$\underline{L C D}(16 / 04 / 2024)$
Hemmessy - Milmer's Logic
$\varphi, \varphi::=T|F| \varphi \wedge \psi|\varphi \vee \psi|\langle a\rangle \varphi \mid[a] \varphi$
closely related to bisimilarity (program equivalence)
Henmessy-Milmer's Theorem
If P, Q are image-fimite processes
$P \sim Q \quad$ iff $\quad \forall \varphi(P \vDash \varphi H \quad Q \vDash \varphi)$
i.e.
(1) if $P \sim Q$ then $\forall \varphi \quad(P \vDash \varphi$ iff $Q \vDash \varphi)\left[\begin{array}{l}\text { does mot reequize } \\ \text { image-fimitemess }\end{array}\right]$
(2) If $P \nsim Q$ then $\exists \varphi \quad P F \varphi$ and $Q \notin \varphi$

Example

$s \nsim t$	$s \vDash[a][b]\langle a\rangle T$	$\neq t$
$s \nsim v$	$s F$	$\neq v$
$t \nsim v$	$t \vDash\langle a\rangle\langle b\rangle[b] F \neq N$	

* Counter example showing the meed of imoge-fimitemess
$P, Q \quad P \nsim Q$ and $\forall \varphi \in H M L \quad P \vDash \varphi \Leftrightarrow Q F \varphi$

$$
A^{<\omega}=\sum_{m \in \mathbb{N}} a^{m}
$$

$$
a^{n}=\underbrace{a \cdot a \cdot \ldots a}_{n \text { times }} \cdot 0
$$

$$
\begin{aligned}
& A^{\leqslant \omega}=A^{<\omega}+A^{\omega} \\
& A^{\omega}=a \cdot A^{\omega}
\end{aligned}
$$

OBSERVATION:
(1) $A^{<\omega} \quad x \quad A^{\leqslant \omega}$
(2) $\forall \varphi \in H M L \quad A^{<\omega} k \varphi$ iff $A^{\leqslant \omega} k \varphi$

* Hemmessy Milmer's lopic with recursion

$$
\begin{aligned}
& r=0 \quad p \nsim q \quad \varphi \text { s.t. } \quad p \neq \varphi, q \nLeftarrow \varphi \quad \varphi=[a]\langle a\rangle T \\
& r=a .0 \quad p \infty q \\
& r=a .0 .0 \\
& r=\underbrace{a \cdot a . \ldots a}_{m} \cdot O \\
& \varphi=[a][a]\langle a\rangle T \\
& \varphi=\underbrace{[a] \ldots[a]}_{m}\langle a\rangle T \\
& \text { distimguishing property } \\
& \operatorname{Imv}(\langle a\rangle T)=\bigwedge_{m \in \mathbb{N}} \underbrace{[a]_{1} \ldots[a]}_{m}\langle a\rangle T \\
& \operatorname{Pos}([a] F)=\bigvee_{m \in \mathbb{N}}\langle a\rangle \ldots\langle a\rangle[a] F
\end{aligned}
$$

We use recursion for defining $I_{m v}(\langle a\rangle T)$

$$
X=\langle a\rangle T \wedge[a] \times
$$

\rightarrow is there a solution
\rightarrow unique / comomical?

$$
\begin{aligned}
& =\langle a\rangle P_{r o c} \cap[0 .] \llbracket \times \mathbb{} \\
& 5=\langle a\rangle \text { Proc } \cap[0 .] S
\end{aligned}
$$

which solution?

$$
S=\phi \quad \phi=\frac{\langle a\rangle \text { Proc }}{\text { process }} \cap \underbrace{[a] \phi}_{\begin{array}{l}
\text { processes } \\
\text { mot ole } \\
\text { wot } \\
\text { com do " } a \text { " } a \text { " }
\end{array}}
$$

$$
S=\{p\} \quad\{p\}=\underbrace{\langle a\rangle}_{\{p, q\}} P_{\text {voc }} \cap \underbrace{[a]\{p\}}_{\{p, r\}}
$$

longest solution

* $\operatorname{Pos}([\square] F)$

$$
\begin{aligned}
& Y=[a] F \quad V\langle a\rangle Y \\
& 3 \\
& S=[a] \phi \cup\langle a\rangle S
\end{aligned}
$$

$S=$ Proc is a solution $\quad P_{r o c}=\frac{[a] \phi}{\left[\begin{array}{l}\text { mot able } \\ \text { to do " } a \text { " }\end{array}\right.} \cup \underbrace{\langle a\rangle \text { Proc }}_{\begin{array}{c}\text { able } k o \\ \text { do " } 0, \text { " }\end{array}}$
I want $S=\{0, r\} \quad$ smallest solution

$$
\begin{aligned}
\operatorname{Imv}(\langle a\rangle T) & \times \stackrel{\operatorname{mox}}{=}\langle a\rangle T \wedge[a] \times \\
& \nu \times .(\langle a\rangle T \wedge[a] \times) \\
\operatorname{Pos}([a] F) & \vee \stackrel{\min }{=}[a] F \vee\langle a\rangle Y \\
& \mu Y .([a] F \vee\langle a\rangle Y)
\end{aligned}
$$

* Other properties
* given φ

$$
\left[a_{1}\right] x \wedge \ldots \wedge\left[a_{m}\right] x
$$

$$
\operatorname{Imv}(\varphi)=\nu x \cdot(\varphi \wedge \widetilde{[\operatorname{Act}] \times})
$$

No deadlock: $\quad I_{m v}(\underbrace{\langle\text { Act }\rangle}_{\left\langle a_{s}\right\rangle T} T)$.. $v\left\langle a_{m}\right\rangle T$

$$
\operatorname{Pos}(\varphi)=\mu \gamma(\varphi \vee\langle\text { Act }\rangle \gamma)
$$

* Safe $(\varphi)=$ there is a complete computation (trace)

$$
P=P_{0} \rightarrow P_{1} \rightarrow P_{2} \rightarrow \ldots-\cdots \text { infinite } \quad \begin{aligned}
& \ldots P_{m} \nrightarrow \text { finite }
\end{aligned}
$$

where φ always hold $\quad \forall i \quad P_{i}=\varphi$

$$
\operatorname{Safe}(\varphi)=\nu \times \cdot(\underbrace{\varphi}_{\substack{\varphi \text { holds } \\
\text { mow }}} \wedge(\underbrace{\langle\text { Act }\rangle X}_{\begin{array}{c}
\text { I com make man then } \\
\text { and } \\
\text { sotisfy } x
\end{array}} \vee \underbrace{[\text { Act] } F))}_{\begin{array}{c}
\text { mo step } \\
\text { possible }
\end{array}}
$$

* Even $(\varphi)=$ in every complete computation there is a state where φ holds

- Until $\quad \varphi$ II ψ

$$
\mu \times . \quad \psi \vee(\varphi \wedge[A c t] \times \wedge\langle A c t\rangle T)
$$

More precisely....
u-colculus

$$
\begin{aligned}
\varphi, \psi::= & T|F| \varphi \wedge \psi|\varphi \vee|\langle a\rangle \varphi|[0,] \varphi| \\
& \times 1 \mu \times \cdot \varphi \mid \geqslant \times \cdot \varphi
\end{aligned}
$$

$\llbracket \varphi]_{\eta} \quad \eta: \operatorname{Vor} \rightarrow 2^{P_{\text {roc }}}$
$\eta(x) \leq P_{20 c}$ processes for which x is true

$$
\begin{aligned}
& \mathbb{I} T D_{q}=P_{q x} \\
& \mathbb{I} F D_{\eta}=\varnothing
\end{aligned}
$$

$$
\mathbb{I}\langle a\rangle \varphi D_{q}=\left\{P \mid \exists P \xrightarrow{a} P^{\prime} \wedge P^{\prime} \in \mathbb{I} \varphi D_{\eta}\right\}
$$

$$
\begin{aligned}
& \llbracket x \rrbracket_{\eta}=\eta(x) \\
& \llbracket \nu x \cdot \varphi \rrbracket_{\eta}
\end{aligned}
$$

$$
\varphi=\ldots \times \ldots \times \ldots
$$

$$
\begin{aligned}
& S \rightarrow \mathbb{I} \varphi \mathbb{I}_{\eta[x \rightarrow s]} \rightarrow \\
& \eta[x \rightarrow s] \quad(\gamma)= \begin{cases}\eta(\gamma) & \gamma \neq S \\
s & \gamma=x\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f_{\varphi}: 2^{P_{2 x}} \rightarrow 2^{P_{20 c}} \\
& s \longmapsto[\varphi]_{\eta[x \mid s]}
\end{aligned}
$$

then $\left[\nu \nu \times . \varphi D_{\eta}=\operatorname{Fix}\left(f_{\varphi}\right)\right.$ lorgest fixpoint of f_{φ} $\left(2^{\text {Plac }}, \subseteq\right)$ complete battice fy momotome (depends on aboence of)
megorition

EXERCISE (exam)

$$
\mathbb{I}_{\mu x} \varphi D_{\eta}=f_{i x}\left(f_{\varphi}\right)
$$

* with finite state proasses ($P_{z o c}$ is fimite)

$$
\begin{aligned}
& \nu \times . \varphi \quad P_{r o c} \supseteq f_{\varphi}\left(P_{20}\right) \supseteq f_{\varphi} f_{\varphi}\left(P_{2 x}\right) \ldots \supseteq F_{i x}\left(f_{\varphi}\right) \\
& \llbracket \nu \times \varphi \rrbracket \\
& \mu \times \cdot \varphi \quad \phi \subseteq f_{\varphi}(\phi) \subseteq \ldots .
\end{aligned}
$$

Exercise: Explicitly compute the semantics

$$
\begin{aligned}
& \varphi=\operatorname{Imv}(\langle b\rangle T) \\
& =\nu x \cdot \underbrace{\langle b\rangle T \wedge \text { [Act] } x}_{\psi} \\
& f_{\psi}(s)=\llbracket \varphi D_{\eta[x \rightarrow s]}=\langle b\rangle \llbracket T \rrbracket \cap[\text { Act] } s \\
& =\langle b\rangle P_{\text {roc }} \cap[\text { Act] } S \\
& \left\{s_{1}, s_{2} s_{3}\right\} \\
& f_{\psi}^{0}\left(P_{20 c}\right)=P_{20 c} \\
& f_{\psi}^{1}\left(P_{20 c}\right)=\underbrace{\langle b\rangle P_{20 c}} \cap \underbrace{[\text { Act }] P_{20 c}}=\left\{s_{1}, s_{2}, s_{3}\right\} \\
& f_{4}^{2}\left(P_{2 x}\right)=\begin{array}{l}
\langle b\rangle P_{2 x} \cap \\
\left\{s_{1}, s_{2}, s_{3}\right\}
\end{array} \quad \begin{array}{l}
{[\text { Act }]\left\{s_{1}, s_{2}, s_{3}\right\}} \\
\left\{s_{1} s_{2}, s_{3}, s_{4}\right\}
\end{array}=\left\{s_{2}, s_{3}\right\} \\
& \left\{s_{1}, s_{2}, s_{3}\right\} \quad\left\{s_{1} s_{2}, s_{3}, s_{4}\right\} \\
& f_{4}^{3}\left(P_{20 c}\right)=\left\{s_{2}, s_{3}\right\}
\end{aligned}
$$

EXERCISE: We defined

$$
\operatorname{Imv}(\varphi)=\nabla x(\varphi \wedge[\text { Act }] x)
$$

I could define the set of procenes where φ invariantly holds directly

$$
s=\left\{P \mid \quad \forall P \xrightarrow{*} P^{\prime} \quad P^{\prime} \vDash \varphi\right\}
$$

Then show that

$$
\llbracket I_{m v}(\varphi) \rrbracket=S
$$

shows that the formula coptures the intended behaviour.

The same can be dome for Pos, Even, Safe, Until....

