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Metabolic assays seek to:

Measure metabolites and macromolecules  

Measure energy equivalents and co-facors 

Measure enzymatic activities 

Measure activity of metabolic organelles



Measure metabolites and macromolecules

Quantitative measures rely on biochemical analytical approaches:

Wang & Luo, Front Bioeng Biotech, 2022



Enzymatic assays
Couples the oxidation/reduction of a specific metabolite with the generation of a 
co-factor required for the production of a quantifiable output (luminescence, 
fluorescence, color).

2 Promega Corporation · 2800 Woods Hollow Road · Madison, WI  53711-5399 USA · Toll Free in USA 800-356-9526 · 608-274-4330 · Fax 608-277-2516
TM494 · 3/17 www.promega.com

1. Description

The Glucose-Glo™ Assay is a bioluminescent assay for rapid, selective and sensitive detection of glucose in 
biological samples. The assay couples glucose oxidation and NADH production with a bioluminescent NADH 
detection system (1,2) (Figure 1). Glucose dehydrogenase uses glucose and NAD+ to produce NADH. In the 
presence of NADH a pro-luciferin Reductase Substrate is converted by Reductase to luciferin that is then used by 
Ultra-Glo™ Recombinant Luciferase to produce light. 

When Glucose Detection Reagent, containing glucose dehydrogenase, NAD+, Reductase, Reductase Substrate and 
Luciferase, is added to a sample containing glucose at a 1:1 ratio, the enzyme-coupled reactions start and run 
simultaneously (Figure 2). The luminescent signal is proportional to the amount of glucose in the sample and 
increases until all glucose is consumed, at which point a stable luminescent signal is achieved (Figure 3, Table 1). 

The Glucose-Glo™ Assay is a versatile system that is amenable to higher-throughput formats (3) and compatible 
with many sample types (Figure 2). Samples may require upfront sample processing, including dilutions, to fit into 
the linear range of the assay. They may also require inactivation of endogenous enzyme activity/deproteinization 
and NAD(P)H degradation (Section 3.C, Table 2). To simplify sample processing, methods for rapid enzyme 
inactivation and NAD(P)H degradation are provided that are compatible with 96- and 384-well plates and do not 
require sample centrifugation or spin columns. 

Figure 1. Schematic diagram of the Glucose-Glo™ Assay principle. Glucose dehydrogenase catalyzes the 
oxidation of glucose with concomitant reduction of NAD+ to NADH. In the presence of NADH, Reductase 
enzymatically reduces a pro-luciferin Reductase Substrate to luciferin. Luciferin is detected in a luciferase reaction 
using Ultra-Glo™ rLuciferase and ATP, and the amount of light produced is proportional to the amount of glucose 
in the sample.
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Requires: 
• De-proteinization of samples 
• Specific enzyme (recombinant) 
• NAD(P)/H degradation 
• Proportionality



Enzymatic assays

Pros: 
• Easy and quick 
• Accessible

Cons: 
• Poorly sensitive 
• Poor linearity

Couples the oxidation/reduction of a specific metabolite with the generation of a 
co-factor required for the production of a quantifiable output (luminescence, 
fluorescence, color).



Enzymatic assays

Pros: 
• Easy and quick 
• Accessible

Cons: 
• Poorly sensitive 
• Poor linearity

• ONE METABOLITE AT THE TIME

Couples the oxidation/reduction of a specific metabolite with the generation of a 
co-factor required for the production of a quantifiable output (luminescence, 
fluorescence, color).



Enzymatic activity

Switching on/off the genes that encode specific enzymes or regulating their activity 
contributes to control/regulate cell metabolism

• Allosteric regulation 
• Availability of co-factors 
• Endogenous activators/inhibitors 
• Feedback mechanisms 
• Compartmentalization



Enzymatic activity

Switching on/off the genes that encode specific enzymes or regulating their activity 
contributes to control/regulate cell metabolism

• Allosteric regulation 
• Availability of co-factors 
• Endogenous activators/inhibitors 
• Feedback mechanisms 
• Compartmentalization

In vitro assays are classical tools to assess enzymatic activity. 
Yet, they hardly capture the complexity metabolic regulation in vivo.



Measure metabolites and macromolecules

Quantitative measures rely on biochemical analytical approaches:

Wang & Luo, Front Bioeng Biotech, 2022



High-performance liquid chromatography (HPLC)
It allows the separation, identification, and quantification of each component in a 
mixture. The fundamental concept behind HPLC originates from column 
chromatography, a process in which a mixture is passed through a stationary phase, 
and the various components separate out due to their multiple interactions with the 
stationary phase.



The sample is carried by the mobile phase and driven through the column after 
being inserted into the HPLC system via the injector. The different components 
experience varying degrees of retention as the mixture interacts with the stationary 
phase, leading to their separation down the column. 
Depending on the type of analytes, the eluted components are next determined 
using a suitable detector, such as ultraviolet (UV) or visible light detectors, detectors 
of refractive index, or mass spectrometers.

High-performance liquid chromatography (HPLC)

Pros: 
• Rapid 
• Cheap

Cons: 
• Metabolite identification 
• Poor adaptability



High-performance liquid chromatography (HPLC)



Measure metabolites and macromolecules

Quantitative measures rely on biochemical analytical approaches:

Wang & Luo, Front Bioeng Biotech, 2022



Spectrometry (NMR or MS)

Analytical approaches that resolve a mixture of components into spectra defined by 
multiple peaks (where each peak correspond to a different molecule). 
These peaks are separated according to different physical properties (mass, 
charge, solubility, etc). 
You obtain a “fingerprint” that is a snapshot of cell metabolism at a given time.

Common types of analysis include 
those that quantify principal 
components, associate hierarchical 
clusters, create partial least squares, 
discriminant function, or even form 
artificial neural networks. Collectively, 
this analysis helps identify and 
discriminate the function of the 
metabolites in the sample, where 
databases can secondarily be used to 
validate specific pathway activity.



Spectrometry (NMR or MS)

Analytical approaches that resolve a mixture of components into spectra defined by 
multiple peaks (where each peak correspond to a different molecule). 
These peaks are separated according to different physical properties (mass, 
charge, solubility, etc). 
You obtain a “fingerprint” that is a snapshot of cell metabolism at a given time.

Pros: 
• Sensible 
• Robust 
• Large-scale approach 

(METABOLOMICS)

Cons: 
• Difficult (requires extensive training)



Spectrometry (NMR or MS)

NMR is a quantitative, robust, reproducible, and high-throughput analytical 
technique associated with a straightforward and simple sample preparation 
procedure. MS-based techniques are more sensitive, in particular when using liquid 
chromatography (LC) connected to a tandem MS/MS for quantitative analysis in the 
multiple reaction monitoring mode. 

Metabolomic studies often rely on nuclear magnetic resonance (NMR) 
spectroscopy or mass spectrometry (MS) techniques for the identification 
and quantification of metabolites.

In NMR, a wide variety of samples may also be used, including plasma, serum, saliva, etc., and these 
must be deproteinized prior to analysis through precipitation or extraction to weaken the intensity of 
interfering resonances. After derivatization and buffering the samples undergo analysis to produce a 
specific NMR profile, constitutive of many peaks that represent various molecules within the sample. 
For NMR, various nuclei spectras may be used, including 1H, 13C, 15N and 31P, and the profile can 
be interpreted using multivariate statistical analysis with pattern recognition software.  

https://www.sciencedirect.com/topics/chemistry/nmr-spectroscopy


Mass Spectrometry (GC-MS or LC-MS)

Similar to NMR, mass spectrometry (MS) easily distinguishes the masses of molecular 
components, or more specifically, ionized molecules and fragments.  

1. Samples are prepared accordingly then undergo a rapid quenching step to quickly stop any 
metabolic activity within the cell. If required, samples must undergo a purification step to 
separate the cellular phase from the extracellular medium.  

2. The sample will undergo an extraction phase that aims to remove and dissolve the 
maximum amount of original sample metabolites as possible. There is no one-size-fits-all for 
extraction, as these steps may be variable and must be empirically determined for each 
sample and reagent combination.  

3. Samples are concentrated to partially, if not totally, remove leftover solvents.  

Usually, samples will undergo another technique for better resolution prior to MS analysis. 
Liquid chromatography (LC) is most commonly used to separate unneeded metabolites 
according to a column and eluent, though gas chromatography (GC) can be used to 
separate volatile and non-volatile metabolites as well.

https://www.aatbio.com/resources/faq-frequently-asked-questions/what-are-the-types-of-mass-spectrometry
https://www.aatbio.com/resources/faq-frequently-asked-questions/What-is-protein-purification
https://www.aatbio.com/resources/faq-frequently-asked-questions/What-is-the-difference-between-liquid-chromatography-LC-and-high-performance-liquid-chromatography-HPLC


Mass Spectrometry 
(GC-MS or LC-MS)

Alseekh et al, Nat Methods, 2021

Metabolites are identification with computational 
approaches, including ion annotation, spectral 
interpretation and spectral matching.

Targeted metabolomics: spectra matches known 
analytical standards



Mass Spectrometry 
(GC-MS or LC-MS)

Alseekh et al, Nat Methods, 2021



More than 1 million different metabolites occur across the tree of life, with between 1,000 and 40,000 
estimated to occur in a single species.

Even the most comprehensive methods cannot provide firm upper limits for metabolite number. Current 
capabilities for detection and quantification of metabolites fall a long way short of being comprehensive. 
Currently, combinations of the most comprehensive methods are able to quantify 700 of the 3,700 
metabolites predicted to be present in Escherichia coli, 500 of the 2,680 metabolites predicted to be 
present in yeast, 8,000 of the 114,100 metabolites predicted to be present in humans and only 14,000 
of the over 400,000 metabolites predicted to be present in the plant kingdom. Chemical diversity, rapid 
turnover times and broad dynamic range in cellular abundance currently prohibit the possibility of using 
single-extraction and single-analysis procedures to measure all metabolites. 

To tackle these challenges:
• Different extraction techniques / matrices
• Combinations of analytical methods 
• Rigorous standards for normalization

Mass Spectrometry (GC-MS or LC-MS)



Enzymatic activity

Switching on/off the genes that encode specific enzymes or regulating their activity 
contributes to control/regulate cell metabolism

• Allosteric regulation 
• Availability of co-factors 
• Endogenous activators/inhibitors 
• Feedback mechanisms 
• Compartmentalization
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Figure 3: Post-labeling correction resolves mitochondrial and cytosolic acetyl-CoA metabolism. ACLY KO MEF cells were pre-labeled by incubation with 0.1 mM 13C2-
acetate over a time-course. A) Acetate is preferentially used for cytosolic acetyl-CoA generation in ACLY KO MEFs. B) In direct extraction, whole cells were immediately quenched in
trichloroacetic acid (TCA). C) Acetyl-CoA M2 enrichment after direct extraction. D)3-hydroxymethylglutaryl-CoA (HMG-CoA) total acyl carbon labeling, indicating % enrichment of all
6 acyl carbon atoms after direct extraction. E) Schematic comparison of post-labeled and no post-label approach. Post-labeling accounts for artifactual metabolism during
processing by addition of a supraphysiological concentration of partially labeled tracer to cells that were pre-labeled with tracer as well as controls that were not pre-labeled. No
tracer is added upon cell harvest in the no post-label approach. F) Representative data from time-course for enrichment of acetyl-CoA M2 into whole cell lysate (WCL), mitochondria
and cytosol after sub-cellular fractionation with no post-labeling. Enrichment was calculated by normalization to unlabeled controls (time ¼ 0). G) Representative data from time-
course for enrichment of acetyl-CoA M2 and (H) HMG-CoA in whole cell lysate (WCL), mitochondria and cytosol after sub-cellular fractionation with post-labeling by inclusion of
5 mM each of 13C2-acetate and unlabeled acetate in the fractionation buffer. Enrichment was calculated by normalization to post-labeled controls (time ¼ 0). I) Comparison of
direct extraction from whole cells and post-label normalization of sub-cellular fractions at steady-state. Representative experiments with n ¼ 3 distinct replicate samples (individual
symbols) are shown and error bars indicating 95% confidence bands. For C,D,FeH, shading indicates 95% confidence bands and symbols represent individual replicate values. For
F and G, statistical significance was determined for comparison between mitochondrial and cytosolic data for each time point by two-tailed student’s t-test analysis with sig-
nificance defined as p < 0.05 (*). ND ¼ not determined.

Brief Communication

66 MOLECULAR METABOLISM 30 (2019) 61e71 ! 2019 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

Trefely et al, Mol Metab, 2019

Subcellular fractionation introduces MS bias
Metabolic reactions are extremely dynamic and occur post harvesting.

Long fractionation protocols affect readouts.



Metabolic assays seek to:

Measure metabolites and macromolecules  

Measure energy equivalents and co-facors 

Measure enzymatic activities 

Measure activity of metabolic organelles



Measure energy equivalents and co-factors 
ATP and NAD(P)/H levels can be easily measured in 
vitro using enzymatic assays (commercially 
available). 

However, they do not capture an essential level of 
regulation: availability at different compartments
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Various transcription factors and regulatory proteins specifically sense intracellular biomolecules from 
bacteria to mammals. Substrate-sensing proteins often trigger conformational changes upon biomolecule 
binding, which induces fluorescence changes in fluorescent proteins. Fluorescence can be readily 
measured by routine instruments such as plate readers, flow cytometry or fluorescence microscopy.

Fluorescent biosensors must meet several criteria for live-cell and in vivo developmental studies, including 
high specificity, large responsiveness, appropriate affinity, strong brightness, and ratiometric readout, 
which allows reliable and convenient capture of subtle changes in physiological contexts.

Measure energy equivalents and co-factors 

Fluorescent biosensors allow the 
monitoring of NAD(P)/H in space and 
time. 
They allow in vivo analyses. 
Generally consist of two basic 
components: substrate-binding 
proteins and one or two fluorescent 
proteins.



SoNar was designed by inserting circularly permutated yellow fluorescent protein (cpYFP) into the 
truncated Thermus aquaticus T-Rex protein. The sensor has two excitation peaks, which enable an 
intrinsically ratiometric measurement. SoNar responds to the NAD+/NADH ratio but does not depend 
on either individual NAD+ or NADH concentrations alone.

Fluorescence biosensors for the measuring of 
energy equivalents and co-factors 



©
20

16
N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

PROTOCOL

NATURE PROTOCOLS | VOL.11 NO.8 | 2016 | 1349

quantified subcellular NADH concentra-
tions in mammalian cells and monitored 
the dynamic changes of subcellular NADH 
levels, as affected by NADH transport, glu-
cose metabolism, electron transport chain 
function and redox environment16. Using 
Peredox sensors, Yellen and colleagues17 
showed that glycolysis opposed the lactate 
dehydrogenase equilibrium to produce a 
reduced cytosolic NAD+/NADH redox 
state, and they observed that primary 
mouse astrocytes and neurons exhibited 
different NAD+/NADH redox states.

SoNar was developed by screening the 
chimeric proteins consisting of Rex and 
cpFPs based on an alternative design. 
cpYFP was inserted into surface loops 
of heat-stable Rex protein from the ther-
mophilic bacterium T-Rex. The chimera 
in which cpYFP was inserted into the 
nicotinamide-binding site at the T-Rex 
dimer interface showed the largest fluores-
cence changes in the presence of NADH. 
The chimera was further engineered by 
truncations of the linker region before or 
after the cpYFP domain, and by removing 
the DNA-binding domain of T-Rex. The  
variant that showed the most substantial 
increase in the fluorescence ratio when 
excited at 420 and 485 nm in the presence of NADH was selected 
and termed SoNar18.

Interestingly, the SoNar sensor showed a distinct fluorescence 
response to NADH and NAD+. That is, the ratio of fluorescence 
intensities excited at 420 nm and 485 nm (F420 nm/F485 nm) is 
increased in the NADH-bound holo form of SoNar compared 
with the apo form of SoNar, whereas the ratio is decreased in the 
NAD+-bound holo form of SoNar compared with the apo form 
of SoNar. By contrast, the previously reported Frex and Peredox 
sensors showed obvious fluorescence changes only when bound 
to NADH, and not when bound to NAD+. Therefore, SoNar can 
be used as a sensor for NADH or NAD+ separately, and for in vitro  
studies when only one of these redox forms is changing. For 
example, SoNar may be used to assay the activity of Sirt-family 
deacylases, which use NAD+ as cosubstrate, or NAD kinase, which 
converts NAD+ to NADP+.

In the literature, the total intracellular pool of NAD+ and NADH 
was reported to be in the range of 50–400 µM (refs. 15,47–49),  

whereas the ratio of free/bound NADH was reported to be 1:4  
(ref. 47). Therefore, a reasonable estimation of the free intrac-
ellular pool of NAD+ and NADH is 10–80 µM. We previously 
reported that in HEK293FT cells the cytosolic-free NADH  
concentration was ~130 nM (ref. 16), whereas the cytosolic 
NAD+/NADH ratio was ~400 (data from SoNar), which translates 
into a free total intracellular pool of NAD+ and NADH of ~50 µM.  
The dissociation constants of SoNar for NAD+ and NADH 
are far less than the total intracellular free pool of NAD+ and 
NADH; therefore, under physiological conditions, SoNar would 
be occupied by either NAD+ or NADH molecules, and its steady-
state fluorescence would accurately report the NAD+/NADH  
ratio, unaffected by the total NAD(H) pool. By contrast, the 
Peredox sensor only partially reports the NAD+/NADH ratio, as 
its fluorescence is also dependent on the total pool of NAD+/
NADH17; therefore, Peredox’s fluorescence cannot be used to 
compare the NAD+/NADH ratio of different cells without care-
ful calibration against the cytosolic pool of NAD+ and NADH. 

Stage-top incubator Glass-bottom
dish (segmented)

Highly stable Sutter
Lambda XL light source

Excitation
filter wheel

1.0

0.5

R
at

io
: 4

25
/4

82
 n

m

0

Add 0.1 mM
pyruvate

Add 5 mM
oxamate

1.2

1.0

0.8

0.6

0.4

0.2
0 500

Time (s)

R
at

io
: 4

25
/4

82
 n

m

1,000 1,500 2,000

1.8

0

0.9

Cardiomyocytes

385 ± 38253 ± 19264 ± 33372 ± 30651 ± 45NAD+/NADH
ratio

MEFAstrocytesHepatocytes

S
oN

ar
cp

Y
F

P

Renal tubular
epithelial cells 

1.0

R
at

io
: 4

25
/4

82
 n

m
R

at
io

: 4
25

/4
82

 n
m

0

0.5

0.1 mM
pyruvate 5 mM

oxamate

a

b

c d

0 s 30 s 60 s 100 s 130 s 160 s 190 s 220 s 250 s 280 s

310 s 340 s 370 s 400 s 430 s 460 s 490 s 520 s 550 s 580 s

610 s 640 s 670 s 700 s 730 s 760 s 790 s 820 s 850 s 880 s

910 s 940 s 970 s 1,000 s 1,030 s 1,060 s 1,090 s 1,120 s 1,150 s 1,180 s

1,300 s 1,330 s1,210 s 1,240 s 1,270 s 1,360 s 1,390 s 1,430 s 1,460 s 1,490 s

1,610 s 1,640 s1,520 s 1,550 s 1,580 s 1,670 s 1,700 s 1,730 s 1,760 s 1,790 s

1,910 s 1,940 s1,820 s 1,850 s 1,880 s 1,970 s 2,000 s 2,030 s 2,060 s 2,090 s

Figure 1 | Imaging and monitoring the  
NAD+/NADH redox state in single living cells.  
(a) Overview of the fluorescence microscopy 
setup. (b,c) Sequential images (b) and kinetic 
course (c) of H1299 cells expressing SoNar in 
response to 0.1 mM pyruvate and 5 mM oxamate. 
Images are pseudocolored according to the key  
to show the ratio of fluorescence with excitation 
at 425 versus 482 nm. Scale bar, 10 µm.  
(d) Fluorescence images of five different types 
of primary cells expressing SoNar or cpYFP. MEF, 
mouse embryonic fibroblasts. Scale bars, 10 µm.

Zhao et al, Nat Protocol, 2016

Fluorescence biosensors for the measuring of 
energy equivalents and co-factors 



Real-time tracking NADH/NAD+ and NADPH dynamics during the cell cycle

Li et al, Cell Regener, 2022

Fluorescence biosensors for the measuring of 
energy equivalents and co-factors 
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Figure 1. Real-time monitoring of compartmentalized NAD+/NADH redox ratios in live cells
(A) Scheme showing the domains of SoNar and the sequence of 23 mitochondrial targeting sequence.

(B and C) Representative images of mt-SoNar expression in fibroblasts (B) and epithelial cells (C).

(legend continued on next page)
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De Michele et al, Int J Biochem Cell Biol, 2014

Fluorescence biosensors for the measuring of 
energy equivalents and co-factors 



Metabolic assays seek to:

Measure metabolites and macromolecules  

Measure energy equivalents and co-facors 

Measure enzymatic activities 

Measure activity of metabolic organelles



Enzyme activity assays
Enzymatic assays can be used to probe the activity of specific pathways

….or test new inhibitors!



 
 

1 
Our products are for research use only, not for diagnostic or therapeutic use 

● bpsbioscience.com    ● 858-202-1401    ● support@bpsbioscience.com 
 

  #79315 
96 reactions 

Description  
The Acetyl-Coenzyme A Carboxylase (ACC1) Assay Kit is designed to measure ACC1 activity for screening and 
profiling applications using ADP-Glo™ as a detection reagent. The assay kit comes in a convenient 96-well format, 
with enough purified recombinant ACC1, ATP, acetyl-CoA, sodium bicarbonate and assay buffer for 100 enzyme 
reactions.  
 
Background 
ACC1 (acetyl-coenzyme A carboxylase 1) is one of two isoforms of acetyl-CoA carboxylase. It is cytosolic and it is 
involved in ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in de novo fatty acid 
synthesis, and it is found predominantly in the liver and adipose tissue. Its function is regulated by 
phosphorylation, allosteric regulators and other proteins, in response to the energetic needs of cells. Acetyl-CoA 
is at the crossroads between multiple metabolic pathways, so ACC1 has an impact in the formation of building 
blocks for new cells and in the response to metabolic stress. ACC1 has been linked to several diseases, such as 
cancer, diabetes, NAFLD (non-alcholic fatty liver disease) and obesity. Inhibition of ACC1 by TOFA (5-tetradecyloxy-
2-furoic acid) can result in complete blockage of DNL (de novo lipogenesis) and may be a potential therapy for 
patients with NAFLD. The development of inhibitors specific for ACC1, for instance by targeting their catalytic 
domains or dimerization, may prove beneficial in the treatment of ACC1-related diseases. 
 
Applications 
Study enzyme kinetics and screen small molecule inhibitors for drug discovery and high throughput screening 
(HTS) applications. 
 
Supplied Materials 

Catalog # Name Amount  Storage 

50202 ACC1, FLAG-His-Tags* 10 µg -80°C 

79283 5x ACC Assay Buffer   1 ml -20°C 

79686 500 µM ATP  100 µl -20°C 

 2 mM Acetyl-CoA  25 µl -20°C 

 1M Sodium Bicarbonate 75 µl -20°C 

79696 White 96-well plate 1  Room Temperature 

*The concentration of the protein is lot-specific and will be indicated on the tube. 
 
Materials Required but Not Supplied  

Name Ordering Information   

ADP-Glo™ Kinase Assay Promega #V6930 
Microplate reader capable of reading luminescence  
Adjustable micropipettor and sterile tips  

 
Storage Conditions 

This assay kit will perform optimally for up to 6 months from date of receipt when the materials are stored 
as directed.  
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Enzyme activity assays

Enzyme can be immune-purified and activity probed in vitro. 

Yet, all problems related to in vitro settings are still there



Enzyme activity assays - ex vivo

Metabolic enzymes retain 
activity post harvesting and post 
fixation. 

Activity of most abundant 
enzymes can be assessed in 
fixed cells or tissues. 

E.g.: Citrate Synthase
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Metabolic assays seek to:

Measure metabolites and macromolecules  

Measure energy equivalents and co-facors 

Measure enzymatic activities 

Measure activity of metabolic organelles



Mitochondria couple pyruvate oxidation, electron 
transport and oxidative phosphorylation



Components of the Respiratory Chain

1. NAD+-linked dehydrogenases 
2. Flavin-linked dehydrogenases 
3. Iron-sulphur proteins 
4. Ubiquinone 
5. Cytochromes



The complexes of the ETC
• Complex I 

– NADH dehydrogenase 

• Complex II 
– Succinate dehydrogenase 

• Complex III 
– Cytochrome bc1 complex 

• Complex IV 
– Cytochrome aa3 oxidase 

• Complex V 
– ATP synthase
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Figure 14-10  Essential Cell Biology (© Garland Science 2010)

Membrane potential is a proxy for proton pumping



Membrane potential can be measured 
with fluorescent probes

Probes: 
TMRE 

TMRM 

Rhodamine123 

JC-1 (not ratiometric) 

DiOC (toxic!!)
Probes must be: 
• Targeted onto mitochondria (exploiting MMP) 
• Fluorescent 
• Change status according to acidity/membrane polarization 

Readout: 
• Flow cytometry 
• Plate reader 
• Imaging



Membrane potential can be measured 
with fluorescent probes

Imaging / Plate reader

Add TMRE/TMRM
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Membrane potential can be measured 
with fluorescent probes

Flow cytometry



Assessing “mitochondrial activity” means:

Complex assembly 

Complex activity 

NAD oxidation 

FAD oxidation 

CoQ oxidation 

Proton pumping 

Cytochrome composition 

Oxygen consumption

“Blue Native” gels 

Enzymatic assays 

Various methods 

Spectrometry 

Mass spectroscopy 

Fluorescent probes 

Spectrometry 

Respirometry



Assessing “mitochondrial activity” means:

Complex assembly 

Complex activity 

NAD oxidation 

FAD oxidation 

CoQ oxidation 

Proton pumping 

Cytochrome composition 

Oxygen consumption

“Blue Native” gels 

Enzymatic assays 

Various methods 

Spectrometry 

Mass spectroscopy 

Fluorescent probes 

Spectrometry 

Respirometry



The Clark electrode
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The Clark electrode

The slopes of different mitochondrial states can be used to infer Complex activity and NAD/FAD oxidation



The Clark electrode

submitted to a specific stimulus. One reason to use mitochondria in
intact or permeabilized cells is that mitochondria interact with the
cytoskeleton network, being grouped in functional clusters in close
contact with other cell organelles and structures, probably an

Fig. 4 General representation of the Clark-type electrode and experimental setup. (a) The biological prepara-
tions (mitochondrial or cell suspensions) are introduced in a well-defined volume of media (depending on the
preparations), inside a temperature-controlled incubation chamber (1) (with water jacket, 2) with an oxygen
electrode inserted (3) and magnetic stirrer coupled (4). The electrode determines O2 concentration in aqueous
solutions over a period of time. (b) Oxygen electrode inset (adapted from ref. 5). The electrode itself is located
inside the chamber, in horizontal position (or depending on the general apparatus design). The platinum
cathode (5) is located surrounding a rod-like center anode (6) made by silver (reference Ag/AgCl electrode).
These two electrodes connect with each other by a thin layer of electrolyte (50% saturated KCl solution, 7).
Directly placed on top of the rod, there is an oxygen permeable Teflon membrane (8), which is tight fitted by a
rubber ring (9). The O2 recordings can be done in open or closed chamber mode. In the last case, the
reciprocal air solution O2 diffusion is avoided, which allows for better determination of the respiratory rates.
Experimental additions of solutions, substrates, mitochondria, and substrates/inhibitors are done through the
top of the chamber (10) (open mode) or through the small hole (11) inside the stopper, respectively, using a
glass syringe (12). The electric signal may be directly measured in a flatbed recorder (13) or digitally converted
(14) for later processing in a personal computer (15). The electrodes (see inset b) are polarized (16) by a
constant voltage between 0.4 and 1.2 V, generating a current which reduces O2

12 Ana M. Silva and Paulo J. Oliveira General representation of the Clark-type 
electrode and experimental setup.  

(a) The biological preparations (mitochondrial 
or cell suspensions) are introduced in a well-
defined volume of media (1) with an oxygen 
electrode inserted (3) and magnetic stirrer 
coupled (4). The electrode determines O2 
concentration in aqueous solutions over a 
period of time.  

(b) Oxygen electrode inset. The electrode 
itself is located inside the chamber. The 
platinum cathode (5) is located surrounding a 
rod-like center anode (6) made by silver 
(reference Ag/AgCl electrode).  

The O2 recordings can be done in open or 
closed chamber mode. In the last case, the 
reciprocal air solution O2 diffusion is avoided, 
which allows for better determination of the 
respiratory rates. Experimental additions of 
solutions, substrates, mitochondria, and 
substrates/inhibitors are done through the top 
of the chamber (10) (open mode) or through 
the small hole (11) inside the stopper, 
respectively, using a glass syringe (12).



OROBOROS

same chamber. Smart Fluo-Sensors (pre-calibrated LED with spe-
cified wavelength, photodiode, filter cap attached with specific
optical filter for the LED and photodiode) are incorporated in
HRFR.

Without compromise on HRFR features, the O2k provides
robustness and reliability of routine instrumental performance. To
increase throughput particularly in research with cell cultures and
biopsy samples, the user-friendly integrated concept with full soft-
ware support (DatLab) makes it possible to apply several instru-
ments in parallel, each O2k with two independent chambers
(Fig. 1). DatLab supports all measurement channels, quality con-
trol, documentation, and traceability of measurements with the
Oroboros O2k. Chambers and sensors are thermostated in a
Peltier-controlled copper block. The electronics is shielded in a
stainless steel housing. Angular insertion of the O2 sensor into
the cylindrical glass chamber places the polarographic oxygen sen-
sor into an optimum position for stirring [4]. Integrated electronic

Fig. 1 Oroboros O2k-FluoRespirometer with TIP2k and integrated suction system (ISS), supporting two Smart
Fluo-Sensors which can be attached to the windows of chambers A and B. The glass chambers are housed in
an insulated copper block with electronic Peltier temperature control. Polarographic oxygen sensors (POS) are
sealed by butyl rubber gaskets against the angular plane on the glass chambers. The magnetic stirrer bars are
coated by oxygen-impermeable PVDF or PEEK and are powered by electrically pulsed magnets inserted in the
copper block. Stoppers contain a capillary for extrusion of gas bubbles and insertion of a needle for manual or
automatic titrations with the TIP2k. Additional capillaries through the stopper (PEEK) are drilled for insertion of
various electrodes, the signals of which are simultaneously recorded by the DatLab software. Copyright
©2017 by Oroboros Instruments. Reproduced with permission; www.oroboros.at

36 Carolina Doerrier et al.



Respirometry reflects the function of mitochondria as structurally intact organelles. It 
provides a dynamic measurement of metabolic flux (rates), in contrast to static 
determination (states) of molecular components, such as metabolite and enzyme levels 

Mitochondrial respiratory function cannot be measured on frozen tissue samples but 
usually requires minimum storage times of biological samples and delicate handling 
procedures to preserve structure and function or highly specific cryopreservation. 

Mitochondrial respiration yields an integrative measure of the dynamics of complex 
coupled metabolic pathways, in contrast to monitoring activities of isolated enzymes. 

Understanding mitochondrial respiratory control, in turn, requires experimental 
modulation of metabolite levels, electrochemical potentials, and enzyme activities. 

Respirometry



Respirometry

Oxygen consumption rate 
is an integration of 
oxygen levels over a 
certain period of time



Respirometry: stress test
Mitochondrial respiration yields an integrative measure of the dynamics of complex 
coupled metabolic pathways, in contrast to monitoring activities of isolated enzymes. 
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Respirometry: stress test
Mitochondrial respiration yields an integrative measure of the dynamics of complex 
coupled metabolic pathways, in contrast to monitoring activities of isolated enzymes. 
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Respirometry (issues)

Schmidt et al, JBC, 2021



Respirometry (issues)

Schmidt et al, JBC, 2021



Respirometry: SeaHorse®

Based on different technology 
(fluorescence analyzers)

PRO: easy to use 
          Oxygen consumption + extracellular acidification rate (EACR) 

CON: not a direct measure 
          Works best on intact cells



Measure metabolites and macromolecules

Quantitative measures rely on biochemical analytical approaches:

Wang & Luo, Front Bioeng Biotech, 2022



Spectrometry (NMR or MS)

Analytical approaches that resolve a mixture of components into spectra defined by 
multiple peaks (where each peak correspond to a different molecule). 
These peaks are separated according to different physical properties (mass, 
charge, solubility, etc). 
You obtain a “fingerprint” that is a snapshot of cell metabolism at a given time.

Common types of analysis include 
those that quantify principal 
components, associate hierarchical 
clusters, create partial least squares, 
discriminant function, or even form 
artificial neural networks. Collectively, 
this analysis helps identify and 
discriminate the function of the 
metabolites in the sample, where 
databases can secondarily be used to 
validate specific pathway activity.



Spectrometry (NMR or MS)

Analytical approaches that resolve a mixture of components into spectra defined by 
multiple peaks (where each peak correspond to a different molecule). 
These peaks are separated according to different physical properties (mass, 
charge, solubility, etc). 
You obtain a “fingerprint” that is a snapshot of cell metabolism at a given time.

Pros: 
• Sensible 
• Robust 
• Large-scale approach 

(METABOLOMICS)

Cons: 
• Difficult (requires extensive training)



an organism can be revealed by genome sequencing, the full set
of metabolites remains ill-defined due to the catalytic potential of
uncharacterized proteins, enzyme promiscuity, and the diversity
of metabolic inputs coming from food. The observation that most
peaks in mass-spectrometry-based metabolomics studies
remain unidentified has increased interest in unknown metabo-
lome (Domingo-Almenara et al., 2018), although many of these
peaks are analytical artifacts (Mahieu and Patti, 2017). Neverthe-
less, new metabolites and reactions certainly remain to be
discovered.

Metabolomics
Metabolomics, with or without isotope tracing, involves three
basic steps: (1) sample preparation, (2) metabolome measure-
ment, and (3) data analysis (Figure 3). While the measurement
step involves the glamorous technology, sample preparation
and data analysis are equally important.
Sample Preparation
Success in metabolomics starts with picking the right experi-
ment. In this regard, we hope that readers will be motivated
by some of the biological applications described below, as
well as Table 2, which highlights many different isotope tracers
and their utility. In this section, we focus on basic design issues

Figure 1. Applications of Metabolomics

in metabolomics studies, which apply
across many applications.

Control of the nutrient environment is
particularly important. For in vivo studies,
this means close attention to feeding,
fasting, and diet composition. For cell
culture studies, it means special care in
media selection and timing of media
changes. Chemically defined media is
generally preferred to complex biological
media like lysogeny broth (LB). For
mammalian cell culture, use of dialyzed
fetal bovine serum, which is readily
commercially available, avoids con-
founds due to serum metabolites.

For isotope tracer studies, it is often
preferable to avoid metabolic perturba-

tions when introducing the tracer, i.e., to maintain ‘‘metabolic
steady state.’’ This can be accomplished by switching into
otherwise identical media with particular nutrient(s) changed
from unlabeled to labeled form. Duration of labeling depends
on the pathways of interest and whether aiming for dynamic or
steady-state data. In cultured cells, steady-state labeling (i.e.,
‘‘isotopic steady state’’) is typically achieved in glycolysis
over !10 min, the TCA cycle over !2 hr, and nucleotides over
!24 hr. Very rapid sampling is required to capture glycolytic
labeling dynamics (e.g., 10 s timescale), whereas TCA dynamics
can be probed by sampling at time points like 15, 30, 60, and
120 min. One-day experiments are often convenient for collect-
ing steady-state labeling data.
Another key issue is harvestingmetabolites. This is a particular

challenge for cells and tissues, as many important metabolites
naturally turnover within seconds. Thus, obtaining an accurate
metabolite profile requires stopping metabolic activity nearly
instantaneously. This remains an area of active research. Typical
approaches include freezing and/or enzyme denaturation
(Figure 3). A variety of extraction and quenching protocols
have been reported (Winder et al., 2008; Dietmair et al., 2010;
Want et al., 2013). For cultured cells, a simple approach is to
add cold organic solvent directly after media removal by

Table 1. Selected Examples of Metabolites Impacting Macromolecule Modifications

Modification Principal targets Metabolic substrate Metabolic product or reaction inhibitor

Phosphorylation Proteins ATP ADP

Acetylation Proteins Acetyl-CoA CoA

Deacetylation Proteins NAD (sirtuins) Nicotinamide (sirtuin inhibitor)

Butyrate, 3-hydroxybutyrate (HDAC inhibitor)

Methylation DNA, histones S-adenosyl-methionine S-adenosyl-homocysteine

Demethylation DNA, histones a-ketoglutarate, O2 Succinate, fumarate, 2-hydroxyglutarate

GlcNAcylation Proteins UDP-N-acetylglucosamine UDP

Acylation Proteins Acyl-CoA (e.g., palmitoyl-CoA) CoA
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Metabolism plays a central role in all areas of biology, from ecology to bioengineering to cancer. 
Each of these areas is now being increasingly examined from a metabolic viewpoint and there is 
high value to taking a big-picture perspective. This is feasible due to advances in metabolite 
measurement technologies like NMR and mass spectrometry (Fiehn, 2002; Beckonert et al., 2007). 

Metabolomics



Measurement of metabolite concentrations by metabolomics, however, tells only half the story. 
Equally important is understanding pathway activity, which can be quantified in terms of material 
flow per unit time, i.e., metabolic flux.  

Concentrations and fluxes do not reliably align.  
This is intuitive to drivers: although flux increases with car density until traffic slows, a high 
concentration of cars on the road does not reliably indicate high flux. Similarly, in metabolism, 
metabolite build-up can occur not only due to increased production, but also due to decreased 
consumption.  

Metabolic flux analysis

aspiration (for adherent cells) or fast filtration (for non-adherent
cells). The cold temperature quickly slows metabolism, and the
organic solvent permanently denatures enzymes. Manipulations
that may alter metabolism, such as pelleting or washing cells
prior to quench metabolism, are best avoided (Wittmann
et al., 2004).

For tissue specimens, it ismost practical to freeze first and then
extract. Quick freezing can be achieved by smashing tissue be-
tween liquid-nitrogen-temperature metal plates, a technique
known as the Wollenberger clamp (Figure 3) (Wollenberger
et al., 1960). Due to superior heat transfer, this results in substan-
tially faster freezing than placing tissue pieces directly into liquid
nitrogen. Tissues can then be stored at !80"C, pulverized by
grinding, and extracted with cold organic solvent. Care must be
taken to avoidmetabolic alterations both before and during sam-
pling. This is not straightforward, as anesthesia or euthanasia can
each induce metabolic changes (Overmyer et al., 2015). Indeed,
even the sight of an experimenter (or doctor) may induce a stress
response that alters metabolism (Sorge et al., 2014).

Another complication is that organic solvent may not immedi-
ately stop enzymatic activity. Persistent catalytic activity is a
particular problem for high-energy compounds like NADPH
and ATP. The degradation products of these abundant metabo-
lites are themselves biologically important metabolites, with
even modest degradation of NADPH markedly increasing
NADP and ATP markedly increasing ADP and AMP. For biolo-
gists interested in such compounds, we recommend extracting
with a combination of organic solvent and acid, as the acid ac-
celerates enzyme denaturation. Specifically, we find that a
mixture of 40:40:20 acetonitrile:methanol:water with 0.1 M for-
mic acid, followed by addition of bicarbonate a fewminutes later

Figure 2. Metabolite Levels versus Meta-
bolic Flux
(A) Concentration and flux are distinct properties.
(B) Biological example of divergence between
concentration and flux. Glucose removal de-
creases flux throughout glycolysis, but some
glycolytic intermediates increase. FBP, fructose-
1,6-bisphosphate; PEP, phosphoenolpyruvate.

to neutralize the samples, effectively cap-
tures these metabolites (Rabinowitz and
Kimball, 2007; Lu et al., 2018). Further
research is likely to yield yet better
methods going forward.
The inherent challenges inmetabolome

sampling render confirmatory measure-
ments valuable. For example, does a
particular genetic perturbation produce
the same metabolic changes in liver
sampled both from anaesthetized and
from euthanized mice? Alternatively,
certain metabolites can be measured
directly in vivo, e.g., using fluorescent re-
porters (Looger et al., 2005; Hung et al.,
2011; Rogers and Church, 2016). At the
same time, it is important to recognize

that even imperfectly collected samples can yield valuable in-
sights. Some delays in quenching typically occur during tissue
sampling in clinical studies, but this is a reasonable trade-off
for the benefits of human data.
MS
With an extract in hand, the challenge is tomeasure asmanyme-
tabolites as possible, as accurately as possible. In the early days
of metabolomics, one-dimensional proton NMR was commonly
used to produce metabolome profiles. While peaks could be as-
signed to functional groups (e.g., CH2 signal from fatty acid tails),
most peaks reflected the integrated signals frommultiple metab-
olites. These limitations have been partially resolved by multidi-
mensional NMR (Larive et al., 2015; Markley et al., 2017), and
NMR continues to play an important role in metabolomics due
to its capacity for structure elucidation, in vivo metabolite mea-
surement (Mancuso et al., 2004; Salamanca-Cardona et al.,
2017), and universal detection (nearly every metabolite contains
a proton and thus gives a proton NMR signal). Nevertheless, in-
vestigators are increasingly relying on MS due to its unmatched
capability for detecting low-abundance metabolites without
interference from closely related species (Figure 4).
This reflects the remarkable resolving power and sensitivity of

modern mass spectrometers. In MS, resolving power is defined
as the ratio m/Dm, where m is the analyte mass and Dm is the
smallest mass difference that can be distinguished (Figure 4B).
Achieving high resolution allowsmetabolites with small mass dif-
ferences to be independently measured. For example, creatine
(C4H9N3O2) and leucine (C6H13NO2), with accurate positive ion
masses of 132.076 and 132.102, can be distinguished at 4,000
resolution. For isotope tracing, high resolution can distinguish
species labeled with different heavy nuclei. For example, M+1
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For example, when glucose is removed from yeast, glycolytic efflux drops sharply, leading to build-
up of lower glycolytic intermediates even though pathway influx is decreased (Lowry et al., 1971; 
Xu et al., 2012). 

Because metabolite levels and fluxes provide complementary information, metabolic 
understanding is best achieved by investigating both. 

Metabolic flux analysis
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1,6-bisphosphate; PEP, phosphoenolpyruvate.

to neutralize the samples, effectively cap-
tures these metabolites (Rabinowitz and
Kimball, 2007; Lu et al., 2018). Further
research is likely to yield yet better
methods going forward.
The inherent challenges inmetabolome

sampling render confirmatory measure-
ments valuable. For example, does a
particular genetic perturbation produce
the same metabolic changes in liver
sampled both from anaesthetized and
from euthanized mice? Alternatively,
certain metabolites can be measured
directly in vivo, e.g., using fluorescent re-
porters (Looger et al., 2005; Hung et al.,
2011; Rogers and Church, 2016). At the
same time, it is important to recognize

that even imperfectly collected samples can yield valuable in-
sights. Some delays in quenching typically occur during tissue
sampling in clinical studies, but this is a reasonable trade-off
for the benefits of human data.
MS
With an extract in hand, the challenge is tomeasure asmanyme-
tabolites as possible, as accurately as possible. In the early days
of metabolomics, one-dimensional proton NMR was commonly
used to produce metabolome profiles. While peaks could be as-
signed to functional groups (e.g., CH2 signal from fatty acid tails),
most peaks reflected the integrated signals frommultiple metab-
olites. These limitations have been partially resolved by multidi-
mensional NMR (Larive et al., 2015; Markley et al., 2017), and
NMR continues to play an important role in metabolomics due
to its capacity for structure elucidation, in vivo metabolite mea-
surement (Mancuso et al., 2004; Salamanca-Cardona et al.,
2017), and universal detection (nearly every metabolite contains
a proton and thus gives a proton NMR signal). Nevertheless, in-
vestigators are increasingly relying on MS due to its unmatched
capability for detecting low-abundance metabolites without
interference from closely related species (Figure 4).
This reflects the remarkable resolving power and sensitivity of

modern mass spectrometers. In MS, resolving power is defined
as the ratio m/Dm, where m is the analyte mass and Dm is the
smallest mass difference that can be distinguished (Figure 4B).
Achieving high resolution allowsmetabolites with small mass dif-
ferences to be independently measured. For example, creatine
(C4H9N3O2) and leucine (C6H13NO2), with accurate positive ion
masses of 132.076 and 132.102, can be distinguished at 4,000
resolution. For isotope tracing, high resolution can distinguish
species labeled with different heavy nuclei. For example, M+1

824 Cell 173, May 3, 2018



Metabolic flux analysis

While the water pool size does not change if the two rates are identical, regardless of their 
absolute rates, differences in the water turnover rate may affect the quality of the water.

Kim et al, EMM, 2022



Metabolomics measures metabolite abundances. While informative, metabolite abundances 
do not reveal pathway activities: metabolite levels are determined by the balance of 
production and consumption in a nonlinear way. Accordingly, there is great value in 
probing pathway fluxes with isotope tracers. 

This can be achieved by introducing the tracer and measuring the dynamics of 
downstream metabolite labeling.

Metabolic tracing

What is a tracer?
Metabolic tracers are molecules that can be introduced into a biological system, enters the 
metabolite pool and is processed by metabolic enzymes. 

These molecules and their derivatives can be measured (imaging, MS, spatial MS). 

This allows the monitoring of metabolic fluxes. Intuitively, faster labeling implies higher flux. 
Indeed, for a metabolite made directly from the tracer, initial rate of label accumulation 
(measured in molarity or moles per cell, not labeling fraction) equals the reaction’s flux.



Metabolic tracing

TRACER DILUTION MODEL: SINGLE AND MULTIPLE POOLS
Substrates turn over in living organisms in a single pool (e.g., fatty
acids and water)23,26–28 or, more commonly, in multiple pools (e.g.,
glucose and amino acids)23,29–31. The tracer dilution model is

based on the dilution of tracer administered into the system by
the appearance in the same pool of unlabeled tracees. When an
isotopic steady state is achieved, meaning that the rates of tracer
and tracee appearance are constant over time and that there is a
steady-state enrichment of the tracer in the body pools of the
tracee, substrate kinetics can be calculated by the same method,
regardless of the number of metabolic pools.

Single-pool kinetics: free fatty acids (FFAs) as an example
We will discuss the example of palmitate, with the understanding
that the principles of calculation apply to determining the kinetics
of any other FFA and indeed any substrate distributed structurally
or functionally in a single pool, such as water or plasma. In the
case of palmitate, although there is exchange between the plasma
and interstitial fluid, palmitate is considered to reside essentially in
the plasma, as the exchange process between the two compart-
ments (i.e., plasma and interstitial fluid) is too slow to be reflected
in the kinetics of plasma palmitate32.

Model description. The basic model structure for single-pool kinetics
is depicted in Fig. 2. In a physiological steady state, the tracee pool
size (i.e., concentration× volume of distribution) is constant over time,
meaning that Ra tracee is equal to Rd tracee. Ra tracee and thus Rd
tracee can be determined with either a bolus or continuous infusion
of tracer. In the case of tracer infusion, the rate of infusion into plasma
(F) is constant. In the initial time after the start of tracer infusion, tracer
enrichment (i.e., tracer to tracee ratio, TTR) is relatively small but
continuously increases over time in a single-exponential manner until
reaching an isotopic equilibrium or plateau (Ep) where both the F and
the “Rd” of the tracer are constant and equal. For a given F, TTR is
inversely related to the rate at which the naturally occurring
unlabeled tracee appears in the plasma and dilutes the infused tracer.

Kinetic calculations. In the isotopic steady state, when a plateau in
isotopic enrichment has been reached in the sampled pool, the ratio

Fig. 2 Tracer dilution model: single pool kinetics of a single substrate with palmitate as an example. a For a given tracer infusion rate of
2 µmol/min (F), the Ra of the tracee, a naturally occurring compound of interest to be traced, is equal to the Rd of the tracee in steady-state
conditions where the pool size is constant and is determined as F divided by isotopic enrichment at plateau. b With time, tracer enrichment
gradually increases and reaches isotopic equilibrium or plateau enrichment (Ep), where the ratio of Ra tracee to F is equal to the ratio of Rd
tracee to the rate at which tracer leaves the pool. After rearranging the relations, Ra tracee can be calculated as F divided by Ep during a
continuous tracer infusion study. There is a linear correlation between the magnitude of tracer dilution (reduction in TTR) and Ra tracee for a
given F.

Fig. 3 Basic principle of the D3-creatine dilution method asses-
sing functional muscle mass. The method is predicated on the
principle of tracer dilution: the magnitude of dilution of a given
small dose of oral D3-creatine intake relative to the amount of
preexisting creatine located predominantly in skeletal muscle,
determined from the ratio of labeled creatinine to unlabeled
creatinine in a urine sample, reflects total muscle mass. Labeled
and unlabeled creatine are irreversibly converted to labeled and
unlabeled creatinine in proportion to their relative concentrations
and then excreted in urine. For example, the urine creatinine
enrichment (i.e., ratio of D3-creatinine to creatinine) resulting from
20 kg of muscle will be half that resulting from 10 kg of muscle.

I.-Y. Kim et al.
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The calculation of substrate kinetics is predicated on two basic tracer models: (1) tracer 
dilution and (2) tracer incorporation.

Models of tracer introductions: 
• Pulse administration (decreases w/ its uptake) 
• Constant infusion (constant over time)

Kim et al, EMM, 2022



Metabolic tracing

TRACER DILUTION MODEL: SINGLE AND MULTIPLE POOLS
Substrates turn over in living organisms in a single pool (e.g., fatty
acids and water)23,26–28 or, more commonly, in multiple pools (e.g.,
glucose and amino acids)23,29–31. The tracer dilution model is

based on the dilution of tracer administered into the system by
the appearance in the same pool of unlabeled tracees. When an
isotopic steady state is achieved, meaning that the rates of tracer
and tracee appearance are constant over time and that there is a
steady-state enrichment of the tracer in the body pools of the
tracee, substrate kinetics can be calculated by the same method,
regardless of the number of metabolic pools.

Single-pool kinetics: free fatty acids (FFAs) as an example
We will discuss the example of palmitate, with the understanding
that the principles of calculation apply to determining the kinetics
of any other FFA and indeed any substrate distributed structurally
or functionally in a single pool, such as water or plasma. In the
case of palmitate, although there is exchange between the plasma
and interstitial fluid, palmitate is considered to reside essentially in
the plasma, as the exchange process between the two compart-
ments (i.e., plasma and interstitial fluid) is too slow to be reflected
in the kinetics of plasma palmitate32.

Model description. The basic model structure for single-pool kinetics
is depicted in Fig. 2. In a physiological steady state, the tracee pool
size (i.e., concentration× volume of distribution) is constant over time,
meaning that Ra tracee is equal to Rd tracee. Ra tracee and thus Rd
tracee can be determined with either a bolus or continuous infusion
of tracer. In the case of tracer infusion, the rate of infusion into plasma
(F) is constant. In the initial time after the start of tracer infusion, tracer
enrichment (i.e., tracer to tracee ratio, TTR) is relatively small but
continuously increases over time in a single-exponential manner until
reaching an isotopic equilibrium or plateau (Ep) where both the F and
the “Rd” of the tracer are constant and equal. For a given F, TTR is
inversely related to the rate at which the naturally occurring
unlabeled tracee appears in the plasma and dilutes the infused tracer.

Kinetic calculations. In the isotopic steady state, when a plateau in
isotopic enrichment has been reached in the sampled pool, the ratio

Fig. 2 Tracer dilution model: single pool kinetics of a single substrate with palmitate as an example. a For a given tracer infusion rate of
2 µmol/min (F), the Ra of the tracee, a naturally occurring compound of interest to be traced, is equal to the Rd of the tracee in steady-state
conditions where the pool size is constant and is determined as F divided by isotopic enrichment at plateau. b With time, tracer enrichment
gradually increases and reaches isotopic equilibrium or plateau enrichment (Ep), where the ratio of Ra tracee to F is equal to the ratio of Rd
tracee to the rate at which tracer leaves the pool. After rearranging the relations, Ra tracee can be calculated as F divided by Ep during a
continuous tracer infusion study. There is a linear correlation between the magnitude of tracer dilution (reduction in TTR) and Ra tracee for a
given F.

Fig. 3 Basic principle of the D3-creatine dilution method asses-
sing functional muscle mass. The method is predicated on the
principle of tracer dilution: the magnitude of dilution of a given
small dose of oral D3-creatine intake relative to the amount of
preexisting creatine located predominantly in skeletal muscle,
determined from the ratio of labeled creatinine to unlabeled
creatinine in a urine sample, reflects total muscle mass. Labeled
and unlabeled creatine are irreversibly converted to labeled and
unlabeled creatinine in proportion to their relative concentrations
and then excreted in urine. For example, the urine creatinine
enrichment (i.e., ratio of D3-creatinine to creatinine) resulting from
20 kg of muscle will be half that resulting from 10 kg of muscle.

I.-Y. Kim et al.
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The tracer dilution model is based on the dilution of tracer administered into the system by the 
appearance in the same pool of unlabeled tracees. When an isotopic steady state is achieved, 
meaning that the rates of tracer and tracee appearance are constant over time and that there is a 
steady-state enrichment of the tracer in the body pools of the tracee, substrate kinetics can be 
calculated by the same method, regardless of the number of metabolic pools.

Kim et al, EMM, 2022



Metabolic tracing
Several types of molecules monitor the metabolic activity of the cell. 

FDG-sensible glucose entered the clinical practice long time ago.

Positron-emitting glc analog to visualize neoplastic lesions in the body using PET.

Kimura H et al, Lung Cancer, 

Fluoro(18F)-deoxyGlucose



Metabolic tracing

Nucleoside analog-based PET imaging. (A) PET tracers 18F-AraG and 18F-CFA are transported intracellularly by equilibrative nucleoside 
transporter 1 (ENT1). The tracers are then phosphorylated by their targets deoxyguanosine kinase and deoxycytosine kinase, trapping 
them intracellularly within cells. The tracers are then further metabolized along the nucleoside salvage pathway and incorporated into 
newly synthesized DNA. (B) PET/CT images of mice bearing CEM tumors, a human lymphoblastic leukemia, (circled) transduced to 
express Cytidine Deaminase (CDA). 18F-CFA was used in the left and right images, while 18F-FDG was used for the center image. A 
small molecule inhibitor of dCK, DI-82, was used in the right image to confirm the specificity of 18F-CFA for dCK. Adapted from. (C) 18F-
CFA PET of a healthy human volunteer. Organs with high uptake are indicated with arrows.



Metabolic tracing
Radioactive isotopes have been used to study metabolic activity of the cells



Metabolic tracing
Radioactive isotopes have been used to study metabolic activity of the cells



Metabolic tracing
Radioactive isotopes have been used to study metabolic activity of the cells

Radio-emission in culture broth can be measured with a Geiger machine



Stable isotopes are species of an element which whilst chemically and functionally 
identical, differ in mass due to the different number of neutrons in the atomic nucleus. 
This difference in mass, measured using mass spectrometry, makes them analytically 
distinguishable from each other and allows them to be used to ‘trace’ metabolism.

Metabolic tracing

Wilkinson et al, Curt Nutr Open Sci, 2021

Stable isotopically labeled tracers are any molecules with one or more heavier stable isotopes (e.g., 
13C, 2H, or 15N isotopes) incorporated somewhere in the molecule. Stable isotope tracers may be 
administered in the chemical form of the tracer (e.g., 13C glucose) or as heavy water (deuterium oxide, 
2H2O) that will produce the desired metabolic tracer in vivo.



Carbon isotope tracing

Use of [13]-Carbon isotopes creates multiple isotopologues of carbon-containing 
molecules (most nutrients)



Stable isotope tracing

Stable isotopically labeled tracers are metabolized (as normal nutrients) inside cells and generate 
heavy (M+1, M+2, M+3,..) metabolites that can be measured analytically.



Heavier isotopologues have distinctive spectra 

e.g.: (M+1) is 1 Da heavier = contains extra 1 proton 

Stable isotope tracing



Heavier isotopologues have distinctive spectra 

e.g.: (M+1) is 1 Da heavier = contains extra 1 proton 

Stable isotope tracing

Heavier isotopologues are naturally occurring in 
nature.  

Always present in MS spectra (normalization)



Stable isotope 
tracing

Fernandez-Garcia et al, TiBS, 2020



Molar enrichment

TRACER DILUTION MODEL: SINGLE AND MULTIPLE POOLS
Substrates turn over in living organisms in a single pool (e.g., fatty
acids and water)23,26–28 or, more commonly, in multiple pools (e.g.,
glucose and amino acids)23,29–31. The tracer dilution model is

based on the dilution of tracer administered into the system by
the appearance in the same pool of unlabeled tracees. When an
isotopic steady state is achieved, meaning that the rates of tracer
and tracee appearance are constant over time and that there is a
steady-state enrichment of the tracer in the body pools of the
tracee, substrate kinetics can be calculated by the same method,
regardless of the number of metabolic pools.

Single-pool kinetics: free fatty acids (FFAs) as an example
We will discuss the example of palmitate, with the understanding
that the principles of calculation apply to determining the kinetics
of any other FFA and indeed any substrate distributed structurally
or functionally in a single pool, such as water or plasma. In the
case of palmitate, although there is exchange between the plasma
and interstitial fluid, palmitate is considered to reside essentially in
the plasma, as the exchange process between the two compart-
ments (i.e., plasma and interstitial fluid) is too slow to be reflected
in the kinetics of plasma palmitate32.

Model description. The basic model structure for single-pool kinetics
is depicted in Fig. 2. In a physiological steady state, the tracee pool
size (i.e., concentration× volume of distribution) is constant over time,
meaning that Ra tracee is equal to Rd tracee. Ra tracee and thus Rd
tracee can be determined with either a bolus or continuous infusion
of tracer. In the case of tracer infusion, the rate of infusion into plasma
(F) is constant. In the initial time after the start of tracer infusion, tracer
enrichment (i.e., tracer to tracee ratio, TTR) is relatively small but
continuously increases over time in a single-exponential manner until
reaching an isotopic equilibrium or plateau (Ep) where both the F and
the “Rd” of the tracer are constant and equal. For a given F, TTR is
inversely related to the rate at which the naturally occurring
unlabeled tracee appears in the plasma and dilutes the infused tracer.

Kinetic calculations. In the isotopic steady state, when a plateau in
isotopic enrichment has been reached in the sampled pool, the ratio

Fig. 2 Tracer dilution model: single pool kinetics of a single substrate with palmitate as an example. a For a given tracer infusion rate of
2 µmol/min (F), the Ra of the tracee, a naturally occurring compound of interest to be traced, is equal to the Rd of the tracee in steady-state
conditions where the pool size is constant and is determined as F divided by isotopic enrichment at plateau. b With time, tracer enrichment
gradually increases and reaches isotopic equilibrium or plateau enrichment (Ep), where the ratio of Ra tracee to F is equal to the ratio of Rd
tracee to the rate at which tracer leaves the pool. After rearranging the relations, Ra tracee can be calculated as F divided by Ep during a
continuous tracer infusion study. There is a linear correlation between the magnitude of tracer dilution (reduction in TTR) and Ra tracee for a
given F.

Fig. 3 Basic principle of the D3-creatine dilution method asses-
sing functional muscle mass. The method is predicated on the
principle of tracer dilution: the magnitude of dilution of a given
small dose of oral D3-creatine intake relative to the amount of
preexisting creatine located predominantly in skeletal muscle,
determined from the ratio of labeled creatinine to unlabeled
creatinine in a urine sample, reflects total muscle mass. Labeled
and unlabeled creatine are irreversibly converted to labeled and
unlabeled creatinine in proportion to their relative concentrations
and then excreted in urine. For example, the urine creatinine
enrichment (i.e., ratio of D3-creatinine to creatinine) resulting from
20 kg of muscle will be half that resulting from 10 kg of muscle.

I.-Y. Kim et al.
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Experimental & Molecular Medicine (2022) 54:1311 – 1322

Kim et al, EMM, 2022



Molar enrichment

TRACER DILUTION MODEL: SINGLE AND MULTIPLE POOLS
Substrates turn over in living organisms in a single pool (e.g., fatty
acids and water)23,26–28 or, more commonly, in multiple pools (e.g.,
glucose and amino acids)23,29–31. The tracer dilution model is

based on the dilution of tracer administered into the system by
the appearance in the same pool of unlabeled tracees. When an
isotopic steady state is achieved, meaning that the rates of tracer
and tracee appearance are constant over time and that there is a
steady-state enrichment of the tracer in the body pools of the
tracee, substrate kinetics can be calculated by the same method,
regardless of the number of metabolic pools.

Single-pool kinetics: free fatty acids (FFAs) as an example
We will discuss the example of palmitate, with the understanding
that the principles of calculation apply to determining the kinetics
of any other FFA and indeed any substrate distributed structurally
or functionally in a single pool, such as water or plasma. In the
case of palmitate, although there is exchange between the plasma
and interstitial fluid, palmitate is considered to reside essentially in
the plasma, as the exchange process between the two compart-
ments (i.e., plasma and interstitial fluid) is too slow to be reflected
in the kinetics of plasma palmitate32.

Model description. The basic model structure for single-pool kinetics
is depicted in Fig. 2. In a physiological steady state, the tracee pool
size (i.e., concentration× volume of distribution) is constant over time,
meaning that Ra tracee is equal to Rd tracee. Ra tracee and thus Rd
tracee can be determined with either a bolus or continuous infusion
of tracer. In the case of tracer infusion, the rate of infusion into plasma
(F) is constant. In the initial time after the start of tracer infusion, tracer
enrichment (i.e., tracer to tracee ratio, TTR) is relatively small but
continuously increases over time in a single-exponential manner until
reaching an isotopic equilibrium or plateau (Ep) where both the F and
the “Rd” of the tracer are constant and equal. For a given F, TTR is
inversely related to the rate at which the naturally occurring
unlabeled tracee appears in the plasma and dilutes the infused tracer.

Kinetic calculations. In the isotopic steady state, when a plateau in
isotopic enrichment has been reached in the sampled pool, the ratio

Fig. 2 Tracer dilution model: single pool kinetics of a single substrate with palmitate as an example. a For a given tracer infusion rate of
2 µmol/min (F), the Ra of the tracee, a naturally occurring compound of interest to be traced, is equal to the Rd of the tracee in steady-state
conditions where the pool size is constant and is determined as F divided by isotopic enrichment at plateau. b With time, tracer enrichment
gradually increases and reaches isotopic equilibrium or plateau enrichment (Ep), where the ratio of Ra tracee to F is equal to the ratio of Rd
tracee to the rate at which tracer leaves the pool. After rearranging the relations, Ra tracee can be calculated as F divided by Ep during a
continuous tracer infusion study. There is a linear correlation between the magnitude of tracer dilution (reduction in TTR) and Ra tracee for a
given F.

Fig. 3 Basic principle of the D3-creatine dilution method asses-
sing functional muscle mass. The method is predicated on the
principle of tracer dilution: the magnitude of dilution of a given
small dose of oral D3-creatine intake relative to the amount of
preexisting creatine located predominantly in skeletal muscle,
determined from the ratio of labeled creatinine to unlabeled
creatinine in a urine sample, reflects total muscle mass. Labeled
and unlabeled creatine are irreversibly converted to labeled and
unlabeled creatinine in proportion to their relative concentrations
and then excreted in urine. For example, the urine creatinine
enrichment (i.e., ratio of D3-creatinine to creatinine) resulting from
20 kg of muscle will be half that resulting from 10 kg of muscle.
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TRACER DILUTION MODEL: SINGLE AND MULTIPLE POOLS
Substrates turn over in living organisms in a single pool (e.g., fatty
acids and water)23,26–28 or, more commonly, in multiple pools (e.g.,
glucose and amino acids)23,29–31. The tracer dilution model is

based on the dilution of tracer administered into the system by
the appearance in the same pool of unlabeled tracees. When an
isotopic steady state is achieved, meaning that the rates of tracer
and tracee appearance are constant over time and that there is a
steady-state enrichment of the tracer in the body pools of the
tracee, substrate kinetics can be calculated by the same method,
regardless of the number of metabolic pools.

Single-pool kinetics: free fatty acids (FFAs) as an example
We will discuss the example of palmitate, with the understanding
that the principles of calculation apply to determining the kinetics
of any other FFA and indeed any substrate distributed structurally
or functionally in a single pool, such as water or plasma. In the
case of palmitate, although there is exchange between the plasma
and interstitial fluid, palmitate is considered to reside essentially in
the plasma, as the exchange process between the two compart-
ments (i.e., plasma and interstitial fluid) is too slow to be reflected
in the kinetics of plasma palmitate32.

Model description. The basic model structure for single-pool kinetics
is depicted in Fig. 2. In a physiological steady state, the tracee pool
size (i.e., concentration× volume of distribution) is constant over time,
meaning that Ra tracee is equal to Rd tracee. Ra tracee and thus Rd
tracee can be determined with either a bolus or continuous infusion
of tracer. In the case of tracer infusion, the rate of infusion into plasma
(F) is constant. In the initial time after the start of tracer infusion, tracer
enrichment (i.e., tracer to tracee ratio, TTR) is relatively small but
continuously increases over time in a single-exponential manner until
reaching an isotopic equilibrium or plateau (Ep) where both the F and
the “Rd” of the tracer are constant and equal. For a given F, TTR is
inversely related to the rate at which the naturally occurring
unlabeled tracee appears in the plasma and dilutes the infused tracer.

Kinetic calculations. In the isotopic steady state, when a plateau in
isotopic enrichment has been reached in the sampled pool, the ratio

Fig. 2 Tracer dilution model: single pool kinetics of a single substrate with palmitate as an example. a For a given tracer infusion rate of
2 µmol/min (F), the Ra of the tracee, a naturally occurring compound of interest to be traced, is equal to the Rd of the tracee in steady-state
conditions where the pool size is constant and is determined as F divided by isotopic enrichment at plateau. b With time, tracer enrichment
gradually increases and reaches isotopic equilibrium or plateau enrichment (Ep), where the ratio of Ra tracee to F is equal to the ratio of Rd
tracee to the rate at which tracer leaves the pool. After rearranging the relations, Ra tracee can be calculated as F divided by Ep during a
continuous tracer infusion study. There is a linear correlation between the magnitude of tracer dilution (reduction in TTR) and Ra tracee for a
given F.

Fig. 3 Basic principle of the D3-creatine dilution method asses-
sing functional muscle mass. The method is predicated on the
principle of tracer dilution: the magnitude of dilution of a given
small dose of oral D3-creatine intake relative to the amount of
preexisting creatine located predominantly in skeletal muscle,
determined from the ratio of labeled creatinine to unlabeled
creatinine in a urine sample, reflects total muscle mass. Labeled
and unlabeled creatine are irreversibly converted to labeled and
unlabeled creatinine in proportion to their relative concentrations
and then excreted in urine. For example, the urine creatinine
enrichment (i.e., ratio of D3-creatinine to creatinine) resulting from
20 kg of muscle will be half that resulting from 10 kg of muscle.
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Deuterium tracing
Using deuterium as tracer is useful to quantify the synthesis rate of macromolecules

The heavy water labeling of precursors has several potential advantages over the substrate-labeled tracer 
infusion method. Most notably, heavy water labels a number of different precursors, which enables the 
simultaneous determination of FSRs of a variety of polymers with repeating (mono or multiple) precursor 
molecules, such as DNA, fatty acids (de novo lipogenesis), and glucose (i.e., gluconeogenesis) in free-living 
conditions. Water moves rapidly and freely throughout the body, including across cell membranes, and 
equilibrates with all of the body fluid within ~30 min after administration

Extended Data Fig. 4 | Fructose induces steatosis and contributes 
substantially to newly synthesized fatty acids in the liver independently of 
ACLY. a, Schematic of experimental design of the drinking water study. b, Daily 
consumption of unsweetened (H2O) or 15% fructose and 15% glucose sweetened 
(Fruc:Gluc) water per mouse. Each dot represents a repeat measurement, and 
mean values are shown (n = 6 H2O, n = 7 Fruc:Gluc). P values determined by 
Welch’s t-test. c, Weight gain of wild-type or LAKO mice given water or 

fructose:glucose for 4 weeks (n = 4 WT-H2O, LAKO-H2O; n = 8 WT-Fruc:Gluc; and 
n = 6 LAKO-Fruc:Gluc mice). P values comparing all H2O versus fructose:glucose 
mice determined by Welch’s t-test. d, Representative H&E and Oil Red O 
histological stains of livers from mice in c. Scale bars, 100 µm. e, Experimental 
design for data in Fig. 1c. [U-13C] denotes uniformly labelled 13C. f, Isotopologue 
distribution of labelled saponified fatty acids in serum shown in Fig. 1c. Data 
are mean ± s.d.

Extended Data Fig. 4 | Fructose induces steatosis and contributes 
substantially to newly synthesized fatty acids in the liver independently of 
ACLY. a, Schematic of experimental design of the drinking water study. b, Daily 
consumption of unsweetened (H2O) or 15% fructose and 15% glucose sweetened 
(Fruc:Gluc) water per mouse. Each dot represents a repeat measurement, and 
mean values are shown (n = 6 H2O, n = 7 Fruc:Gluc). P values determined by 
Welch’s t-test. c, Weight gain of wild-type or LAKO mice given water or 

fructose:glucose for 4 weeks (n = 4 WT-H2O, LAKO-H2O; n = 8 WT-Fruc:Gluc; and 
n = 6 LAKO-Fruc:Gluc mice). P values comparing all H2O versus fructose:glucose 
mice determined by Welch’s t-test. d, Representative H&E and Oil Red O 
histological stains of livers from mice in c. Scale bars, 100 µm. e, Experimental 
design for data in Fig. 1c. [U-13C] denotes uniformly labelled 13C. f, Isotopologue 
distribution of labelled saponified fatty acids in serum shown in Fig. 1c. Data 
are mean ± s.d.
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mild hepatic steatosis (Extended Data Fig. 4d). Moreover, deuterated-
water (D2O) tracing revealed that consumption of fructose:glucose 
increases hepatic de novo lipogenesis (DNL) to a similar extent in wild-
type and LAKO mice (Fig. 1b). Thus, the deletion of Acly from liver does 
not prevent DNL in response to fructose consumption.

Given this unexpected result, we directly tested the effect of ACLY 
deficiency on fructose conversion into nascent fatty acids. Wild-type 
and LAKO mice were gavaged with 1:1 fructose:glucose, with either glu-
cose or fructose 13C-labelled (Extended Data Fig. 4e). Notably, fructose 
carbons were incorporated into fatty acids in LAKO and wild-type mice 
to a similar extent, whereas glucose carbons were barely used (Fig. 1c, 
Extended Data Fig. 4f). These data indicate that, in contrast to existing 
models of fructose metabolism, the use of fructose carbons for hepatic 
DNL does not require ACLY.

Microbiota-derived acetate feeds lipogenesis
We next investigated the mechanisms of how fructose carbons are 
used for fatty acid synthesis in an ACLY-independent manner. It has 
been previously shown that the hepatic DNL program is activated in 
response to carbohydrate consumption by the ChREBP transcription 
factor12,13. After chronic high-fructose consumption, the livers of both 
wild-type and LAKO mice upregulated the highly active ChREBP-β iso-
form14, along with lipogenic genes (Acaca and Fasn) and other ChREBP 
target genes, aldolase B (Aldob), and ketohexokinase (Khk)15 (Extended 
Data Fig. 5a, b). Wild-type mice on a high-fructose diet also exhibited 
upregulation of Acly (Extended Data Fig. 5a). The induction of the DNL 
program was also robust at the protein level (Fig. 1d, Extended Data 
Fig. 5c). The residual ACLY protein in livers from fructose-fed LAKO 

mice was detected in cells other than hepatocytes (Extended Data  
Fig. 5d). Acyl-CoA synthetase short chain family member 2 (ACSS2), 
which converts acetate into acetyl-CoA, was notably upregulated in 
fructose-consuming LAKO mice (Fig. 1d, Extended Data Fig. 5b, c). 
Moreover, the Acss2 genomic locus showed increased histone H3K27 
acetylation after fructose:glucose drinking (Extended Data Fig. 5e). 
ChREBP binding to the Acss2 locus was identified in a published 
chromatin immunoprecipitation with high-throughput sequencing 
(ChIP–seq) dataset16 (Extended Data Fig. 5f). Acss2 is also a target of 
SREBP transcription factors, which are activated in response to fructose 
consumption17–19. These data suggest that ACSS2 is a component of the 
hepatic response to fructose consumption.

Because the conversion of acetate to acetyl-CoA by ACSS2 can sup-
port DNL in the absence of ACLY10, we proposed that acetate might be an 
important source of acetyl-CoA for DNL in the context of fructose feeding 
(Fig. 2a). Acetate can be generated within mammalian cells by several mech-
anisms20–22, prompting us to investigate whether fructose is converted to 
acetate in a cell-autonomous manner in hepatocytes. Incubation of mouse 
hepatocytes with 25 mM [13C]fructose labelled fructolytic intermediates 
(Fig. 2b), but only minimally labelled acetyl-CoA and malonyl-CoA—the 
core DNL substrates (Fig. 2c). By contrast, 1 mM [13C]acetate was readily 
used for the synthesis of acetyl-CoA and malonyl-CoA, as well as HMG-
CoA—an intermediate in the mevalonate pathway downstream of acetyl-
CoA (Fig. 2c). Therefore, even when ACLY is intact, exogenous acetate 
directly feeds into lipogenic acetyl-CoA pools in hepatocytes.

We thus investigated the possibility that fructose is converted to 
acetate before reaching the liver to feed hepatic DNL by performing a 
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mild hepatic steatosis (Extended Data Fig. 4d). Moreover, deuterated-
water (D2O) tracing revealed that consumption of fructose:glucose 
increases hepatic de novo lipogenesis (DNL) to a similar extent in wild-
type and LAKO mice (Fig. 1b). Thus, the deletion of Acly from liver does 
not prevent DNL in response to fructose consumption.

Given this unexpected result, we directly tested the effect of ACLY 
deficiency on fructose conversion into nascent fatty acids. Wild-type 
and LAKO mice were gavaged with 1:1 fructose:glucose, with either glu-
cose or fructose 13C-labelled (Extended Data Fig. 4e). Notably, fructose 
carbons were incorporated into fatty acids in LAKO and wild-type mice 
to a similar extent, whereas glucose carbons were barely used (Fig. 1c, 
Extended Data Fig. 4f). These data indicate that, in contrast to existing 
models of fructose metabolism, the use of fructose carbons for hepatic 
DNL does not require ACLY.

Microbiota-derived acetate feeds lipogenesis
We next investigated the mechanisms of how fructose carbons are 
used for fatty acid synthesis in an ACLY-independent manner. It has 
been previously shown that the hepatic DNL program is activated in 
response to carbohydrate consumption by the ChREBP transcription 
factor12,13. After chronic high-fructose consumption, the livers of both 
wild-type and LAKO mice upregulated the highly active ChREBP-β iso-
form14, along with lipogenic genes (Acaca and Fasn) and other ChREBP 
target genes, aldolase B (Aldob), and ketohexokinase (Khk)15 (Extended 
Data Fig. 5a, b). Wild-type mice on a high-fructose diet also exhibited 
upregulation of Acly (Extended Data Fig. 5a). The induction of the DNL 
program was also robust at the protein level (Fig. 1d, Extended Data 
Fig. 5c). The residual ACLY protein in livers from fructose-fed LAKO 

mice was detected in cells other than hepatocytes (Extended Data  
Fig. 5d). Acyl-CoA synthetase short chain family member 2 (ACSS2), 
which converts acetate into acetyl-CoA, was notably upregulated in 
fructose-consuming LAKO mice (Fig. 1d, Extended Data Fig. 5b, c). 
Moreover, the Acss2 genomic locus showed increased histone H3K27 
acetylation after fructose:glucose drinking (Extended Data Fig. 5e). 
ChREBP binding to the Acss2 locus was identified in a published 
chromatin immunoprecipitation with high-throughput sequencing 
(ChIP–seq) dataset16 (Extended Data Fig. 5f). Acss2 is also a target of 
SREBP transcription factors, which are activated in response to fructose 
consumption17–19. These data suggest that ACSS2 is a component of the 
hepatic response to fructose consumption.

Because the conversion of acetate to acetyl-CoA by ACSS2 can sup-
port DNL in the absence of ACLY10, we proposed that acetate might be an 
important source of acetyl-CoA for DNL in the context of fructose feeding 
(Fig. 2a). Acetate can be generated within mammalian cells by several mech-
anisms20–22, prompting us to investigate whether fructose is converted to 
acetate in a cell-autonomous manner in hepatocytes. Incubation of mouse 
hepatocytes with 25 mM [13C]fructose labelled fructolytic intermediates 
(Fig. 2b), but only minimally labelled acetyl-CoA and malonyl-CoA—the 
core DNL substrates (Fig. 2c). By contrast, 1 mM [13C]acetate was readily 
used for the synthesis of acetyl-CoA and malonyl-CoA, as well as HMG-
CoA—an intermediate in the mevalonate pathway downstream of acetyl-
CoA (Fig. 2c). Therefore, even when ACLY is intact, exogenous acetate 
directly feeds into lipogenic acetyl-CoA pools in hepatocytes.

We thus investigated the possibility that fructose is converted to 
acetate before reaching the liver to feed hepatic DNL by performing a 
[13C]fructose isotope-tracing time-course analysis in mice. Oral admin-
istration of [13C]fructose labelled both fructose-1-phosphate (F1P) and 
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mild hepatic steatosis (Extended Data Fig. 4d). Moreover, deuterated-
water (D2O) tracing revealed that consumption of fructose:glucose 
increases hepatic de novo lipogenesis (DNL) to a similar extent in wild-
type and LAKO mice (Fig. 1b). Thus, the deletion of Acly from liver does 
not prevent DNL in response to fructose consumption.

Given this unexpected result, we directly tested the effect of ACLY 
deficiency on fructose conversion into nascent fatty acids. Wild-type 
and LAKO mice were gavaged with 1:1 fructose:glucose, with either glu-
cose or fructose 13C-labelled (Extended Data Fig. 4e). Notably, fructose 
carbons were incorporated into fatty acids in LAKO and wild-type mice 
to a similar extent, whereas glucose carbons were barely used (Fig. 1c, 
Extended Data Fig. 4f). These data indicate that, in contrast to existing 
models of fructose metabolism, the use of fructose carbons for hepatic 
DNL does not require ACLY.

Microbiota-derived acetate feeds lipogenesis
We next investigated the mechanisms of how fructose carbons are 
used for fatty acid synthesis in an ACLY-independent manner. It has 
been previously shown that the hepatic DNL program is activated in 
response to carbohydrate consumption by the ChREBP transcription 
factor12,13. After chronic high-fructose consumption, the livers of both 
wild-type and LAKO mice upregulated the highly active ChREBP-β iso-
form14, along with lipogenic genes (Acaca and Fasn) and other ChREBP 
target genes, aldolase B (Aldob), and ketohexokinase (Khk)15 (Extended 
Data Fig. 5a, b). Wild-type mice on a high-fructose diet also exhibited 
upregulation of Acly (Extended Data Fig. 5a). The induction of the DNL 
program was also robust at the protein level (Fig. 1d, Extended Data 
Fig. 5c). The residual ACLY protein in livers from fructose-fed LAKO 

mice was detected in cells other than hepatocytes (Extended Data  
Fig. 5d). Acyl-CoA synthetase short chain family member 2 (ACSS2), 
which converts acetate into acetyl-CoA, was notably upregulated in 
fructose-consuming LAKO mice (Fig. 1d, Extended Data Fig. 5b, c). 
Moreover, the Acss2 genomic locus showed increased histone H3K27 
acetylation after fructose:glucose drinking (Extended Data Fig. 5e). 
ChREBP binding to the Acss2 locus was identified in a published 
chromatin immunoprecipitation with high-throughput sequencing 
(ChIP–seq) dataset16 (Extended Data Fig. 5f). Acss2 is also a target of 
SREBP transcription factors, which are activated in response to fructose 
consumption17–19. These data suggest that ACSS2 is a component of the 
hepatic response to fructose consumption.

Because the conversion of acetate to acetyl-CoA by ACSS2 can sup-
port DNL in the absence of ACLY10, we proposed that acetate might be an 
important source of acetyl-CoA for DNL in the context of fructose feeding 
(Fig. 2a). Acetate can be generated within mammalian cells by several mech-
anisms20–22, prompting us to investigate whether fructose is converted to 
acetate in a cell-autonomous manner in hepatocytes. Incubation of mouse 
hepatocytes with 25 mM [13C]fructose labelled fructolytic intermediates 
(Fig. 2b), but only minimally labelled acetyl-CoA and malonyl-CoA—the 
core DNL substrates (Fig. 2c). By contrast, 1 mM [13C]acetate was readily 
used for the synthesis of acetyl-CoA and malonyl-CoA, as well as HMG-
CoA—an intermediate in the mevalonate pathway downstream of acetyl-
CoA (Fig. 2c). Therefore, even when ACLY is intact, exogenous acetate 
directly feeds into lipogenic acetyl-CoA pools in hepatocytes.

We thus investigated the possibility that fructose is converted to 
acetate before reaching the liver to feed hepatic DNL by performing a 
[13C]fructose isotope-tracing time-course analysis in mice. Oral admin-
istration of [13C]fructose labelled both fructose-1-phosphate (F1P) and 
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1 and compared with D2O labelling after consumption of fructose:glucose 
within each genotype. P values determined by two-sided t-tests. c, Percentage 
of total labelled carbons in saponified fatty acids in serum from mice gavaged 
with 1:1 fructose:glucose, 1.0 g kg−1 of each. 13C-labelled substrates are 
indicated. Data are mean values. d, Western blots of lipogenic enzymes in liver 
lysates of wild-type or LAKO mice fed a chow or high-fructose diet for 4 weeks. 
Ribosomal protein S6 was used as a loading control. Data in c, d are 
representative of two independent experiments.

Zhao et al, Nature, 2020





Carbon isotope tracing

Molar enrichment is an indirect measure of metabolic flux



Carbon isotope tracing

Molar enrichment is an indirect measure of metabolic flux



Carbon isotope tracing
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Multiple tracers can be used (in parallel or simultaneously) to infer: 
1) Nutrient preference 
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Acetyl-CoA can be generated from multiple carbon sources. 
Which one is predominant and in which conditions can be important
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Pancreatic stellate cells support tumour metabolism 
through autophagic alanine secretion
Cristovão M. Sousa1, Douglas E. Biancur1*, Xiaoxu Wang1*, Christopher J. Halbrook2, Mara H. Sherman3, Li Zhang2, 
Daniel Kremer2, Rosa F. Hwang4, Agnes K. Witkiewicz5,6, Haoqiang Ying7, John M. Asara8, Ronald M. Evans3,  
Lewis C. Cantley9, Costas A. Lyssiotis2,10 & Alec C. Kimmelman1†

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive 
disease characterized by an intense fibrotic stromal response and 
deregulated metabolism1–4. The role of the stroma in PDAC biology 
is complex and it has been shown to play critical roles that differ 
depending on the biological context5–10. The stromal reaction also 
impairs the vasculature, leading to a highly hypoxic, nutrient-poor 
environment4,11,12. As such, these tumours must alter how they 
capture and use nutrients to support their metabolic needs11,13. 
Here we show that stroma-associated pancreatic stellate cells 
(PSCs) are critical for PDAC metabolism through the secretion 
of non-essential amino acids (NEAA). Specifically, we uncover a 
previously undescribed role for alanine, which outcompetes glucose 
and glutamine-derived carbon in PDAC to fuel the tricarboxylic 
acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift 
in fuel source decreases the tumour’s dependence on glucose and 
serum-derived nutrients, which are limited in the pancreatic tumour 
microenvironment4,11. Moreover, we demonstrate that alanine 
secretion by PSCs is dependent on PSC autophagy, a process that 
is stimulated by cancer cells. Thus, our results demonstrate a novel 
metabolic interaction between PSCs and cancer cells, in which 
PSC-derived alanine acts as an alternative carbon source. This 
finding highlights a previously unappreciated metabolic network 
within pancreatic tumours in which diverse fuel sources are used to 
promote growth in an austere tumour microenvironment.

We previously demonstrated that metabolism is rewired in  pancreatic 
cancer cells to facilitate biosynthesis and maintain redox balance in the 
nutrient-poor conditions of a pancreatic tumour2,14,15. While extra-
cellular protein can provide nutrients to the starved cancer cells11,13, 
we hypothesized that the stroma may provide additional avenues of 
metabolic support for the tumour. Pancreatic stellate cells (PSCs) 
are a predominant cell type in the pancreatic tumour stroma and are 
important mediators of the desmoplastic response. Their abundance 
suggests that they may contribute to the metabolism of cancer cells. 
To test this idea, we assessed changes in the oxygen consumption rate 
(OCR) and extracellular media acidification rate (ECAR), measures 
of mitochondrial activity and glycolysis, respectively, in PDAC cells 
treated with conditioned medium from a well characterized human 
PSC (hPSC) line16 (Fig. 1a, b and Extended Data Fig. 1a–e). PDAC 
glycolysis showed minimal changes when cells were treated with PSC-
conditioned medium, as measured by ECAR (Extended Data Fig. 1d, e).  
By contrast, we observed a consistent increase of 20–40% in the basal 
OCR after treatment with hPSC medium (Fig. 1a, b and Extended 
Data Fig. 1a–c), a feature that was independent of serum during the 
1Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. 2Department of 
Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. 3Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute 
for Biological Studies, La Jolla, California 92037, USA. 4Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77230-1402, USA. 5Department of 
Pathology, UT Southwestern, Dallas, Texas 75390, USA. 6Simmons Cancer Center, UT Southwestern, Dallas, Texas 75390, USA. 7Department of Molecular and Cellular Oncology, UT MD Anderson 
Cancer Center, Houston, Texas 77030, USA. 8Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 
02115, USA. 9Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA. 10Department of Internal Medicine, Division of Gastroenterology, 
University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. †Present Address: Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, 
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Figure 1 | Pancreatic stellate cells secrete metabolites that fuel 
pancreatic cancer metabolism. a, Conditioned medium (CM) from 
hPSCs increases PDAC OCR (green line), as compared to cells treated with 
PDAC CM (red line) or control (DMEM with 10% serum, black line).  
A representative trace showing change in OCR during a mitochondrial 
stress test. Error bars depict s.d. of 6 independent wells from a 
representative tracing from 6 independent experiments (depicted in b).  
b, Per cent change in basal OCR for 8988T cells treated with conditioned 
medium from different cell lines relative to 8988T cells treated with 
standard culture medium. Error bars depict s.e.m. of pooled independent 
experiments (n =  3 for primary hPSC #1, #2, primary mPSC; n =  4 for 
hPSC#2, IMR90 and MiaPaCa2; n =  6 for 8988T, hPSC#1). c, OCR activity 
of PSC-conditioned medium is retained after heating at 100 °C for 15 min. 
Error bars, s.e.m. of independent experiments (n =  4). d, Metabolites that 
were significantly elevated in PSC-conditioned medium, decreased in 
double-conditioned medium (PSC-conditioned medium added to 8988T 
cells and then collected), and elevated intracellularly in PDAC cells treated 
with PSC-conditioned medium. Error bars, s.d. (n =  3). e, A mixture of 
NEAAs (1 mM alanine, aspartate, asparagine, glycine, glutamate, proline and 
serine) or alanine alone increases PDAC OCR. Data are normalized to cells 
treated with standard culture medium. Error bars, s.e.m. of independent 
experiments (n =  4). f, The concentration of alanine was measured in 
conditioned medium samples using liquid chromatography with tandem 
mass spectrometry (LC–MS/MS). Error bars, s.d. (n =  3). Significance 
determined with one-way ANOVA in b, c, e; t-test in d, f. Panels d, f, n =  3 
technical replicates from independently prepared samples from individual 
wells. * P <  0.05, * * P <  0.01, * * * P <  0.001. The calculated P values and 
comparisons are reported in Supplementary Information.
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Pancreatic stellate cells support tumour metabolism 
through autophagic alanine secretion
Cristovão M. Sousa1, Douglas E. Biancur1*, Xiaoxu Wang1*, Christopher J. Halbrook2, Mara H. Sherman3, Li Zhang2, 
Daniel Kremer2, Rosa F. Hwang4, Agnes K. Witkiewicz5,6, Haoqiang Ying7, John M. Asara8, Ronald M. Evans3,  
Lewis C. Cantley9, Costas A. Lyssiotis2,10 & Alec C. Kimmelman1†

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive 
disease characterized by an intense fibrotic stromal response and 
deregulated metabolism1–4. The role of the stroma in PDAC biology 
is complex and it has been shown to play critical roles that differ 
depending on the biological context5–10. The stromal reaction also 
impairs the vasculature, leading to a highly hypoxic, nutrient-poor 
environment4,11,12. As such, these tumours must alter how they 
capture and use nutrients to support their metabolic needs11,13. 
Here we show that stroma-associated pancreatic stellate cells 
(PSCs) are critical for PDAC metabolism through the secretion 
of non-essential amino acids (NEAA). Specifically, we uncover a 
previously undescribed role for alanine, which outcompetes glucose 
and glutamine-derived carbon in PDAC to fuel the tricarboxylic 
acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift 
in fuel source decreases the tumour’s dependence on glucose and 
serum-derived nutrients, which are limited in the pancreatic tumour 
microenvironment4,11. Moreover, we demonstrate that alanine 
secretion by PSCs is dependent on PSC autophagy, a process that 
is stimulated by cancer cells. Thus, our results demonstrate a novel 
metabolic interaction between PSCs and cancer cells, in which 
PSC-derived alanine acts as an alternative carbon source. This 
finding highlights a previously unappreciated metabolic network 
within pancreatic tumours in which diverse fuel sources are used to 
promote growth in an austere tumour microenvironment.

We previously demonstrated that metabolism is rewired in  pancreatic 
cancer cells to facilitate biosynthesis and maintain redox balance in the 
nutrient-poor conditions of a pancreatic tumour2,14,15. While extra-
cellular protein can provide nutrients to the starved cancer cells11,13, 
we hypothesized that the stroma may provide additional avenues of 
metabolic support for the tumour. Pancreatic stellate cells (PSCs) 
are a predominant cell type in the pancreatic tumour stroma and are 
important mediators of the desmoplastic response. Their abundance 
suggests that they may contribute to the metabolism of cancer cells. 
To test this idea, we assessed changes in the oxygen consumption rate 
(OCR) and extracellular media acidification rate (ECAR), measures 
of mitochondrial activity and glycolysis, respectively, in PDAC cells 
treated with conditioned medium from a well characterized human 
PSC (hPSC) line16 (Fig. 1a, b and Extended Data Fig. 1a–e). PDAC 
glycolysis showed minimal changes when cells were treated with PSC-
conditioned medium, as measured by ECAR (Extended Data Fig. 1d, e).  
By contrast, we observed a consistent increase of 20–40% in the basal 
OCR after treatment with hPSC medium (Fig. 1a, b and Extended 
Data Fig. 1a–c), a feature that was independent of serum during the 
1Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. 2Department of 
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Cancer Center, Houston, Texas 77030, USA. 8Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 
02115, USA. 9Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA. 10Department of Internal Medicine, Division of Gastroenterology, 
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Figure 1 | Pancreatic stellate cells secrete metabolites that fuel 
pancreatic cancer metabolism. a, Conditioned medium (CM) from 
hPSCs increases PDAC OCR (green line), as compared to cells treated with 
PDAC CM (red line) or control (DMEM with 10% serum, black line).  
A representative trace showing change in OCR during a mitochondrial 
stress test. Error bars depict s.d. of 6 independent wells from a 
representative tracing from 6 independent experiments (depicted in b).  
b, Per cent change in basal OCR for 8988T cells treated with conditioned 
medium from different cell lines relative to 8988T cells treated with 
standard culture medium. Error bars depict s.e.m. of pooled independent 
experiments (n =  3 for primary hPSC #1, #2, primary mPSC; n =  4 for 
hPSC#2, IMR90 and MiaPaCa2; n =  6 for 8988T, hPSC#1). c, OCR activity 
of PSC-conditioned medium is retained after heating at 100 °C for 15 min. 
Error bars, s.e.m. of independent experiments (n =  4). d, Metabolites that 
were significantly elevated in PSC-conditioned medium, decreased in 
double-conditioned medium (PSC-conditioned medium added to 8988T 
cells and then collected), and elevated intracellularly in PDAC cells treated 
with PSC-conditioned medium. Error bars, s.d. (n =  3). e, A mixture of 
NEAAs (1 mM alanine, aspartate, asparagine, glycine, glutamate, proline and 
serine) or alanine alone increases PDAC OCR. Data are normalized to cells 
treated with standard culture medium. Error bars, s.e.m. of independent 
experiments (n =  4). f, The concentration of alanine was measured in 
conditioned medium samples using liquid chromatography with tandem 
mass spectrometry (LC–MS/MS). Error bars, s.d. (n =  3). Significance 
determined with one-way ANOVA in b, c, e; t-test in d, f. Panels d, f, n =  3 
technical replicates from independently prepared samples from individual 
wells. * P <  0.05, * * P <  0.01, * * * P <  0.001. The calculated P values and 
comparisons are reported in Supplementary Information.
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Pancreatic ductal adenocarcinoma (PDAC) is an aggressive 
disease characterized by an intense fibrotic stromal response and 
deregulated metabolism1–4. The role of the stroma in PDAC biology 
is complex and it has been shown to play critical roles that differ 
depending on the biological context5–10. The stromal reaction also 
impairs the vasculature, leading to a highly hypoxic, nutrient-poor 
environment4,11,12. As such, these tumours must alter how they 
capture and use nutrients to support their metabolic needs11,13. 
Here we show that stroma-associated pancreatic stellate cells 
(PSCs) are critical for PDAC metabolism through the secretion 
of non-essential amino acids (NEAA). Specifically, we uncover a 
previously undescribed role for alanine, which outcompetes glucose 
and glutamine-derived carbon in PDAC to fuel the tricarboxylic 
acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift 
in fuel source decreases the tumour’s dependence on glucose and 
serum-derived nutrients, which are limited in the pancreatic tumour 
microenvironment4,11. Moreover, we demonstrate that alanine 
secretion by PSCs is dependent on PSC autophagy, a process that 
is stimulated by cancer cells. Thus, our results demonstrate a novel 
metabolic interaction between PSCs and cancer cells, in which 
PSC-derived alanine acts as an alternative carbon source. This 
finding highlights a previously unappreciated metabolic network 
within pancreatic tumours in which diverse fuel sources are used to 
promote growth in an austere tumour microenvironment.

We previously demonstrated that metabolism is rewired in  pancreatic 
cancer cells to facilitate biosynthesis and maintain redox balance in the 
nutrient-poor conditions of a pancreatic tumour2,14,15. While extra-
cellular protein can provide nutrients to the starved cancer cells11,13, 
we hypothesized that the stroma may provide additional avenues of 
metabolic support for the tumour. Pancreatic stellate cells (PSCs) 
are a predominant cell type in the pancreatic tumour stroma and are 
important mediators of the desmoplastic response. Their abundance 
suggests that they may contribute to the metabolism of cancer cells. 
To test this idea, we assessed changes in the oxygen consumption rate 
(OCR) and extracellular media acidification rate (ECAR), measures 
of mitochondrial activity and glycolysis, respectively, in PDAC cells 
treated with conditioned medium from a well characterized human 
PSC (hPSC) line16 (Fig. 1a, b and Extended Data Fig. 1a–e). PDAC 
glycolysis showed minimal changes when cells were treated with PSC-
conditioned medium, as measured by ECAR (Extended Data Fig. 1d, e).  
By contrast, we observed a consistent increase of 20–40% in the basal 
OCR after treatment with hPSC medium (Fig. 1a, b and Extended 
Data Fig. 1a–c), a feature that was independent of serum during the 
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Figure 1 | Pancreatic stellate cells secrete metabolites that fuel 
pancreatic cancer metabolism. a, Conditioned medium (CM) from 
hPSCs increases PDAC OCR (green line), as compared to cells treated with 
PDAC CM (red line) or control (DMEM with 10% serum, black line).  
A representative trace showing change in OCR during a mitochondrial 
stress test. Error bars depict s.d. of 6 independent wells from a 
representative tracing from 6 independent experiments (depicted in b).  
b, Per cent change in basal OCR for 8988T cells treated with conditioned 
medium from different cell lines relative to 8988T cells treated with 
standard culture medium. Error bars depict s.e.m. of pooled independent 
experiments (n =  3 for primary hPSC #1, #2, primary mPSC; n =  4 for 
hPSC#2, IMR90 and MiaPaCa2; n =  6 for 8988T, hPSC#1). c, OCR activity 
of PSC-conditioned medium is retained after heating at 100 °C for 15 min. 
Error bars, s.e.m. of independent experiments (n =  4). d, Metabolites that 
were significantly elevated in PSC-conditioned medium, decreased in 
double-conditioned medium (PSC-conditioned medium added to 8988T 
cells and then collected), and elevated intracellularly in PDAC cells treated 
with PSC-conditioned medium. Error bars, s.d. (n =  3). e, A mixture of 
NEAAs (1 mM alanine, aspartate, asparagine, glycine, glutamate, proline and 
serine) or alanine alone increases PDAC OCR. Data are normalized to cells 
treated with standard culture medium. Error bars, s.e.m. of independent 
experiments (n =  4). f, The concentration of alanine was measured in 
conditioned medium samples using liquid chromatography with tandem 
mass spectrometry (LC–MS/MS). Error bars, s.d. (n =  3). Significance 
determined with one-way ANOVA in b, c, e; t-test in d, f. Panels d, f, n =  3 
technical replicates from independently prepared samples from individual 
wells. * P <  0.05, * * P <  0.01, * * * P <  0.001. The calculated P values and 
comparisons are reported in Supplementary Information.
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Pancreatic ductal adenocarcinoma (PDAC) is an aggressive 
disease characterized by an intense fibrotic stromal response and 
deregulated metabolism1–4. The role of the stroma in PDAC biology 
is complex and it has been shown to play critical roles that differ 
depending on the biological context5–10. The stromal reaction also 
impairs the vasculature, leading to a highly hypoxic, nutrient-poor 
environment4,11,12. As such, these tumours must alter how they 
capture and use nutrients to support their metabolic needs11,13. 
Here we show that stroma-associated pancreatic stellate cells 
(PSCs) are critical for PDAC metabolism through the secretion 
of non-essential amino acids (NEAA). Specifically, we uncover a 
previously undescribed role for alanine, which outcompetes glucose 
and glutamine-derived carbon in PDAC to fuel the tricarboxylic 
acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift 
in fuel source decreases the tumour’s dependence on glucose and 
serum-derived nutrients, which are limited in the pancreatic tumour 
microenvironment4,11. Moreover, we demonstrate that alanine 
secretion by PSCs is dependent on PSC autophagy, a process that 
is stimulated by cancer cells. Thus, our results demonstrate a novel 
metabolic interaction between PSCs and cancer cells, in which 
PSC-derived alanine acts as an alternative carbon source. This 
finding highlights a previously unappreciated metabolic network 
within pancreatic tumours in which diverse fuel sources are used to 
promote growth in an austere tumour microenvironment.

We previously demonstrated that metabolism is rewired in  pancreatic 
cancer cells to facilitate biosynthesis and maintain redox balance in the 
nutrient-poor conditions of a pancreatic tumour2,14,15. While extra-
cellular protein can provide nutrients to the starved cancer cells11,13, 
we hypothesized that the stroma may provide additional avenues of 
metabolic support for the tumour. Pancreatic stellate cells (PSCs) 
are a predominant cell type in the pancreatic tumour stroma and are 
important mediators of the desmoplastic response. Their abundance 
suggests that they may contribute to the metabolism of cancer cells. 
To test this idea, we assessed changes in the oxygen consumption rate 
(OCR) and extracellular media acidification rate (ECAR), measures 
of mitochondrial activity and glycolysis, respectively, in PDAC cells 
treated with conditioned medium from a well characterized human 
PSC (hPSC) line16 (Fig. 1a, b and Extended Data Fig. 1a–e). PDAC 
glycolysis showed minimal changes when cells were treated with PSC-
conditioned medium, as measured by ECAR (Extended Data Fig. 1d, e).  
By contrast, we observed a consistent increase of 20–40% in the basal 
OCR after treatment with hPSC medium (Fig. 1a, b and Extended 
Data Fig. 1a–c), a feature that was independent of serum during the 
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Figure 1 | Pancreatic stellate cells secrete metabolites that fuel 
pancreatic cancer metabolism. a, Conditioned medium (CM) from 
hPSCs increases PDAC OCR (green line), as compared to cells treated with 
PDAC CM (red line) or control (DMEM with 10% serum, black line).  
A representative trace showing change in OCR during a mitochondrial 
stress test. Error bars depict s.d. of 6 independent wells from a 
representative tracing from 6 independent experiments (depicted in b).  
b, Per cent change in basal OCR for 8988T cells treated with conditioned 
medium from different cell lines relative to 8988T cells treated with 
standard culture medium. Error bars depict s.e.m. of pooled independent 
experiments (n =  3 for primary hPSC #1, #2, primary mPSC; n =  4 for 
hPSC#2, IMR90 and MiaPaCa2; n =  6 for 8988T, hPSC#1). c, OCR activity 
of PSC-conditioned medium is retained after heating at 100 °C for 15 min. 
Error bars, s.e.m. of independent experiments (n =  4). d, Metabolites that 
were significantly elevated in PSC-conditioned medium, decreased in 
double-conditioned medium (PSC-conditioned medium added to 8988T 
cells and then collected), and elevated intracellularly in PDAC cells treated 
with PSC-conditioned medium. Error bars, s.d. (n =  3). e, A mixture of 
NEAAs (1 mM alanine, aspartate, asparagine, glycine, glutamate, proline and 
serine) or alanine alone increases PDAC OCR. Data are normalized to cells 
treated with standard culture medium. Error bars, s.e.m. of independent 
experiments (n =  4). f, The concentration of alanine was measured in 
conditioned medium samples using liquid chromatography with tandem 
mass spectrometry (LC–MS/MS). Error bars, s.d. (n =  3). Significance 
determined with one-way ANOVA in b, c, e; t-test in d, f. Panels d, f, n =  3 
technical replicates from independently prepared samples from individual 
wells. * P <  0.05, * * P <  0.01, * * * P <  0.001. The calculated P values and 
comparisons are reported in Supplementary Information.
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conditioning process (Extended Data Fig. 1f, g) and reproducible with 
multiple primary specimens (Fig. 1b and Extended Data Fig. 1h, i). 
Notably, this metabolic phenotype was specific to pancreatic cancer 
cells; non-transformed pancreatic ductal epithelial cells did not exhibit 
increased OCR in response to PSC medium (Extended Data Fig. 1j).

To identify the nature of the PSC-secreted factors that alter PDAC 
metabolism, we subjected conditioned medium to three freeze-thaw 
cycles (− 80 °C, 60 °C) or heating (100 °C, 15 min) and observed that 
it retained the ability to increase PDAC OCR (Fig. 1c and Extended 
Data Fig. 1k–m), indicating that the factor(s) lacked tertiary structure. 
Moreover, the activity was retained in medium passed through a 3-kDa 
cut-off filter (Extended Data Fig. 1n). The small size and resistance to 
extreme temperatures of the OCR-increasing factor(s) excluded large 
candidate molecules such as proteins, indicating that the factor(s) could 
be metabolites.

We next performed a series of metabolomic studies17 to identify 
metabolites that were secreted by PSCs and taken up by PDAC cells 
(Extended Data Fig. 2a). Specifically, we sought molecules that were 
over-represented in PSC medium (and therefore secreted by PSCs); 
under-represented in the PSC medium after contact with PDAC 
cells (removed by PDAC cells); and over-represented inside PDAC 
cells treated with the PSC medium (taken up by PDAC cells). Of 
 approximately 200 metabolites analysed, only the non-essential amino 
acids (NEAA) alanine and aspartate followed this pattern (Fig. 1d and 
Extended Data Fig. 2b). Treatment of PDAC cells with the individual 
amino acids revealed that only alanine had the ability to increase PDAC 
OCR to a degree comparable to that of PSC-conditioned medium  
(Fig. 1e and Extended Data Fig. 2c).

To demonstrate that PSC-derived metabolites, and alanine 
 specifically, were being taken up by PDAC cells, we performed 
 metabolite tracing experiments in which PSCs were grown to  saturation 
in medium containing uniformly carbon-13-labelled (U13C-) glucose 
and U13C-glutamine to label secreted NEAAs (Extended Data  
Fig. 2d). The conditioned medium from the labelled cells was then 
added to PDAC cells, allowing us to track the production and secretion 
of alanine by the PSCs and to follow its depletion from PSC medium 
upon contact with PDAC cells (Extended Data Fig. 2e). Quantification 
revealed that secreted alanine in the PSC medium reached millimolar 
concentration within 24 h of conditioning (Fig. 1f and Extended Data 
Fig. 2f–i), and this occurred independent of serum in the medium 
(Extended Data Fig. 2h). In the context of a tumour in vivo, the more 
important parameters to assess are the release and uptake of alanine 
relative to other nutrients. Accordingly, we performed kinetic studies 
and found that alanine was secreted by the PSCs at the greatest rate 
of the 14 amino acids measured and more rapidly than even lactate 
(Extended Data Fig. 2j, k). Alanine was also one of only two amino 
acids to accumulate in PDAC cells, achieving an enrichment of greater 
than fivefold (Extended Data Fig. 2l).

We next investigated how PDAC cells metabolize PSC-derived 
 alanine. Alanine could increase OCR by fuelling the TCA cycle, and a 
likely route for this is through transamination of alanine into  pyruvate 
(Fig. 2a). Consistently, depletion of the cytosolic or mitochondrial 
alanine transaminase (GPT1 or GPT2, respectively) in PDAC cells 
(Extended Data Fig. 3a) resulted in an increase in accumulation of 
alanine (Fig. 2b) and a decrease in OCR in PSC medium-treated 
PDAC cells (Fig. 2c and Extended Data Fig. 3b, c). Moreover, direct 
addition of pyruvate to PDAC cells increased OCR (Fig. 2d). We then 
performed U-13C-Ala tracing studies to assess how alanine was being 
used in PDAC metabolism. Treatment of cells with 1 mM U-13C-Ala 
led to a 5–10-fold increase in the intracellular alanine pool (Extended 
Data Fig. 3d–h). Carbon from alanine did not contribute to upstream 
glycolytic intermediates (Extended Data Fig. 3i, j) or alter glycolytic 
flux (Extended Data Fig. 3k) or the NAD+/NADH ratio (Extended 
Data Fig. 3l, m), and it contributed minimally to the intracellular lactate 
pool (Extended Data Fig. 3d, n), irrespective of the extracellular  glucose 
concentration (Extended Data Fig. 3o–q). These results suggested 

that alanine-derived pyruvate was being used in the mitochondria, 
because it was not affecting cytosolic glycolytic metabolism. Indeed, 
alanine was a major carbon source for the TCA cycle; 13C was markedly 
 incorporated into citrate and isocitrate, and, to a lesser extent, malate 
and fumarate (Fig. 2e and Extended Data Figs 4, 5), as well as into 
the NEAAs aspartate and glutamate (Extended Data Fig. 4–5), which 
can be biosynthesized from TCA cycle intermediates in PDAC cells14. 
Indeed, citrate was one of the major recipients of alanine carbon, with 
labelling ranging from 23% to 46% among PDAC lines (Fig. 2f and 
Extended Data Figs 4, 5).

We also observed that the alanine-derived pyruvate competed 
 meaningfully with mitochondrial but not cytosolic glucose-derived 
pyruvate based on the citrate (M2, where M refers to metabolite  
and 2 the number of 13C atoms present) and lactate (M3) labelling 
 patterns following U-13C-Ala or U-13C-glucose tracing studies 
(Extended Data Figs 3d, i, j, o–q, 4, 5, 6a). These results illustrate 
that  alanine carbon is being used selectively to fuel mitochondrial 
 metabolism and are  consistent with our earlier observations that the 
addition of alanine does not disrupt glycolysis (Extended Data Fig. 3i–k).  
A  principle  function of mitochondrial pyruvate in proliferating cells is to 
 contribute to citrate generation via its conversion to acetyl coenzyme A  
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Figure 2 | Alanine is secreted by stellate cells and is used by PDAC to 
fuel biosynthetic reactions. a, Role of the alanine transaminases (GPT1/2) 
in central carbon metabolism. Glucose (Glc), pyruvate (Pyr), lactate (Lac), 
Ac–CoA, citrate (Cit), and α -ketoglutarate (α KG). b, Knockdown of 
GPT1 or GPT2 in PDAC cells results in a further increase in intracellular 
alanine upon treatment with PSC-conditioned medium. Error bars depict 
s.d. (n =  3). Data are normalized to cells treated with standard culture 
medium for each shRNA. c, Knockdown of GPT1 or GPT2 in PDAC cells 
significantly attenuates the ability of PSC-conditioned medium to increase 
OCR. Data normalized to cells treated with standard culture medium. 
Error bars depict s.e.m. of independent experiments (n =  3). d, Alanine 
treatment of PDAC cells increases OCR in a dose-dependent fashion and 
can be recapitulated by pyruvate. Data normalized to cells treated with 
standard culture medium. Error bars depict s.d. of 4 independent wells 
from a representative experiment (of 3 experiments). e, Alanine-derived 
carbon labelling patterns of metabolites in PDAC cells treated with 
U-13C-Ala demonstrate substantial label incorporation into the TCA cycle 
metabolites citrate, isocitrate (Iso), malate (Mal) and fumarate (Fum). 
Error bars depict s.d. (n =  3). f, U-13C-alanine labelling of citrate in a panel 
of PDAC cell lines represented as fraction of citrate with labelled carbon. 
Error bars depict s.d. (n =  3). g, h, U-13C-Ala labelled PDAC cells show 
substantial incorporation of alanine into the de novo biosynthesis of the 
fatty acids palmitate (g) and stearate (h). Data presented as the sum of 
all isotopomers containing alanine-derived label. Error bars depict s.d. 
(n =  4). Significance determined with one-way ANOVA in b–d. Panels  
b, f, n =  3; panels g, h, n =  4 technical replicates from independently 
prepared samples from individual wells. * P <  0.05, * * P <  0.01,  
* * * P <  0.001. The calculated P values and comparisons are reported in 
Supplementary Information.
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conditioning process (Extended Data Fig. 1f, g) and reproducible with 
multiple primary specimens (Fig. 1b and Extended Data Fig. 1h, i). 
Notably, this metabolic phenotype was specific to pancreatic cancer 
cells; non-transformed pancreatic ductal epithelial cells did not exhibit 
increased OCR in response to PSC medium (Extended Data Fig. 1j).

To identify the nature of the PSC-secreted factors that alter PDAC 
metabolism, we subjected conditioned medium to three freeze-thaw 
cycles (− 80 °C, 60 °C) or heating (100 °C, 15 min) and observed that 
it retained the ability to increase PDAC OCR (Fig. 1c and Extended 
Data Fig. 1k–m), indicating that the factor(s) lacked tertiary structure. 
Moreover, the activity was retained in medium passed through a 3-kDa 
cut-off filter (Extended Data Fig. 1n). The small size and resistance to 
extreme temperatures of the OCR-increasing factor(s) excluded large 
candidate molecules such as proteins, indicating that the factor(s) could 
be metabolites.

We next performed a series of metabolomic studies17 to identify 
metabolites that were secreted by PSCs and taken up by PDAC cells 
(Extended Data Fig. 2a). Specifically, we sought molecules that were 
over-represented in PSC medium (and therefore secreted by PSCs); 
under-represented in the PSC medium after contact with PDAC 
cells (removed by PDAC cells); and over-represented inside PDAC 
cells treated with the PSC medium (taken up by PDAC cells). Of 
 approximately 200 metabolites analysed, only the non-essential amino 
acids (NEAA) alanine and aspartate followed this pattern (Fig. 1d and 
Extended Data Fig. 2b). Treatment of PDAC cells with the individual 
amino acids revealed that only alanine had the ability to increase PDAC 
OCR to a degree comparable to that of PSC-conditioned medium  
(Fig. 1e and Extended Data Fig. 2c).

To demonstrate that PSC-derived metabolites, and alanine 
 specifically, were being taken up by PDAC cells, we performed 
 metabolite tracing experiments in which PSCs were grown to  saturation 
in medium containing uniformly carbon-13-labelled (U13C-) glucose 
and U13C-glutamine to label secreted NEAAs (Extended Data  
Fig. 2d). The conditioned medium from the labelled cells was then 
added to PDAC cells, allowing us to track the production and secretion 
of alanine by the PSCs and to follow its depletion from PSC medium 
upon contact with PDAC cells (Extended Data Fig. 2e). Quantification 
revealed that secreted alanine in the PSC medium reached millimolar 
concentration within 24 h of conditioning (Fig. 1f and Extended Data 
Fig. 2f–i), and this occurred independent of serum in the medium 
(Extended Data Fig. 2h). In the context of a tumour in vivo, the more 
important parameters to assess are the release and uptake of alanine 
relative to other nutrients. Accordingly, we performed kinetic studies 
and found that alanine was secreted by the PSCs at the greatest rate 
of the 14 amino acids measured and more rapidly than even lactate 
(Extended Data Fig. 2j, k). Alanine was also one of only two amino 
acids to accumulate in PDAC cells, achieving an enrichment of greater 
than fivefold (Extended Data Fig. 2l).

We next investigated how PDAC cells metabolize PSC-derived 
 alanine. Alanine could increase OCR by fuelling the TCA cycle, and a 
likely route for this is through transamination of alanine into  pyruvate 
(Fig. 2a). Consistently, depletion of the cytosolic or mitochondrial 
alanine transaminase (GPT1 or GPT2, respectively) in PDAC cells 
(Extended Data Fig. 3a) resulted in an increase in accumulation of 
alanine (Fig. 2b) and a decrease in OCR in PSC medium-treated 
PDAC cells (Fig. 2c and Extended Data Fig. 3b, c). Moreover, direct 
addition of pyruvate to PDAC cells increased OCR (Fig. 2d). We then 
performed U-13C-Ala tracing studies to assess how alanine was being 
used in PDAC metabolism. Treatment of cells with 1 mM U-13C-Ala 
led to a 5–10-fold increase in the intracellular alanine pool (Extended 
Data Fig. 3d–h). Carbon from alanine did not contribute to upstream 
glycolytic intermediates (Extended Data Fig. 3i, j) or alter glycolytic 
flux (Extended Data Fig. 3k) or the NAD+/NADH ratio (Extended 
Data Fig. 3l, m), and it contributed minimally to the intracellular lactate 
pool (Extended Data Fig. 3d, n), irrespective of the extracellular  glucose 
concentration (Extended Data Fig. 3o–q). These results suggested 

that alanine-derived pyruvate was being used in the mitochondria, 
because it was not affecting cytosolic glycolytic metabolism. Indeed, 
alanine was a major carbon source for the TCA cycle; 13C was markedly 
 incorporated into citrate and isocitrate, and, to a lesser extent, malate 
and fumarate (Fig. 2e and Extended Data Figs 4, 5), as well as into 
the NEAAs aspartate and glutamate (Extended Data Fig. 4–5), which 
can be biosynthesized from TCA cycle intermediates in PDAC cells14. 
Indeed, citrate was one of the major recipients of alanine carbon, with 
labelling ranging from 23% to 46% among PDAC lines (Fig. 2f and 
Extended Data Figs 4, 5).

We also observed that the alanine-derived pyruvate competed 
 meaningfully with mitochondrial but not cytosolic glucose-derived 
pyruvate based on the citrate (M2, where M refers to metabolite  
and 2 the number of 13C atoms present) and lactate (M3) labelling 
 patterns following U-13C-Ala or U-13C-glucose tracing studies 
(Extended Data Figs 3d, i, j, o–q, 4, 5, 6a). These results illustrate 
that  alanine carbon is being used selectively to fuel mitochondrial 
 metabolism and are  consistent with our earlier observations that the 
addition of alanine does not disrupt glycolysis (Extended Data Fig. 3i–k).  
A  principle  function of mitochondrial pyruvate in proliferating cells is to 
 contribute to citrate generation via its conversion to acetyl coenzyme A  
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Figure 2 | Alanine is secreted by stellate cells and is used by PDAC to 
fuel biosynthetic reactions. a, Role of the alanine transaminases (GPT1/2) 
in central carbon metabolism. Glucose (Glc), pyruvate (Pyr), lactate (Lac), 
Ac–CoA, citrate (Cit), and α -ketoglutarate (α KG). b, Knockdown of 
GPT1 or GPT2 in PDAC cells results in a further increase in intracellular 
alanine upon treatment with PSC-conditioned medium. Error bars depict 
s.d. (n =  3). Data are normalized to cells treated with standard culture 
medium for each shRNA. c, Knockdown of GPT1 or GPT2 in PDAC cells 
significantly attenuates the ability of PSC-conditioned medium to increase 
OCR. Data normalized to cells treated with standard culture medium. 
Error bars depict s.e.m. of independent experiments (n =  3). d, Alanine 
treatment of PDAC cells increases OCR in a dose-dependent fashion and 
can be recapitulated by pyruvate. Data normalized to cells treated with 
standard culture medium. Error bars depict s.d. of 4 independent wells 
from a representative experiment (of 3 experiments). e, Alanine-derived 
carbon labelling patterns of metabolites in PDAC cells treated with 
U-13C-Ala demonstrate substantial label incorporation into the TCA cycle 
metabolites citrate, isocitrate (Iso), malate (Mal) and fumarate (Fum). 
Error bars depict s.d. (n =  3). f, U-13C-alanine labelling of citrate in a panel 
of PDAC cell lines represented as fraction of citrate with labelled carbon. 
Error bars depict s.d. (n =  3). g, h, U-13C-Ala labelled PDAC cells show 
substantial incorporation of alanine into the de novo biosynthesis of the 
fatty acids palmitate (g) and stearate (h). Data presented as the sum of 
all isotopomers containing alanine-derived label. Error bars depict s.d. 
(n =  4). Significance determined with one-way ANOVA in b–d. Panels  
b, f, n =  3; panels g, h, n =  4 technical replicates from independently 
prepared samples from individual wells. * P <  0.05, * * P <  0.01,  
* * * P <  0.001. The calculated P values and comparisons are reported in 
Supplementary Information.
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Carbon isotope tracing



13C-MFA but may not always be explicitly stated, highlight
best practices in 13C-MFA, and identify potential pitfalls as
well as alternative approaches. Throughout, we emphasize
key aspects that should be considered when planning
tracer experiments and performing 13C-MFA calculations
to ensure correct interpretation of data and results, and to
increase insights obtained from these studies.

Basics of 13C-MFA
Cellular metabolism serves four important functions in

proliferating cancer cells: (1) supply of anabolic building
blocks for cell growth; (2) generation of metabolic energy
in the form of ATP to drive thermodynamically unfa-
vorable reactions; (3) generation of redox equivalents in
the form of NADPH for anabolic processes such as fatty
acid biosynthesis and to combat oxidative stress; and (4)
maintaining redox homeostasis by oxidizing excess
NADH generated in central metabolic pathways.
The first step in obtaining a quantitative picture of

cellular metabolism is to measure the growth rate of the
cells and quantify nutrient uptake and secretion rates such

as glucose and glutamine uptake and lactate secretion46,47

(Fig. 1). These external rates provide important boundary
constraints on intracellular pathway activities. However,
due to redundancies in mammalian metabolic pathways,
external rates alone do not allow detailed conclusions to
be drawn about the relative contribution of specific
metabolic pathways to overall metabolism46,48. To
examine intracellular fluxes in detail, stable isotopes such
as 13C are utilized. When a labeled substrate, e.g.,
[1,2-13C]glucose, is metabolized by cells, enzymatic reac-
tions rearrange carbon atoms resulting in specific labeling
patterns in downstream metabolites that can be measured
with analytical techniques such as mass spectrometry
(MS), or nuclear magnetic resonance. For a well-selected
tracer, different metabolic pathways will produce dis-
tinctly different labeling patterns in the measured meta-
bolites from which fluxes can be inferred49,50. However, in
most cases, isotopic labeling data cannot be interpreted
intuitively due to the highly complex nature of atom
rearrangements in metabolic pathways51; instead, a formal
model-based analysis approach is required to extract flux
information from the labeling data. In the past 20 years,
13C-MFA has emerged as the primary approach used for
converting isotopic labeling data into corresponding
metabolic flux maps45.
The main objective of 13C-MFA is thus to generate a

quantitative map of cellular metabolism by assigning flux
values to the reactions in the network model and con-
fidence intervals for each estimated flux (Fig. 2). At a high
level, 13C-MFA is formulated as a least-squares parameter
estimation problem, where fluxes are unknown model
parameters that must be estimated by minimizing the
difference between the measured labeling data and
labeling patterns simulated by the model, subject to
stoichiometric constraints resulting from mass balances
for intracellular metabolites and metabolite labeling
states, the so-called isotopomers40,52. When 13C-MFA
first emerged in 1990s53, the main challenge was to
develop efficient algorithms for solving large sets of iso-
topomer mass balances54. Eventually, the computational
problems in 13C-MFA were resolved with the develop-
ment of the elementary metabolite unit (EMU) framework
that allows efficient simulation of isotopic labeling in any
arbitrary biochemical network model39. The EMU fra-
mework was subsequently incorporated into user-friendly
software tools for 13C-MFA, such as Metran and
INCA42,43, that are freely available to the scientific com-
munity. These powerful tools have opened up 13C-MFA
to a much wider scientific audience, including cancer
biologists, that may not have extensive background in
mathematics and statistics, which was required before
these software packages became available. In the next
sections, we describe in detail the three inputs that are
required for performing 13C-MFA calculations: (i)

Fig. 1 Glucose and glutamine are the two most highly consumed
carbon substrates in cancer cells. Both substrates can be converted
to lactate via glycolysis and glutaminolysis, respectively. High lactate
secretion, especially from glucose, is a major hallmark of cancer cells
known as the Warburg effect, or aerobic glycolysis
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13C-MFA but may not always be explicitly stated, highlight
best practices in 13C-MFA, and identify potential pitfalls as
well as alternative approaches. Throughout, we emphasize
key aspects that should be considered when planning
tracer experiments and performing 13C-MFA calculations
to ensure correct interpretation of data and results, and to
increase insights obtained from these studies.

Basics of 13C-MFA
Cellular metabolism serves four important functions in

proliferating cancer cells: (1) supply of anabolic building
blocks for cell growth; (2) generation of metabolic energy
in the form of ATP to drive thermodynamically unfa-
vorable reactions; (3) generation of redox equivalents in
the form of NADPH for anabolic processes such as fatty
acid biosynthesis and to combat oxidative stress; and (4)
maintaining redox homeostasis by oxidizing excess
NADH generated in central metabolic pathways.
The first step in obtaining a quantitative picture of

cellular metabolism is to measure the growth rate of the
cells and quantify nutrient uptake and secretion rates such

as glucose and glutamine uptake and lactate secretion46,47

(Fig. 1). These external rates provide important boundary
constraints on intracellular pathway activities. However,
due to redundancies in mammalian metabolic pathways,
external rates alone do not allow detailed conclusions to
be drawn about the relative contribution of specific
metabolic pathways to overall metabolism46,48. To
examine intracellular fluxes in detail, stable isotopes such
as 13C are utilized. When a labeled substrate, e.g.,
[1,2-13C]glucose, is metabolized by cells, enzymatic reac-
tions rearrange carbon atoms resulting in specific labeling
patterns in downstream metabolites that can be measured
with analytical techniques such as mass spectrometry
(MS), or nuclear magnetic resonance. For a well-selected
tracer, different metabolic pathways will produce dis-
tinctly different labeling patterns in the measured meta-
bolites from which fluxes can be inferred49,50. However, in
most cases, isotopic labeling data cannot be interpreted
intuitively due to the highly complex nature of atom
rearrangements in metabolic pathways51; instead, a formal
model-based analysis approach is required to extract flux
information from the labeling data. In the past 20 years,
13C-MFA has emerged as the primary approach used for
converting isotopic labeling data into corresponding
metabolic flux maps45.
The main objective of 13C-MFA is thus to generate a

quantitative map of cellular metabolism by assigning flux
values to the reactions in the network model and con-
fidence intervals for each estimated flux (Fig. 2). At a high
level, 13C-MFA is formulated as a least-squares parameter
estimation problem, where fluxes are unknown model
parameters that must be estimated by minimizing the
difference between the measured labeling data and
labeling patterns simulated by the model, subject to
stoichiometric constraints resulting from mass balances
for intracellular metabolites and metabolite labeling
states, the so-called isotopomers40,52. When 13C-MFA
first emerged in 1990s53, the main challenge was to
develop efficient algorithms for solving large sets of iso-
topomer mass balances54. Eventually, the computational
problems in 13C-MFA were resolved with the develop-
ment of the elementary metabolite unit (EMU) framework
that allows efficient simulation of isotopic labeling in any
arbitrary biochemical network model39. The EMU fra-
mework was subsequently incorporated into user-friendly
software tools for 13C-MFA, such as Metran and
INCA42,43, that are freely available to the scientific com-
munity. These powerful tools have opened up 13C-MFA
to a much wider scientific audience, including cancer
biologists, that may not have extensive background in
mathematics and statistics, which was required before
these software packages became available. In the next
sections, we describe in detail the three inputs that are
required for performing 13C-MFA calculations: (i)

Fig. 1 Glucose and glutamine are the two most highly consumed
carbon substrates in cancer cells. Both substrates can be converted
to lactate via glycolysis and glutaminolysis, respectively. High lactate
secretion, especially from glucose, is a major hallmark of cancer cells
known as the Warburg effect, or aerobic glycolysis
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to achieve high resolution of multiple metabolic pathways
is to perform parallel labeling experiments with different
tracers and then integrate all data into a single compre-
hensive flux model59,60. For example, parallel labeling
experiments with [1,2-13C]glucose and [U-13C]glutamine
have been demonstrated to be particularly informative
and complementary56,58,61. When conducting parallel
labeling experiments, it is important that the only differ-
ence between the experiments is which metabolite is
labeled, i.e., concentrations of all nutrients in the media
must be the same for parallel labeling experiments62.
With recent advances in 13C-MFA methodology it is now
fairly straightforward to analyze isotopic labeling data
from parallel labeling experiments45. The Metran soft-
ware was the first tool that allowed comprehensive ana-
lysis of parallel labeling experiments for high-resolution
13C-MFA. Recently, other 13C-MFA software packages
have also included this feature.

Metabolic model for 13C-MFA
All 13C-MFA calculations are based on a model of

biochemical reactions within a specified metabolic net-
work. Determining the scope of the model is an important
decision in 13C-MFA studies. Unfortunately, there is only
limited consensus in the literature on the optimal scope of
metabolic models for flux analysis in cancer cells. This is
in part due to the fact that the appropriate model

complexity will depend to some degree on the specific
choice of isotopic tracer (or tracers), how many parallel
labeling experiments are performed, and how many and
which labeling measurements are collected. In general,
more comprehensive data sets, i.e., based on multiple
parallel labeling experiments with different labeled sub-
strates36,56,60,63, will permit the use of more complex
models for 13C-MFA than smaller data sets obtained
using a single tracer experiment.
Typically, 13C-MFA models will include all major

metabolic pathways of central carbon metabolism such as
glycolysis, PPP, TCA cycle, as well as any relevant reac-
tions that connect these pathways (Fig. 4a). Compart-
mentalization of metabolites and metabolic reactions is an
important feature of mammalian cells that must be cap-
tured in the model. Metabolites and reactions are there-
fore assigned to specific metabolic compartments such as
cytosol or mitochondrion. Certain metabolites will be
present in multiple compartments, for example, pyruvate,
acetyl coenzyme A, citrate, malate, fumarate, oxaloacetate,
and AKG. These metabolites are treated as separate
entities in the model that can have different labeling states
in different compartments. Transport reactions in the
model allow specific metabolites to be transferred
between cellular compartments. Compartment-specific
isozymes, which can operate independently, must be
included as separate reactions in the model (e.g., cytosolic

Fig. 4 13C metabolic fluxes are estimated based on comprehensive compartmentalized models of cellular metabolism. a The diagram
shows important metabolic pathways in cancer metabolism, including glycolysis, pentose phosphate pathway, TCA cycle, reductive carboxylation of
glutamine, and transketolase-like 1 (TKTL1) pathway. One of the key functions of cellular metabolism is to supply anabolic building blocks needed for
cell growth, shown here as draining reactions from central metabolic pathways. b A typical macromolecular composition of cancer cells is shown.
The macromolecular composition and the growth rate of cells determine the rates at which anabolic precursors must be produced to sustain cell
growth. Typical values of anabolic precursor fluxes in proliferating cancer cells are shown
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Reductive carboxylation supports growth in tumour
cells with defective mitochondria
Andrew R. Mullen1, WilliamW. Wheaton2,3, Eunsook S. Jin4,5, Pei-Hsuan Chen1, Lucas B. Sullivan2,3, Tzuling Cheng1,
Youfeng Yang6, W. Marston Linehan6, Navdeep S. Chandel2,3 & Ralph J. DeBerardinis1,7,8

Mitochondrial metabolism provides precursors to build macro-
molecules in growing cancer cells1,2. In normally functioning
tumour cell mitochondria, oxidative metabolism of glucose- and
glutamine-derived carbon produces citrate and acetyl-coenzyme A
for lipid synthesis, which is required for tumorigenesis3. Yet some
tumours harbour mutations in the citric acid cycle (CAC) or elec-
tron transport chain (ETC) that disable normal oxidative mito-
chondrial function4–7, and it is unknown how cells from such
tumours generate precursors for macromolecular synthesis. Here
we show that tumour cells with defective mitochondria use
glutamine-dependent reductive carboxylation rather than oxidative
metabolism as the major pathway of citrate formation. This
pathway uses mitochondrial and cytosolic isoforms of NADP1/
NADPH-dependent isocitrate dehydrogenase, and subsequent
metabolism of glutamine-derived citrate provides both the acetyl-
coenzyme A for lipid synthesis and the four-carbon intermediates
needed to produce the remaining CAC metabolites and related
macromolecular precursors. This reductive, glutamine-dependent
pathway is the dominant mode of metabolism in rapidly growing
malignant cells containingmutations in complex I or complex III of
the ETC, in patient-derived renal carcinoma cells withmutations in
fumarate hydratase, and in cells with normal mitochondria sub-
jected to acute pharmacologicalETC inhibition.Our findings reveal
the novel induction of a versatile glutamine-dependent pathway
that reverses many of the reactions of the canonical CAC, supports
tumour cell growth, and explains how cells generate pools of CAC
intermediates in the face of impaired mitochondrial metabolism.
Wefirst studied themetabolismof isogenic143Bhumanosteosarcoma

cells that contained or lacked a loss-of-functionmutation in ETC com-
plex III (cytochrome b–c1 complex). These cell lines were generated by
depleting 143B mitochondrial DNA (mtDNA) and repopulating with
either wild-type mtDNA or mtDNA containing a frameshift mutation
in the gene encoding cytochrome b (CYTB: also known asMT-CYB), an
essential complex III component8. Despite lack of respiration and com-
plex III function in themutants8, bothwild-type (WT143B) andCYTB-
mutant (CYTB 143B) cells form colonies in soft agar9 and proliferate at
comparable rates (Supplementary Fig. 1a), making these cells a good
model in which to study growth during mitochondrial dysfunction.
Both cell lines had detectable CAC intermediates, although citrate
was less abundant and succinate was significantly more abundant in
the CYTB 143B cells (Supplementary Fig. 1b). As expected for cells
with defective oxidative phosphorylation, CYTB 143B cells had higher
glucose consumption and lactate production thanWT 143B cells, indi-
cating a metabolic shift towards aerobic glycolysis (Fig. 1a). To deter-
mine the effects ofCYTBmutation on themetabolic fates of glucose, we
cultured both cell lines inmedium containing D[U-13C]glucose (hereU
indicates uniformly labelled) and measured 13C enrichment of intra-
cellular metabolites by mass spectrometry. In WT 143B cells, most

citrate molecules contained glucose-derived 13C (Fig. 1b). Citrate
m12 (citrate containing two additional mass units from 13C) results
from oxidative decarboxylation of glucose-derived pyruvate by
pyruvate dehydrogenase (PDH) to form [1,2-13C]acetyl-coA
(coA, coenzyme A), followed by condensation with an unlabelled

1Department of Pediatrics, University of Texas – SouthwesternMedical Center at Dallas, Dallas, Texas 75390-9063, USA. 2Department of Medicine, NorthwesternUniversity, Chicago, Illinois 60611-3008,
USA. 3Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611-3008, USA. 4Department of Internal Medicine, University of Texas – Southwestern Medical Center at
Dallas, Dallas, Texas 75390-9063, USA. 5Advanced Imaging Research Center, University of Texas – Southwestern Medical Center at Dallas, Dallas, Texas 75390-8568, USA. 6Urologic Oncology Branch,
National Cancer Institute, Bethesda, Maryland 20892, USA. 7McDermott Center for Human Growth and Development, University of Texas – Southwestern Medical Center at Dallas, Dallas, Texas 75390-
8591, USA. 8Harold C. Simmons Comprehensive Cancer Center, University of Texas – Southwestern Medical Center at Dallas, Dallas, Texas 75235-5303, USA.

a

c

b

d

e

L[
U

-13
C

]g
lu

ta
m

in
e 
→

 fu
m

ar
at

e
(%

 o
f p

oo
l)

WT 143B

WT 143B

CYTB 143B

CYTB 143B

L[
U

-13
C

]g
lu

ta
m

in
e 
→

 c
itr

at
e

(%
 o

f p
oo

l)

0

10
20
30

40

50
60

m+0
m+1

m+2
m+3

m+6
m+5

m+4
m+0

m+1
m+2

m+3
m+4

Mass isotopomer

m+0
m+1

m+2
m+3

m+6
m+5

m+4

Mass isotopomer

WT 143B
CYTB 143B

0

10

20

30

40

50

Mass isotopomer

WT 143B
CYTB 143B

G
lu

co
se

 c
on

su
m

ed
(n

m
ol

 p
er

 μ
g 

pr
ot

ei
n 

pe
r h

)

La
ct

at
e 

se
cr

et
ed

(n
m

ol
 p

er
 μ

g 
pr

ot
ei

n 
pe

r h
)

G
lu

ta
m

in
e 

co
ns

um
ed

(n
m

ol
 p

er
 μ

g 
pr

ot
ei

n 
pe

r h
)

5

4

3

2

1

0

2.5

2.0

1.5

1.0

0.5

0 0

0.1

0.2

0.3

0.4

0.5
** **

** *

** **

WT 143B

αKG

Ac-CoA

OAA 

Fatty acids

FumMal 

IDH

ACL

Succ-
CoA

CYTB 143B
αKGDHSuccinate

GlnGluαKG

Glucose

Pyruvate

Ac-CoA Fatty
acids

OAA

PDH

ACL

Succ-CoA/
succinate

Fum/Mal

Citric
acid
cycle

Citrate

Ac-CoA

Isocitrate

OAA

GlnGlu

Citrate

Isocitrate

Succinate

Lipids Lipids

CO2

CO2
CO2

CO2
IDH

αKGDH

0

20

40

60

80

D
[U

-13
C

]g
lu

co
se

 →
 c

itr
at

e
(%

 o
f p

oo
l)

***

**

**

Figure 1 | A reductive pathway of glutamine metabolism in cancer cells
lacking activity of ETC complex III. a, Glucose utilization, lactate secretion
and glutamine utilization in WT 143B and CYTB 143B cells. b, Mass
isotopomer analysis of citrate in cells cultured with D[U-13C]glucose and
unlabelled glutamine. c, d, Mass isotopomer analysis of citrate and fumarate in
cells cultured with L[U-13C]glutamine and unlabelled glucose. Data are the
average6 s.d. for three independent cultures. *P, 0.05; **P, 0.005,
Student’s t-test. e, Schematic of glutamine metabolism in WT 143B and CYTB
143B cells. Coloured arrows follow the paths of glutamine-derived carbon.
Abbreviations: Ac-CoA, acetyl-CoA; OAA, oxaloacetate; Gln, glutamine; Glu,
glutamate; aKG, a-ketoglutarate; Succ-CoA, succinyl-CoA; Fum, fumarate;
Mal, malate; PDH, pyruvate dehydrogenase; ACL, ATP-citrate lyase; IDH,
isocitrate dehydrogenase; aKGDH, a-ketoglutarate dehydrogenase.
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Mitochondrial metabolism provides precursors to build macro-
molecules in growing cancer cells1,2. In normally functioning
tumour cell mitochondria, oxidative metabolism of glucose- and
glutamine-derived carbon produces citrate and acetyl-coenzyme A
for lipid synthesis, which is required for tumorigenesis3. Yet some
tumours harbour mutations in the citric acid cycle (CAC) or elec-
tron transport chain (ETC) that disable normal oxidative mito-
chondrial function4–7, and it is unknown how cells from such
tumours generate precursors for macromolecular synthesis. Here
we show that tumour cells with defective mitochondria use
glutamine-dependent reductive carboxylation rather than oxidative
metabolism as the major pathway of citrate formation. This
pathway uses mitochondrial and cytosolic isoforms of NADP1/
NADPH-dependent isocitrate dehydrogenase, and subsequent
metabolism of glutamine-derived citrate provides both the acetyl-
coenzyme A for lipid synthesis and the four-carbon intermediates
needed to produce the remaining CAC metabolites and related
macromolecular precursors. This reductive, glutamine-dependent
pathway is the dominant mode of metabolism in rapidly growing
malignant cells containingmutations in complex I or complex III of
the ETC, in patient-derived renal carcinoma cells withmutations in
fumarate hydratase, and in cells with normal mitochondria sub-
jected to acute pharmacologicalETC inhibition.Our findings reveal
the novel induction of a versatile glutamine-dependent pathway
that reverses many of the reactions of the canonical CAC, supports
tumour cell growth, and explains how cells generate pools of CAC
intermediates in the face of impaired mitochondrial metabolism.
Wefirst studied themetabolismof isogenic143Bhumanosteosarcoma

cells that contained or lacked a loss-of-functionmutation in ETC com-
plex III (cytochrome b–c1 complex). These cell lines were generated by
depleting 143B mitochondrial DNA (mtDNA) and repopulating with
either wild-type mtDNA or mtDNA containing a frameshift mutation
in the gene encoding cytochrome b (CYTB: also known asMT-CYB), an
essential complex III component8. Despite lack of respiration and com-
plex III function in themutants8, bothwild-type (WT143B) andCYTB-
mutant (CYTB 143B) cells form colonies in soft agar9 and proliferate at
comparable rates (Supplementary Fig. 1a), making these cells a good
model in which to study growth during mitochondrial dysfunction.
Both cell lines had detectable CAC intermediates, although citrate
was less abundant and succinate was significantly more abundant in
the CYTB 143B cells (Supplementary Fig. 1b). As expected for cells
with defective oxidative phosphorylation, CYTB 143B cells had higher
glucose consumption and lactate production thanWT 143B cells, indi-
cating a metabolic shift towards aerobic glycolysis (Fig. 1a). To deter-
mine the effects ofCYTBmutation on themetabolic fates of glucose, we
cultured both cell lines inmedium containing D[U-13C]glucose (hereU
indicates uniformly labelled) and measured 13C enrichment of intra-
cellular metabolites by mass spectrometry. In WT 143B cells, most

citrate molecules contained glucose-derived 13C (Fig. 1b). Citrate
m12 (citrate containing two additional mass units from 13C) results
from oxidative decarboxylation of glucose-derived pyruvate by
pyruvate dehydrogenase (PDH) to form [1,2-13C]acetyl-coA
(coA, coenzyme A), followed by condensation with an unlabelled
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Figure 1 | A reductive pathway of glutamine metabolism in cancer cells
lacking activity of ETC complex III. a, Glucose utilization, lactate secretion
and glutamine utilization in WT 143B and CYTB 143B cells. b, Mass
isotopomer analysis of citrate in cells cultured with D[U-13C]glucose and
unlabelled glutamine. c, d, Mass isotopomer analysis of citrate and fumarate in
cells cultured with L[U-13C]glutamine and unlabelled glucose. Data are the
average6 s.d. for three independent cultures. *P, 0.05; **P, 0.005,
Student’s t-test. e, Schematic of glutamine metabolism in WT 143B and CYTB
143B cells. Coloured arrows follow the paths of glutamine-derived carbon.
Abbreviations: Ac-CoA, acetyl-CoA; OAA, oxaloacetate; Gln, glutamine; Glu,
glutamate; aKG, a-ketoglutarate; Succ-CoA, succinyl-CoA; Fum, fumarate;
Mal, malate; PDH, pyruvate dehydrogenase; ACL, ATP-citrate lyase; IDH,
isocitrate dehydrogenase; aKGDH, a-ketoglutarate dehydrogenase.
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Table 2. Isotopic Tracers for Measuring Pathway Activities

Application Tracer Metabolite readouts Interpretation

Pentose phosphate pathway (PPP)

PPP overflow [1,2-13C]glucose Lactate M+1, M+2 Flux through the combined oxidative and

non-oxidative PPP generates M+1 lactate from

[1,2-13C]glucose, while glycolysis generates

only M+2 lactate (Lee et al., 1998). LacM+1 /

LacM+2 reflects ratio of PPP overflow to

glycolysis.

Source of ribose

(oxidative versus

non-oxidative branch

of PPP)

[1,2-13C]glucose Ribose phosphate M+1, M+2 The oxPPP make M+1 ribose phosphate; the

non-oxPPP makes M+2. Ratio of M+1/M+2

depends on the gross flux (net flux + exchange

flux) of each branch: Reversibility of the

non-oxPPP can make M+2 even if all net ribose

production is by oxPPP.

Glycolysis, TCA and gluconeogenesis

Glycolytic rate [U-13C]glucose FBP

Dihydroxyacetone phosphate

3-phosphoglycerate

Higher flux yields faster labeling. Labeling

results should be confirmed by glucose uptake

and lactate excretion measurements.

Reversibility of glycolysis 50%: 50% mix of

[U-12C]: [U-13C]

glucose

Glucose-6-phosphate M+3

FBP M+3

Feeding a mixture of labeled and unlabeled

glucose results in unlabeled and M+3 triose

phosphates. Reversibility of aldolase produces

M+3 FBP. Fructose bisphosphatase activity

yields M+3 glucose-6-phosphate (Park

et al., 2016).

Gluconeogenesis [U-13C]lactate

[U-13C]glutamine

Glucose M+2, M+3

Glucose-6-phosphate M+2, M+3

3-phosphoglycerate M+2, M+3

Lactate and glutamine are major TCA

feedstocks. Flux from TCA to glycolysis

catalyzed by PEPCK results in triose phosphate

labeling. Fructose bisphosphatase activity then

makes labeled hexose phosphates.

Pyruvate carboxylase

contribution to TCA

[3-13C]glucose

[1-13C]pyruvate

Aspartate M+1

Malate M+1

C1 of pyruvate comes from glucose C3/C4.

Pyruvate C1 is lost in making acetyl-CoA, but

can enter TCA via pyruvate carboxylase which

makes M+1 oxaloacetate and thus M+1

aspartate and M+1 malate (Sellers et al., 2015).

Reductive carboxylation

(‘‘backwards’’ TCA flux)

[U-13C]glutamine

[1-13C]glutamine

Citrate M+5, Malate M+3 or

Citrate M+1, Malate M+1

Reductive carboxylation of a-ketoglutarate

(derived from labeled glutamine) produces M+5

citrate from [U-13C]glutamine and M+1 citrate

from [1-13C]glutamine, and subsequent ATP

citrate lyase produces M+3 or M+1 malate,

respectively (Yoo et al., 2008)

TCA carbon sources [U-13C]nutrients Succinate

Malate

Citrate

a-ketoglutarate

Carbon enrichment (number of 13C atoms

versus total carbon atoms) reflects carbon

contribution from the nutrient; useful in vivowith

correction for circulating nutrient enrichment

(Davidson et al., 2016; Faubert et al., 2017; Hui

et al., 2017)

Biosynthesis

Acetyl-CoA sources [U-13C]glucose

[U-13C]glutamine

[U-13C]acetate

Fatty acids (saponified)

Acetyl amino acids

Fatty acids (e.g., palmitate) are made from

stochastic condensation of labeled and

unlabeled acetyl-CoA. Acetyl group labeling

can be inferred by binomial fitting of fatty acid

labeling or by comparing steady-state labeling

of acetyl-amino acids and the corresponding

free amino acids.

De novo fatty acid

biosynthesis

2H2O Fatty acids (saponified) 2H2O labels newly synthesized fat directly and

via NADPH, with 21 potential deuterium per

palmitate (Lee et al., 1994; Zhang et al., 2017).

(Continued on next page)
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Measuring nutrient availability



Study absorption mechanisms 
Assess what liver does 

Circulating levels of nutrients

Systemic metabolism

Tissue metabolism
Study local nutrient availability 

Assess “tug war” between cell types

Cell metabolism
Quantify metabolite abundance 

Assess nutrient uptake 
Assess carbon usage 

Profile compartmentalization 
Evaluate energy storage



Major challenges of analytical methods

Compartmentalization

In vivo vs in vitro/ex vivo

Analyses on whole cell extracts do not capture the availability in each cellular 
compartment. Confined abundance extremely important for enzymatic activity.

Analyses on purified cells do not capture the complexity of in vivo systems, which 
however are extremely dynamic, diverse and difficult to study.



Zhu et al, Cell Metab, 2021

Biancur et al, Cell Metab, 2021

The application of functional genomics allows to test the importance of metabolic 
enzymes for a certain biological readout (e.g.: tumor growth)



tumors. These screens reveal a surprising similarity between
essential metabolic genes for growth in vitro versus in vivo,
suggesting that culture systems may be reasonable models
for studying metabolic dependencies. Furthermore, we find
several metabolic pathways as differentially required for tumor
progression and determine selective pressures that may result
in each metabolic dependency. Our analysis identifies heme
synthesis as an in vivo liability due to environmentally induced
upregulation of the heme-degrading enzyme Hmox1, an effect
independent of the tissue origin or immune system. These
screens also pinpoint autophagy as the only metabolic require-
ment for immune evasion. Loss of autophagy decreases tumor
growth only in the presence of an intact immune system and
enhances CD8+ T cell killing in vitro. Mechanistically, auto-
phagy loss sensitizes pancreatic tumors to TNFa-induced
apoptosis. Altogether, our work provides a comparative com-
pendium of metabolic essentialities of pancreatic cancer cells
grown in culture or as tumors, and reveals potential targets
that could be exploited for therapy.

RESULTS AND DISCUSSION

Metabolism-Focused CRISPR Screens Reveal Essential
Genes for Pancreatic Cancer Growth in Culture versus
In Vivo
Pancreatic tumors rely on various cellular metabolic pathways
to grow, but how nutrient environments modify these depen-
dencies is not well understood. To begin to address potential
differences in metabolic pathway dependencies of pancreatic
cancer cells grown in tissue culture or as tumors, we con-

structed a metabolism-focused mouse sgRNA library targeting
a comprehensive set of !2,900 metabolic genes and per-
formed parallel loss-of-function screens in a murine pancreas
cancer cell line derived from a KrasG12D/Trp53R172H mutant
(KP) PDAC mouse model (Figure 1A). This library contains
sgRNAs targeting enzymes and small molecule transporters
as previously reported (Birsoy et al., 2015), but also transcrip-
tion factors and other regulators relevant to cellular meta-
bolism. A full list of genes in the library is provided in Table
S1. After transduction with the sgRNA library, we passaged
the pool of knockout cells for 14 population doublings in culture
but also formed subcutaneous tumors in an immunocompetent
C57BL/6J mouse model. At the end of the screens, for each
gene, we calculated its score as the median log2 fold change
in the abundance of all sgRNAs targeting the gene. Despite
the challenge of maintaining sgRNA representation in vivo, we
were able to detect an overwhelming majority (>99%) of
sgRNAs from tumors, owing to the efficient engraftment of
this syngeneic model (Table S1). Furthermore, indicating the
robustness of the screening approach, cumulative sgRNA fre-
quencies of cultured cancer cells showed only a slight enrich-
ment in representation compared to those of tumors (Fig-
ure 1B). Gene sets related to metabolic processes such as
glycolysis and glycosylation showed strong depletion (Fig-
ure S1A), consistent with the known essentiality of these path-
ways (Ohtsubo and Marth, 2006; Tsherniak et al., 2017; Xu
et al., 2005). Notably, sgRNA abundances correlated remark-
ably well between tumors and cultured pancreatic cancer cells
(r = 0.761, p < 0.001) (Figure 1C). These results suggest that,
despite the nutritional and cellular differences between tumors
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Figure 1. Metabolism-Focused CRISPR Screens In Vivo Reveal Metabolic Dependencies of Pancreatic Tumors
(A) Schematic of genetics screens to identify metabolic dependencies of KP pancreatic cancer specifically in vivo.

(B) Cumulative frequency curve of represented guides in genetic screens.

(C) Gene scores of in vivo versus in vitro genetic screens of KP pancreatic cancer growth.

(D) Volcano plot of differential gene scores comparing in vivo against in vitro conditions (left). Top 20 genes scoring as differentially required in vivo. Genes involved

in specific metabolic pathways are indicated (right).

(E) Gene sets enriched in differentially required genes in vivo versus in vitro for pancreatic cancer growth. The heatmap generated by iPAGE represents the extent

to which each gene set is enriched among the genes that are essential for tumor growth in vivo.

See also Figure S1.
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sustains pancreatic tumor growth (Amaravadi et al., 2016), the
precise reason for the autophagy dependency of PDACs is not
fully understood. Consistent with the previous findings, macro-
autophagy was dispensable for the growth of Kras mutant
pancreatic cancer cells in culture (Eng et al., 2016) (Figure S3B).
In contrast, Atg7-deficient tumors in immunocompetent C57BL/

6J mice were substantially smaller compared to those
expressing sgRNA-resistant Atg7 cDNA (Figures 4D and 4E).
Remarkably, this difference is dependent on the presence of
lymphocytes, as the effect is completely abolished in NSG
mice and mostly lost in Rag1 null mice, which lack mature T
and B cells, but not NK cells (Figures 4E and S3C). Similar to
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Figure 3. Heme Synthesis Is a Metabolic Dependency of Kras-Driven Tumors In Vivo
(A) Immunoblot of HMBS in the indicated KP pancreas and KP lung cancer cell lines. GAPDH was used as loading control.

(B) Fold change in cell number (log2) of the indicated KP pancreas andKP lung cancer cell lines after culturing in vitro for the indicated durations (mean ± SD, n = 3).

***p < 0.001 versus sgControl.

(C) Tumor weights of the indicated KP pancreas and KP lung tumors engrafted subcutaneously in C57BL/6J mice (box and whisker, n = 8). *p < 0.05, ***p < 0.001

versus sgControl (left). Images of the indicated KP pancreas and KP lung tumors (right).

(D) Immunoblot of HMOX1 in KP pancreas and KP lung cancer cells grown in vitro under normoxia, under hypoxia (0.5% oxygen) for 48 h, and in subcutaneous

tumors. GAPDH was used as loading control.

(E) Immunoblots of HMOX1 and HMBS in the indicated KP pancreas cell lines. GAPDH was used as loading control.

(F) Relative tumor weights of the indicated KP pancreas Hmbs_KO tumors engrafted subcutaneously in C57BL/6Jmice (box andwhisker, n = 23). *p < 0.05 versus

control (top). Representative image of the indicated KP pancreas Hmbs_KO tumors (bottom).

(G) Schematic of competition assay using PDAC patient-derived xenograft cells infected with the indicated sgRNAs. Cells were then engrafted subcutaneously in

NSG mice (left). Relative fold change in sgRNA abundance (log2) from the PDX (mean ± SD, n = 5). **p < 0.01 versus sgControl (right).

(H) Disease-free survival rates of TCGA PDAC patients with high or low heme synthesis gene expressions. Weighted average expressions of CPOX, HMBS,

PPOX, and UROS were used (low heme n = 83, high heme n = 28).

See also Figure S2.
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