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Overview

• CSL model checking
− basic algorithm
− untimed properties
− time-bounded until
− the S (steady-state) operator

• Rewards
− reward structures for CTMCs
− properties: extension of CSL
− model checking
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CSL: Continuous Stochastic Logic

• CSL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ] (state formulae)

− ψ  ::= X φ    |    φ UI φ (path formulae)

− where a is an atomic proposition, I an interval of ℝ≥0,
p ∈ [0,1] and ~ ∈ {<,>,≤,≥}

ψ is true with 
probability ~p

“time bounded 
until”

“next”
in the “long 

run” φ is true 
with 

probability ~p
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CSL model checking for CTMCs

• Algorithm for CSL model checking [BHHK03]
− inputs: CTMC C=(S,sinit,R,L), CSL formula φ
− output: Sat(φ) = { s∈S | s ⊨ φ }, the set of states satisfying φ

• Often, also consider quantitative results
− e.g. compute result of P=? [ F[0,t] minimum ] for 0≤t≤100

• Basic algorithm similar to PCTL for DTMCs
− proceeds by induction on parse tree of φ

• For the non-probabilistic operators:
− Sat(true) = S
− Sat(a) = { s ∈ S | a ∈ L(s) }
− Sat(¬φ) = S \ Sat(φ)
− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)
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CSL model checking for CTMCs

• Main task: computing probabilities for P~p [·] and S~p [·]

− φ ::= true | a | φ ∧ φ | ¬φ |

P~p [ X φ ] | P~p [ φ U φ ] | P~p [ φ UI φ ] | S~p [ φ ]

− where φ1 U φ2 ≡ φ1 U[0,∞) φ2

time
bounded

until
untimed steady-

state
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Untimed properties

• Untimed properties can be verified on the embedded DTMC
− properties of the form: P~p [ X φ ] or P~p [ φ1 U φ2 ]
− use algorithms for checking PCTL against DTMCs

• Certain qualitative time-bounded until formulae can also 
be verified on the embedded DTMC
− for any (non-empty) interval I

s ⊨ P~0 [ φ1 UI φ2 ] if and only if s ⊨ P~0 [φ1 U[0,∞) φ2 ]

− can use precomputation algorithm Prob0
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Model checking - Time-bounded until

• Compute Prob(s, φ1 UI φ2) for all states where I is an 
arbitrary interval of the non-negative real numbers

• Lemmas:
− Prob(s, φ1 UI φ2) = Prob(s, φ1 Ucl(I) φ2) 

where cl(I) denotes the closure of the interval I
− Prob(s, φ1 U[0,∞) φ2) = Probemb(C)(s, φ1 U φ2)

where emb(C) is the embedded DTMC

• Therefore, 3 remaining cases to consider:
− I = [0,t] for some t∈ℝ≥0, I = [t,t’] for some t≤t’∈ℝ≥0

and I = [t,∞) for some t∈ℝ≥0

• Two methods: 1. Integral equations; 2. Uniformisation
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Time-bounded until: integral equations

• Computing the probabilities reduces to determining the 
least solution of the following set of integral equations
− (note similarity to bounded until for DTMCs)

• Prob(s, φ1 U[0,t] φ2) equals 
− 1 if s ∈ Sat(φ2), 
− 0 if s ∈ Sat(¬φ1 ∧¬φ2), 
− and otherwise equals

• One possibility: solve these integrals numerically
− numerical integration, e.g. trapezoidal, Simpson, Romberg
− expensive, possible issues with numerical stability

probability of
moving from s
to s’ at time x

probability, in state 
s’, of satisfying
until before t-x

time units elapse

  

 

Pemb(C)(s,s' )× E(s)× e-E(s)×x( )
s'ÎS
å × Prob(s',f1 U[0,t-x] f2) dx

0

tò
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Time-bounded until: uniformisation

• Reduction to transient analysis…

• Make all φ2 states absorbing
− from such a state φ1 U[0,x] φ2

holds with probability 1

• Make all ¬φ1 ∧¬φ2 states absorbing
− from such a state φ1 U[0,x] φ2

holds with probability 0

• Formally: Construct CTMC C[φ2][¬φ1 ∧¬φ2]
− where for CTMC C=(S,sinit,R,L), let C[θ]=(S,sinit,R[θ],L), where
θ state formula, R[θ](s,s’)=R(s,s’) if s ∉ Sat(θ) and 0 otherwise

Sat(φ2)

Sat(φ1)S
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Time-bounded until: uniformisation

• Problem then reduces to calculating transient probabilities
of the CTMC C[φ2][¬φ1 ∧¬φ2]:

å
Î

¬Ù¬=
)φSat(  s'

]φφ][φC[
ts,2

t][0,
1

2

212 )'s(π  )φ U φProb(s,

transient probability: starting in state s, the 
probability of being in state s’ at time t
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Time-bounded until: uniformisation

• Can now adapt uniformisation to computing the vector of 
probabilities Prob(φ1 U[0,t] φ2)
− recall Πt - matrix of transient probabilities: Πt(s,s’)=πs,t(s’) 
− can be computed via uniformisation:

• Combining with: 

− (note analogy: for transient analysis, we post-multiplied from 
initial vector, now we pre-multiply with Sat-indicator vector) 

( )   γ0i

i )C(unif
i,tqt å¥

= × ×= PΠ

( )( )
( )( )å

å
¥

=
¬Ù¬

×

¥
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×

¬Ù¬

××

××

×

=

=

=

0i 2
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 φ  γ 
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P

P

Π

å
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t][0,
1

2

212 )'s(π  )φ U φ, Prob(s
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Time-bounded until: uniformisation

• Have shown that we can calculate the probabilities as:

• Infinite summation can be truncated using techniques by 
Fox and Glynn [FG88]

• Can compute iteratively to avoid matrix powers:

− (note slight imprecision in Greek gamma var, 1st equation)

( ) 22
0 )C(unif φφ =×P

    

 

 Punif(C)( ) i+1
× f2 = Punif(C) ×   Punif(C)( ) i

× f2 
æ 

è 
ç 

ö 

ø 
÷ 

    

 

Prob(f1 U[0,t] f2) =  g q×t,i ×  Punif(C[f2 ][ ¬f1Ù¬f2 ])( ) i
× f2 

æ 

è 
ç 

ö 

ø 
÷ 

i=0

¥å
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Time-bounded until - Example

• P>0.65 [ F[0,7.5] full ]  ≡  P>0.65 [ true U[0,7.5] full ] 
− “probability of the queue becoming full within 7.5 time units”

• State s3 satisfies full and no states satisfy ¬true
− in C[full][¬true ∧¬ full] only state s3 made absorbing

ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

1000

3/103/20

03/103/2

003/13/2
matrix of unif(C[full][¬true ∧¬full]) 

with uniformisation rate 
maxs∈SE(s)=4.5 (=3+3/2)

s3 made absorbing

s1s0

3/2

1

{full}{empty}
s2 s3

3/2 3/2

333
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Time-bounded until - Example

• Computing the summation of matrix-vector multiplications

− yields Prob( F[0,7.5] full ) ≈ [ 0.6482, 0.6823, 0.7811, 1 ]

• P>0.65[ F[0,7.5] full ] satisfied in states s1, s2 and s3

( )( )å¥

=
¬Ù¬

× ××= 0i 2
i )]φφ][φ[C(unif

i,tq2
t][0,

1  φ γ )φ U φ(obPr 212P

s1s0

3/2

1

{full}{empty}
s2 s3

3/2 3/2

333
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Time-bounded until - P~p [φ1 U[t,t’] φ2]

• In this case the computation can be split into two parts:
• 1. Probability of remaining in φ1 states until time t

− can be computed as transient probabilities on the CTMC 
where states satisfying ¬φ1 have been made absorbing

• 2. Probability of reaching a φ2 state, while remaining in 
states satisfying φ1, within the time interval [0,t’-t]
− i.e. computing Prob(φ1 U[0,t’-t] φ2)

å Î

¬ ×= )φ(Sat's 2
t'-t][0,

1
]φ[C

t,s2
t'][t,

1
1

1 )φ U φ,'s(Prob)'s(π)φ U φ,s(Prob

probability 
φ1 U[0,t’-t] φ2
holds in s’

Probability of reaching state 
s’ at time t and satisfying 
φ1 up until this point

sum over states 
satisfying φ1
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Time-bounded until - P~p [φ1 U[t,t’] φ2]

• Let Probφ1(s, φ1U[0,t’-t]φ2) = Prob(s, φ1U[0,t’-t]φ2) if s∈Sat(φ1), 
and 0 otherwise

• From the previous slide we have:

− summation can be truncated using Fox and Glynn [FG88]
− can compute iteratively (only scalar and matrix-vector 

operations)
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Time-bounded until - P~p [φ1 U[t,∞) φ2]

• Letting Probφ1(s, φ1U[0,∞)φ2) = Prob(s, φ1U[0,∞)φ2) if 
s∈Sat(φ1) and 0 otherwise, we have:

− summation can be truncated using Fox and Glynn [FG88]
− can compute iteratively (only scalar and matrix-vector 

operations)
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Model Checking - S~p [ φ ]

• A state s satisfies the formula S~p[φ] if ∑s’ ⊨ φ πC
s(s’) ~ p

− πCs(s’) is probability, having started in state s, of being in 
state s’ in the long run

• Thus reduces to computing and then summing steady-
state probabilities for the CTMC (recall results earlier) 

• If CTMC is irreducible:
− solution of one system of linear equations 

• If CTMC is reducible:
− determine set of BSCCs for the CTMC
− solve two systems of linear equations, for each BSCC T:
1. one to obtain the vector ProbReachemb(C)(T)
2. the other to compute the steady state probabilities πT for T
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S~p [ φ ] - Example

• S<0.1[ full ]
• CTMC is irreducible (comprises a single BSCC)

− steady state probabilities independent of starting state
− can be computed by solving π·Q=0 and ∑ π(s)=1

ú
ú
ú
ú
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-

-
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3300
2/32/930
02/32/93
002/32/3

Q

s1s0

3/2

1

{full}{empty}
s2 s3

3/2 3/2

333
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S~p [ φ ] - Example

− solution: π = [ 8/15, 4/15, 2/15, 1/15 ]
− ∑s’ ⊨ Sat(full) π (s’) = 1/15 < 0.1
− so all states satisfy S<0.1[ full ]

0)s(π3)s(π2/3
0)s(π3)s(π2/9)s(π2/3
0)s(π3)s(π2/9)s(π2/3
0)s(π3)s(π2/3

32

321

210

10

=×-×
=×+×-×
=×+×-×
=×+×-

s1s0

3/2

1

{full}{empty}
s2 s3

3/2 3/2

333

1)s(π)s(π)s(π)s(π 3210 =+++
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Rewards (or costs)

• Like DTMCs, we can augment CTMCs with rewards
− real-valued quantities assigned to states and/or transitions
− can be interpreted in two ways: instantaneous/cumulative
− properties considered: expected value of rewards
− formal property specifications as an extension of CSL

• For a CTMC (S,sinit,R,L), a reward structure is a pair (ρ,ι)
− ρ : S →ℝ≥0 is a vector of state rewards
− ι : S × S →ℝ≥0 is a matrix of transition rewards

• For cumulative reward-based properties of CTMCs
− state rewards interpreted as rate at which reward is gained
− if the CTMC remains in state s for t∈ℝ>0 time units, a reward 

of t·ρ(s) is acquired
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Reward structures - Examples

• Example: “size of message queue”
− ρ(si)=i and ι(si,sj)=0 ∀i,j

• Example: “time for which queue is not full”
− ρ(si)=1 for i<3, ρ(s3)=0 and ι(si,sj)=0 ∀i,j

s1s0

3/2

1

{full}{empty}
s2 s3

3/2 3/2

333
instantaneous

cumulative
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Reward structures - Examples

• Example: “number of requests served”
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CSL and rewards
• PRISM extends CSL to incorporate reward-based properties

− adds R operator, as in PCTL

− φ  ::=  …  |  R~r [ I=t ]  |  R~r [ C≤t ] |  R~r [ F φ ] |  R~r [ S ]

− where r,t ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}

• R~r [ · ] means “the expected value of · satisfies ~r”

“reachability”

expected reward is ~r

“cumulative”“instantaneous” “steady-state”
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Types of reward formulae

• Instantaneous: R~r [ I=t ]
− the expected value of the reward at time instant t is ~r
− “the expected queue size after 6.7 seconds is at most 2”

• Cumulative: R~r [ C≤t ]
− the expected reward cumulated up to time instant t is ~r
− “the expected requests served within the first 4.5 seconds of 

operation is less than 10”
• Reachability: R~r [ F φ ]

− the expected reward cumulated before reaching φ is ~r
− “the expected requests served before the queue becomes full”

• Steady-state: R~r [ S ]
− the long-run average expected reward is ~r
− “expected long-run queue size is at least 1.2”
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Reward properties in PRISM

• Quantitative form:
− e.g. R=? [ C≤t ]
− what is the expected reward cumulated up to time instant t?

• Add labels to R operator to distinguish between multiple 
reward structures defined on the same CTMC
− e.g. R{num_req}=? [ C≤4.5 ]
− “the expected number of requests served within the first 4.5 

seconds of operation”
− e.g. R{pow}=? [ C≤4.5 ]
− “the expected power consumption within the first 4.5 seconds 

of operation”
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Reward formula semantics

• Formal semantics of the four reward operators:

− s ⊨ R~r [ I=t ] ⇔ Exp(s, XI=t) ~ r
− s ⊨ R~r [ C≤t ] ⇔  Exp(s, XC≤t) ~ r
− s ⊨ R~r [ F Φ ] ⇔  Exp(s, XFΦ) ~ r
− s ⊨ R~r [ S ] ⇔  limt→∞( 1/t · Exp(s, XC≤t) ) ~ r

• Where recall:
− Exp(s, X) denotes the expectation of the random variable

X : Path(s) → ℝ≥0 with respect to the probability measure Prs
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Reward formula semantics

• Definition of random variables:
− path ω= s0t0s1t1s2…

− where jt=min{ j | ∑i≤j ti ≥ t } and kφ = min{ i | si ⊨ φ }  

− (note: typo in index of first formula: I=k should be I=t )
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Model checking reward formulae
• Instantaneous: R~r [ I=t ]

− reduces to transient analysis (state of the CTMC at time t)
− use uniformisation

• Cumulative: R~r [ C≤t ]
− extends approach for time-bounded until
− based on uniformisation

• Reachability: R~r [ F φ ] 
− can be computed on the embedded DTMC
− reduces to solving a system of linear equations

• Steady-state: R~r [ S ]
− similar to steady-state formulae S~r [ φ ] 
− graph based analysis (compute BSCCs)
− solve systems of linear equations (compute steady state 

probabilities of each BSCC)



30

CSL model checking complexity

• For model checking of a CTMC complexity:
− linear in |Φ| and polynomial in |S|
− linear in q·tmax (tmax is maximum finite bound in intervals, q  

is uniformisation rate)
• P~p[Φ1 U[0,∞) Φ2], S~p[Φ], R~r [F Φ] and R~r [S]

− require solution of linear equation system of size |S|
− can be solved with Gaussian elimination: cubic in |S|
− precomputation algorithms (max |S| steps)

• P~p[Φ1 UI Φ2], R~r [C≤t] and R~r [I=t] 
− at most two iterative sequences of matrix-vector products
− operation is quadratic in the size of the matrix, i.e. |S|
− total number of iterations bounded by Fox and Glynn
− the bound is linear in the size of q·t
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Summing up…

• Model checking a CSL formula φ on a CTMC
− recursive: bottom-up traversal of parse tree of φ

• Main work: computing probabilities for P and S operators
− untimed (X Φ, Φ1 U Φ2): perform on embedded DTMC
− time-bounded until: use uniformisation-based methods, 

rather than more expensive solution of integral equations
− other forms of time-bounded until, i.e. [t1,t2] and [t,∞),

reduce to two sequential computations like for [0,t]
− S operator: summation of steady-state probabilities

• Rewards - similar to DTMCs
− except for continuous-time accumulation of state rewards
− extension of CSL with R operator
− model checking of R comparable with that of P


