irradiation
30000 Nondestructive Inspection
25000 | Neutron Generators
Radioisotope Production
20000 | —g¢=|on Beam Analysis

15000 All accelerators |
10000 /
5000
0 === P ———————t

1968 1973 1978 1983 1988 1993 1998 2003 2008 2013 2018
Year

Total accelerators installed
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From accelerator technology to society

Applications in society are as well important to motivate large scale experiments

Particle therapy centres in Europe - 2002 Particle therapy centres in Europe - 2015
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From accelerator technology to society

Applications in society are as well important to motivate large scale experiments

Particle therapy centres in Europe - 2002 Particle thera Py facilities in operation
: 120
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q’(') .1/0 q’Q ~S "9 .\9 ,\9 ,\’Q .\’Q D ’\9 'LQ O AN) ’LQ "\9 D a'Q 'LQ
in Operation ======Under Construction/Planning

Information from Manjit Dosanjh, “From Particle Physics to Medical Applications”, IOP Publishing 2017, Bristol, UK
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Brief and incomplete panorama on the next accelerators
(slides from FGC week 2018, Amsterdam 313 April 2018 and TTC Meeting Mian 6.9 Febiay 201

in Liquid He vessel

~16000 Superconductive cavities of ~1m
R — -

(— s .
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Brief and incomplete panorama on the next accelerators
(slides from £CG week 2018, Amsterdam 4. 13 April 2018 and TTC Meeting, Milan 6-9 Februiary 2018

fjinternationa Linear Collider (ILC)

A decision from the Japanese community is expected soon, in 2019, 2020, 2021, 2022, 2023, 2024, .
Probably ILC will be not financied, but R&D still going on

Proposed a cost reduction both by scaling from 500 GeV to 250 GeV and by technological
innovations on the superconductmg materials (Nb) and cawty construction (surface process)

superconduct:ve Cavities of ~1m
-__‘_.. —. - - — . - - — ——— ‘J

— . _
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Brief and incomplete panorama on the next accelerators
(slides from FGC week 2018, Amsterdam 313 April 2018 and TTC Meeting Mian 6.9 Febiay 201

in Liquid He vessel

~16000 Superconductive cavities of ~1m
R — -

(— s .
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Brief and incomplete panorama on the next accelerators
(slides from FCC week 2018, Amsterdam 9. 13 April 2018 and TTC Meeting, Milan 6.9 February 2018
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Brief and incomplete panorama on the next accelerators

(slides from FCC week 2018, Amsterdtam 313 April 2018 and TTC Meeting, Miian 6. 3 febrary 208

Internaf

—

Remove SLAC

| Linac fr - _—
\! E:cﬁrﬁ:m___ - e et LCLS'" A T_

|

- __.n#

¢ New Cryoplant =

[~

Fad | Aq HATHINAL Pl ‘I ,'.'I_|:j.|':."."r|+

X-ray free-electron SLAT i [

Based on Furopean XFEL technology
280 SC cavities

First light in 2021
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Brief and incomplete panorama on the next accelerators
(slides from FCC week 2018, Amsterdam 9. 13 April 2018 and TTC Meeting, Milan 6.9 February 2018
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Brief and incomplete panorama on the next accelerators
(slides from £CG week 2018, Amsterdam 4. 13 April 2018 and TTC Meeting, Milan 6-9 Februiary 2018

Accelerator Projects in China
( 2005-2025)
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@
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----------- lHEPS
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|
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How works an accelerator?
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How works an accelerator?

Linear Accelerator (Linac)

Particles
Source

Acceleration

Circular Accelerator

Particles
Source
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How to curve accelerating particles?

o 1-i A e LHC ] 1
E =q ( E + vx B) Lorentz Force > & =
/ 1
= N\ £ '
) T * ¥
&J \‘ ’: o ng
S R
-5 ~§~: ..... . y
éf
100 TeV for FCC h-h
E,” (LHC14Tev)

R xx —
B

N 16 Tesla are necessary!

Nt

Impossible to obtain with Copper Coils
or permanent magnets

For High Energy Circular Colliders
SUPERCONDUCTORS are mandatory!

Quadrupole to focus
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FGG dipoles: a new challenge
NbTi (9-10 T for LHC)

FCC Conductor Development Programme

: 2 Other
Cable Strand Filaments L5 Materials
. . . . | ,_‘_‘
The cables house 36 strands of superconducting wire, each strand being exactly 0.825 mm in |
diameter. Each strand houses 6300 superconducting filaments of Niobium-titanium (NbTi). Production Ma‘:':i'i':;‘;m Mg, || 2212 ‘ ;:;:d
Each filament is about 0.006 mm thick, i.e. 10 times thinner than a normal human hair. \
Total superconducting cable required 1200 tonnes which translates to around 7600 km of | l WlFl! \ | | U“iim R
cable (the cable is made up of strands which is made of filaments, total length of filaments is ‘ KK KAT || yyay |[BrterBS| | lLovets ‘ oo "“”"“""4 ofGenesa || e | | pasg) | | HRSW

astronomical - 5 times to the sun and back with enough left over for a few trips to the moon) —
‘ JASTEC || Furukawa

The structure of the FCC Conductor Development Programme, showing the activities
(shaded boxes) and partners. A dotted outline and italic text indicate pending participants,
whose participation is currently being finalised. (Credit: CERN)

NbsSn (12T for HL-LHC, 16 T for FCC)

Cross-sections of prototype Nb3Sn wires developed in collaboration with CERN as part of the FCC conductor development programme.Top: optical micrographs of wires from
Kiswire Advanced Technology. Bottom: electron micrographs showing a wire developed by JASTEC in collaboration with KEK. Both show the unreacted wire before the heat
treatment to form the Nb3Sn compound from the niobium filaments and tin. (Credit: KAT/JASTEC. The image originally appeared in the CERN Courier, June, 2018)
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LHC,
4.5T 5.3T 3.5T 8.3T 15m. 56 mm

1276 dipoles

HERA, RHIC,
9m, 75 mm 9 m, 80 mm
416 dipoles 264 dipoles

Tevatron,
6 m. 76 mm
774 dipoles
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Magnetic field of a current line

* From the Maxwell equation: V X B = u,J f Bdl = pgyl

ol
e It’s easy to find that:  B(r) = #

Lying on a plane perpendicular to the current line and
tangent to the circumference of radius r

Cristian Pira Superconductive Materials 10 Introduction to accelerators



|deal Dipoles shapes: #1: wall dipole

A uniform current density flowing in two parallel
walls of infinite height generates a pure dipolar field

Winding and mechanical structure are not
particularly complicated

The coil is theoretically infinite

Coil truncation results in an acceptable field quality
only for large dimensions

Simply applying the Biot Savart law B UoJW
y 2 W

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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|[deal Dipoles shapes: #2: intersecting circles

HolT

* Within a cylinder carrying uniform J, the fieldis B(r) = >
directed tangentially

* Combining the effect of the two cylinders:

S
B 'uO]( —1,€0S0; + 1,c050,) = _Hds

Y 2

B, = ,u;,] (+rysin®; — r,sin®,) =0

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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|[deal Dipoles shapes: #3: /cos9 distribution

e Let us consider a current density distribution Jeos
Jcosvin a shell of inner radius R and thickness w B,

* To get the total cotribution we replace Iwith
JdS=Jcos¥-rdrddand integrate from Oto 2w R W

foJw By « current density (obvious)
By - — By « coil width w (less obvious)
2 By is independent of the aperture R (surprising)

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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Perfect dipole vs real dipole

Using real conductors, current density need to be uniform

The perfect Jcos?d distribution '
is approached accumulating
turn close to the midplane
(where cos?v™~1)

and reducing them at 90°
(where cos9—-0)

* the aperture is circular
* the winding is self supporting (roman arc)

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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Real dipoles

HiLumi D2 dipole LHC dipole
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LHC dipoles

Cross section of one aperture Detail of the LOC side end
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Dipole winding shapes - EuroGirGol project

* Results of the optimization of a double aperture 16 T dipole for the FCC
in 4 different options as part of WP5 of Eurocircol project (www.eurocircol.eu)

e All optimizations share common assumption: same magnet aperture (50 mm),
conductor performance ( J, g167 421k = 1500A/mm?), margin on the loadline (>14%),
allowed mechanical constraints ( 6<150 MPa at warm and <200 MPa at cold)

Cos-theta Blocks Common coils Canted Cos-theta

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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http://www.eurocircol.eu/

Cos-theta coil

1635
15.50
14.64
13.79

PROS =

10.37
9.517

* Natural choice (LHC dipoles) e

6.952

* Self -supporting winding (roman arc) e

e Circular aperture fully available for beam

CONS

* Hardway bending in coil ends

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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=
|

16.56
15.70
14.83

Block coil

PROS

 Particularly indicated for thick coils
(turn are stacked vertically)

* No wedges (saddle shape ends)

* Peak stress during powering in the low field region
ROXIE 102

CONS

* Need of internal support
(reducing available aperture)

* Very complicated coil ends (hardway bending)—

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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Common coil

PROS &

* Very simple coils
(flat racetrack shape)

CONS el

* Complicated stress management
(huge radial Lorentz force)

* Needs more superconductors

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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CGT Ganted Gos Theta coil

PROS

e Each turn is individually supported
» 360° continuity of the winding: no azimuthal pre-load gt
* No field distortion in coil ends

* Small number of mechanical components

CONS

* Part of the current density lost in generating solenoidal
field

* Need more superconductors

* Complicated winding if large Rutherford cables
(bonding of cable inside channels, reliable insulation against former)

Stefania Farinon, INFN, EASISchool3 Genoa 2020
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Results of the comparision

* The cosVY configuration has been selected as baseline

for the Conceptual Design Report of the EuroCirCol project
(http://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf?version=6)

* “Fach of these alternatives features some interesting characteristics
which may have a potential to become competitive to the baseline
cosine-theta design in terms of performance, in particular if they
would allow operation at a lower margin on the load-line, thus
reducing the required amount of conductor”

¥

Short model magnets (~1.5 m lengths) of all the options
will be built from 2018-2022

Stefania Farinon, INFN, EASISchool3 Genoa 2020

Cristian Pira Superconductive Materials 10 Introduction to accelerators


(http:/cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf?version=6)

Quadrupoles

Quadrupole magnets generate
constant and uniform gradient G:

Similar as for dipoles:

)/

% J

Intersec -'o of two '

crossed ellipses '“é.‘?or§§3 0 i‘,’;@%‘@’“ Sector quadrupole
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Realize hig magnets is not trivial...

Collaring press

WCASG

SUPERCONDUCTORS

Collaring completed

N. Valle, ASG, EASISchool3 Genoa 2020
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D2 - Model INFN-ASG

HiLumi D2 dipole

-
N. Valle, ASG, EASISchool3 Genoa 2020
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D2 - Model INFN-ASG

* Collaring operation

N. Valle, ASG, EASISchool3 Genoa 2020
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D2 - Model INFN-ASG

Aluminum sleeves introduction

N. Valle, ASG, EASISchool3 Genoa 2020
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D2 - Model INFN-ASG

Integration inside the iron yoke

N. Valle, ASG, EASISchool3 Genoa 2020
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D2 - Model INFN-ASG

View from LC Side

View from LOC Side

N. Valle, ASG, EASISchool3 Genoa 2020
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Detectors require hid magnet too!

Muon Detectors

A-I-l-AS - I-HC CERN 1 Solenoid

; ' \ Forward Calorimeters
B =2T e . o\ i

Electromagnetic Calorimeters

nom End Cap Toroid

| =20.5 KA in an Aluminium coextruded
I\rig'h Rutherford

COOLING

Double pancake indirect cooled by
Helium

E-Glass taping + Vacuum impregnation
under pressure

FORCE CONTAINMENT

Forces supported by an external
Aluminium 5083 case

The windings are prestressed by epoxy
pressurized bladders and tie-rods

L \
g il Inner Detector / - - e
Barrel Toroid et Fbdin vile Paboikvaiions Shielding

N. Valle, ASG, EASISchool3 Genoa 2020
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Detectors require hid magnet too!

ATLAS - LHC CERN

Barrel Toroid: 8 coils in separate cryostats
20 m diameter

25 m length

8200 m3 volume

118 t superconductor
370 t cold mass

830 t total weight

56 km conductor

20.5 KA current

3.85 T peak field

1 GJ stored energy

4.8 K indirectely cooled
Force 1100 t/coil

P. Fabbricatore, ASG, EASISchool3 Genoa 2020
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ATLAS - LHC GERN

ATLAS-CERN 2003 - Winding at ASG premises

N. Valle, ASG, EASISchool3 Genoa 2020

2,
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Challenge

Scale of components and integration accuracy

Tolerances << 1 mm in 26m
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ATLAS - LHC CERN
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ATLAS - LHC GERN

ATLAS-CERN 2003
Transported to
CERN by truck

N. Valle, ASG, EASISchool3 Genoa 2020
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GMS - LHG GERN

CMS- LHC GERN

‘ vacuum chamber

Bnom4T central detector
Solenoid in 5 modules Outer diameter = 7 m ' tﬁgﬂr:‘n;:gnetk

Cold mass overall length L=5x2.5=12.5m hadronic

¥\~ calorimeter

4 layers coil of cable made of pure
aluminium coextruded + NbTiRutherford +
structural aluminium alloy

COOLING
Indirect cooled by bi-phase Helium

E-Glass taping + Vacuum impregnation
FORCE CONTAINMENT

INNER Winding with tangential force + axial RS = I=
compression during impregnation N muos A |

Detector characteristics .«..,"' 5.

Forces SUDpOl‘ted by the cable itself + Width:  22m

external Aluminium 5083 H321 cylinder Diameter: 15m o
Weight:  14'500t
N. Valle, ASG, EASISchool3 Genoa 2020
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GMS - LHG GERN

CMS - INFN/CERN 2004 - The Conductor

21.60 mm

Y
Structural Aluminum 1
EB Weld Zone
32 Strands Rutherford _ |

Cabl
it 64.0 mm

High Purity
Aluminum matrix

- ,:-
Structural +

Aluminum

Conductor Ic =55.6 KA@ 4.2K, 5T

1.28 mm Dia Strand, Cu:SC Ratio = 1:1

N. Valle, ASG, EASISchool3 Genoa 2020
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GMS - LHG GERN

CMS - INFN/CERN 2004 Impregnation Test (throughout R&D activity)

N. Valle, ASG, EASISchool3 Genoa 2020
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GMS - LHG GERN

CMS - INFN/CERN 2004 - Outer Aluminium structures under fabrication at ASG premises

zan | Y

1

. Valle, ASG, EASISchool3 Genoa 2020
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GMS - LHG GERN

CMS - INFN/CERN 2004 - Winding and ground insulation glass cloths positioning

[

N. Valle, ASG, EASISchool3 Genoa 2020
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GMS - LHG GERN

CMS - INFN/CERN 2004 - Winding completion and resin excess removal

B
[ 3
"

=
.
t
]

'
LA

N. Valle, ASG, EASISchool3 Genoa 2020
ey
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Also transportation of these large coils is not trivial!!

% CONvOr M
| 1 EXCEPTIONNEL |
|

SER, bbricgiore el
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GMS - LHG GERN

i S 7
S —

R

January 2006: End of the CMS Magnet Manufacturing

Cristian Pira Superconductive Materials



How works an accelerator?

Linear Accelerator (Linac)

—~
ource

Circular Accelerator

Particles
Source

Cristian Pira Superconductive Materials 10 Introduction to accelerators



Particle sources

Electrons E \ N

light

Hot filament =
electrons et
Thermoionic electron emitters Photocathodes (photo-electric effect)
Magnetic | __Direction

Field

lons

RF plasma on metal target or gas species
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How works an accelerator?

Linear Accelerator (Linac)

Circular Accelerator

Cristian Pira Superconductive Materials 10 Introdiction to accelerators



Particle Energy and Speed

1 electron accelerated by 1V of difference of potential acquires the kinetic energy of IBV \

Accelerate aparticle means y

. ) / o

INcrease p=mv el wndt: 16V 7T J
A

anelectron vecomesrelativistic

(Ve| ~ ¢) when E > 5 Mev (me=9X1031kg) Speed of light(c)

roraproton Eis1000 times higher
(m,-16x107 kg)

Above a certain threshold the speed of the particle
becomes constant and anINCrement of

energy corresponds only to ____—  FEnemgy[Mev]
an increment of relativistic mass 00f 0.1 1 10 100 1000 10.000

Particle speed

From David Alesini (LNF-INFN), Introductions to particle accelerators
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Particle energy and energy density

14 TEV in center of mass of LHC what does it means?

1eV=1Vx1610"° C =1.6x1071° J
1 MeV =1.6x1018 ]

1GeV =1.6x101°]
1TeV =1.6x107 ]

A Pb bullet
of 200 g with a speed of 300 m/s

has an energy of 9000 J

However the single proton or neutron

The density of energy in LHC is 16 order of has a E, of only: 9000/N.,,., ~ 7102
magnitude higher than in a bullet! ~ 5x10-4 eV
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Acceleration

Particles are accelerated

using Electric Fields

Electrostatic
Acceleration

Limited bg dielectric breakdown

Cristian Pira

Superconductive Materials

Bertha Rontgen’s Hand
8 Nov 1895

Colour picture tube

deflection deflection
yoke coils

phosphor coating red green
on back of glass beam beam

red, green, and blue
electron guns

0.81 mm
(0.032 in)

electrongun -

i
i

accelerating  heater

electron bea
tube aperture beam

face grille

to scree

graphite insulator

coating

electron-emitting
cathode

glass neck
of tube

© 2010 Encyclopeedia Britannica, Inc.
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RF acceleration

Limited by LINAC lenght

M % =
HE"?: g5 Yis A T e B W - .
' S RS
- 1T - iy T
W I et " .
i E'r ; ; ';:,' 3 LY _.\ 2 F

Accelerating Particles ' R

w %,
.'I‘ ™




Acceleration with RF cavities

1. Before the particle bunch enters the cavity the electric field is ’% beam direction

pointing in opposite direction of the beam axis Particle bunch

2. The particle bunch enters the cavity. The electric field is pointing
in the direction of the beam axis 2 The particle is accelerated

beam direction

Particle bunch

3. The particle bunch leaves the cavity. The field direction has >: beam direction
changed again =
// B

article bunch

Cavities are used to accelerate particles by an alternating electric field

An alternating electric field causes an alternating magnetic field

The cavity confines the electromagnetic fields by surface shielding currents

These currents create losses (heating), which can be reduced by using SC materials

Cristian Pira Superconductive Materials 10 Introduction to accelerators



Resonant cavities main parameters

Ll e e o e LA B o o o o 0

Quality Factor Q

=

c 101U:_ !
| 1 Accelerating gradient
| (LINAC Length)

m\/ersetg propomomm to Llosses

(crao@@ww costs for SC cavmes) 0 5 10 15 20 25 30 35 40 45 50
(MV/m)

acc

Accelerating Field (MV/m)
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=—Beam tube—s

f/_\"- Symmetry axis
_* + 7
W/

«—Bean tiube—

Cell >

Magnetic field

Cristian Pira

Figures of Merit

To describe a RF cavity, we will need to know:

* Accelerating voltage
e Shunt impedance

e Dissipated power

* Transit time factor

e Surface impedance
e Stored energy

e Quality factor (Q)
 Geometry factor (G)
* R/Q

Superconductive Materials 10 Introduction to accelerators



Accelerating Field

The wanted (accelerating) mode is excited at the good frequency and position from a RF power supply
through a power coupler. The phase of the electric field is adjusted to accelerate the beam

R - eant tube | Ce | eqm be
- Acceleration field E, s - o
I\-laﬁn__etic field
_ o o\
« Acceleration voltage Ve = j E, (z)dz
tag M Symmetry axis \ /
V — \J 7 > Ez — = Electric field
. e c -
» Average Accelerating field E oo = E v Q;‘
a

»  The maximum energy that can be gained by a particleinthe cavity ~ AU, .., = qV.T

Eguator

- The difference between the particle velocity and the phase velocity of the v :
?_ccelferatting rﬁﬁld’ Ietad_s to 'Elll: efﬁ{:iellmxéf drop of the acceleration. The transit 1
ime factor /characterizes the actual efficienc '
! o 7[ E, (2) - /9@y
C
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Quality Factor Q

Owne can see that the
ratlon of two tntegrals

An important figure of merit is the quality factor ln the equation of @
which for any resonant system is determined only bg

cax/utg geometry
_ wg - stored energy WU _ wo J, |H|*dv
Qo = average power loss  P. Ry J, |H2ds s

Roughly 21T times the number of RF cycles it takes to dissipate the energy
stored in the cavity

Cristian Pira Superconductive Materials 10 Introduction to accelerators



Geometry Factor G

wo J, |H|*dv
R |, |H|?ds

0

One can see that the ration of two integrals in the 0, = G
equation of Q determined only by cavity geometry O 7 R,

The geometry factor depends only on the cavity

2
shape and electromagnetic mode, but not its size  _ *° Jy IHI*dv

It is very useful for comparing different cavity shapes J; |H|?ds
G = 257 Ohm for the pillbox cavity
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Why
Superconducting RF
cavity?

CINF



Skin depth limits performances of NG cavities

_ L [Hepe
oo 20

S\ RRR = (4.2K)/5(300K) =

R.(4.2 K) 1.3 mW

..In spite of the resistivity decreasing by a
factor 300 from 300 Kto 4.2 K,
R, only decreases by a factor of ~8!

Surface

10 -

300

R, (mQ)

0.1

resistance of Cu @1.5 GHz as a function of T

—

Anomalous skin effect />0

. NS j(x) = oE(x)

TR~ R=1/65

Courtesy: G. Ciovati
1 1 T [ 1 1 T T [ T T 1T T [ T T T T [ T T T T T T T T T ]

150 200 250 300
T (K)

0 50 100

To reduce R below the mQ range for RF application we need Superconductivity!

Cristian Pira

Superconductive Materials
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From Gu to SC Gavities

SGC cavities reduce the wall

dissipation by many orders of magnitude compared
to NC cavity

Cu 15eHF R (300 IO ~10 maQ, R 4K-1.3mo
Nb 15GH 17« (4K)~500 N, R, (2 K)~20 n
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The advantages of SG Gavities

1) AC power requirement less than normalconductors

(also taking into account cryogenic efficiency)

Rs Cu=103Q > Qnormalconductor ~ 104 Q
Rs Nb=10°%Q > quperconductor ~ 10°-101

acc

2) Reduction of the Linac length

E... Cu<1MV/m —> Limited by Joule effect Q

Eace ND=S5MV/M | 11y by Hery
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L00 of SRF cavities ==

Elliptical 1 cells (LHC), protons and Pb,

EIIiptiaI 9 cells XEL - Tefla .t%/pe__), electrons, 1.3 GHz 20-30 MV/m, B =1 400 MHz 5 MV/m, B =1

C e

A DA AN

Elliptical 5 cells (ESS), protons, 704 MHz, B = 0,86
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SRF Gavities: design example

more on V. Palmieri - Supercondcting Resonant Cavities
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Elliptical cavities

|rL"’i ri‘ (“ -Fl -fi' ﬂ' uflo('-m'f*‘i" p
TTTETTRRE

- 8 cavities operating
at 400 MHz Nb/Cu

Elliptic 5 cells (ESS), protons, 704 MHz, g = 0,86

« 5MV/mfor16 MV tot
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Elliptical cavities

Field max.

Re-
entrant

Cornell

peak

E Field B Field
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Half and Quarter Wave Resonators _

Half wave
(IFMIF) deutons, T75MHz, B = 0,092

Quaterwave - ! L
(Spiral 2) deutons &ions, 88 MHz, B = 0,07 '
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Quarter Wave Resonators

Electric field Magnetic field

Quater wave = : "
(Spiral 2) deutons &ions, 88 MHz, B = 0,07 '

Figure 1: Magnetic field distribution of the FRIB QWR.
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, INFN

ALPI
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B3

ALPI, INEN - Heavy lons Linac

/ CR12 CR13 CR14 CR15CR16 CR17 CR18 CR19 CR20
COLD BOX

CR10 CR9 CR8 CR7 CR6 CR5 CR4 CR3 B2

o Medium B, O f;hﬁﬁz, o High B. ‘

160 M Hz, 160 M Hz,
Nb/Cu or Pb/Cu. full Nb. Nb/Cu.

TANDEM

EXPERIMENTAL
HALLS 1, 2

Cristian Pira Superconductive Materials

- 64QWR

« 12Nb Low-g (0,055) a 80 MHz

« 44 Nb/Cu Medium g (0,11 a160 MHz
« 8 Nb/Cu High-g (0,13) a160 MHz

30
5 1 —o— Fall
—m— Gas-Foil
A Foil-Foil

o w
1

ALPI Specific Energy [MeV/u]
— — D 3]
o ;o O
1 1 1
4 O
(=4
/! !
g

0 20 40 &0 80 100 120 140 160 180 200
A

E,..~68MV/imalW
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Spoke Gavities

Spoke 2 gaps, protons, 352 MHz, B = 0,15

- Spokes operate at lower frequency at the same size and
3 compared to elliptical ones

+ Larger acceptance in particle
VeIOCIty __ 10} Elliptical
%.3 0|.4 0.5 Dl.ﬁ DI_? ufa {st 1

Particle velocity (v/c)
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Radio Frequency Quadrupole

Accelerating structure that:

- focus

» Packaging (tums into bunches)

« accelerates

Cristian Pira Superconductive Materials 10 Introduction to accelerators



PIAVE - SRFQ
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Crab cavities

- (Goal: rotate the particle beam to increase
luminosity

« |nstalled in KEKB and HL- LHC

crab cavity crab cavity

collision with
crab cavities

collision without
crab cavities
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European Spallation Source Linac

ﬁ EUROPEAN
% SPALLATION

-asesssssss— 352 2| MHz el a7 04 42 MHz ——

SOURCE «2Sm=> «2lm=> «50m=> <«3Sm=> <€325m> <«Bbotm=> «—Il13Im— «2279m—> < 159.2m >
Source LEBT RFQ MEBT DTL HEBT & Upgrade
75 keV 3 MeV 79 MeV 201 MeV 623 MeV 2500 MeV
Table 1: The ESS RF parameters
Length Input energy Frequency Geometric 3 No of sections Temp
m MeV MHz K
LEBT 2.1
RFQ 5.0 75 x1073 352.2 1 RT
MEBT 3.5
DTL 32.5 3 352.2 3 RT
Spoke 58.6 79 352.2 0.50 (optimal) 14 (2c) =
Medium 3 1139 201 704.4 0.67 15 (4c) =
High 5 2279 623 704.4 0.92 30 (4c) =
HEBT 100 2500
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Elettra Third Harmonic SC Passive Cavities

(a)
V/ Ve " . . .
5 Ve ™ Ve SCOPE: Increase the life of the beam dimvited by Touschek effect)
i s 08 e EFFECT: lengthens the bunch by reducing the charge density
il (1.5 GHz
i " " -4;11:13& {ilegrea;s 2 . b
(b)
5 - - 20
45 18
.. f’”’/ﬂ‘ W
£ —
% 23 A—ﬂ/’h_ — ;{J%
§ 1.; ¥ il 6 .-_E-,
i :
0 0
0 200 400 800 BOO
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