Probabilistic Model Checking

Lecture 9
Model Checking for CTMCs

Alessandro Abate

Department of Computer Science
University of Oxford

Overview

- CSL model checking

— basic algorithm

— untimed properties

— time-bounded until

— the S (steady-state) operator

Rewards
— reward structures for CTMCs
— properties: extension of CSL
— model checking

CSL: Continuous Stochastic Logic

- CSL syntax: i is true with

/ probability ~p

—¢u=truelaldAd|-d|P,[W]|S.,[P] (state formulae)

- =X | dUD \ (path formulae)

--

_ i inthe"long
.................... ” utlme bounded runn d) |S tl‘ue
S until” with :

— where a is an atomic proposition, | an interval of R.,
pe[0,1]and ~ € {<,>,<,>}

CSL model checking for CTMCs

. Algorithm for CSL model checking [BHHKO3]

— inputs: CTMC C=(S,sinit,R,L), CSL formula ¢

— output: Sat(d) = {seS | s E ¢ }, the set of states satisfying ¢
- Often, also consider quantitative results

— e.g. compute result of P_; [FI%tU minimum] for 0<t<100

- Basic algorithm similar to PCTL for DTMCs

— proceeds by induction on parse tree of ¢

- For the non-probabilistic operators: o~
— Sat(true) = S
~Sat@ ={seS|lacls)} /&D

— Sat(—¢) = S \ Sat(d) <J_> d)
— Sat(d; A Py) = Sat(P;) N Sat(Ppy)

CSL model checking for CTMCs

- Main task: computing probabilities for P_, [-] and S.., [-]

—c|>::=true|a|d>/\c|>|ﬂc|>|
P~p[x¢]|PNp[¢U¢]IPNp[¢u'¢]|s~p[¢]

Ve

. untimed bounded _
..................................... : untll ‘

— where ¢, U ¢, = ¢; U0 ¢,

Untimed properties

- Untimed properties can be verified on the embedded DTMC

— properties of the form: P., [X dJorP., [by U P,]
— use algorithms for checking PCTL against DTMCs

- Certain qualitative time-bounded until formulae can also

be verified on the embedded DTMC
— for any (non-empty) interval |

st Pyl ¢y U d,lifand onlyif s = P.g [y U0 &,]

— can use precomputation algorithm Prob0

Model checking - Time-bounded until

» Compute Prob(s, ¢, U' &,) for all states where | is an
arbitrary mterval of the non-negative real numbers

- Lemmas:
— Prob(s, ¢, U' &,) = Prob(s, ¢; UdD ¢,)
where cl(l) denotes the closure of the interval |
— Prob(s, &, Ul0:®) ¢,) = Probemb©(s, & U &,)
where emb(C) is the embedded DTMC

- Therefore, 3 remaining cases to consider:

— | = [0,t] for some teR.y, | = [t,t’] for some t<t’eR.,
and | = [t,o) for some teR.

- Two methods: 1. Integral equations; 2. Uniformisation

Time-bounded until: integral equations

- Computing the probabilities reduces to determining the
least solution of the following set of integral equations

— (note similarity to bounded until for DTMCs)
Prob(s, ¢, Ut &) equals

peeeeeee e . | probability, in state
— 1 if s € Sat(d,), i probability of i i s’ of satisfying
0 . moving froms : until before t-x
0if s € St~ A=), i tos’attimex { { time units elapse

_ and OtherW|Se equals CEPPERE VR POE R PUPREPUORIPURIIROLEIP :

I;Zéemb(o(s’s'). E(S) e—E(s).x) Prob(s',d)] U[O,t—x] d)z) dx

s'eS
- One possibility: solve these integrals numerically

— numerical integration, e.g. trapezoidal, Simpson, Romberg
— expensive, possible issues with numerical stability

Time-bounded until: uniformisation

- Reduction to transient analysis...

- Make all ¢, states absorbing @
S

— from such a state ¢; UI0X ¢,
holds with probability 1

- Make all =, A—d, states absorbing

— from such a state ¢, U] ¢,
holds with probability O

. Formally: Construct CTMC C[d,][—d; A—d,]

— where for CTMC C=(S,sini;,R,L), let C[B]=(S,sinit,R[0],L), where
0 state formula, R[B](s,s’)=R(s,s’) if s ¢ Sat(B) and O otherwise

Time-bounded until: uniformisation

- Problem then reduces to calculating transient probabilities

of the CTMC Cl[d,][—P; A—d>l:

Prob(s,, U ,) = > w0 ¥(s)
s' e Sat(¢,)

 transient probability: starting in state s, the :
i probability of being in state s’ at time t

10

Time-bounded until: uniformisation

- Can now adapt uniformisation to computing the vector of

probabilities Prob(¢, ULt ¢,)
— recall TT; - matrix of transient probabilities: TTi(s,s’) =Tt «(s’)
— can be computed via uniformisation: TT, = > v, .(P“”‘f(C))'

. Combining with: Prob(s,b, U ¢,)= Y mo o (s
s' e Sat(,)

PI’Ob(CI)] Yio:t! d)z):ntc[db][ﬂcbmﬁcbz] E

_ % unif(Cld, l[—by A, D) !
_(Zi_oYQ-t,i°(P SRR))E
_\”® unif (Cld, l[—by A-d, D) !
_Zi_o(yqtf(P A) E)

— (note analogy: for transient analysis, we post-multiplied from

initial vector, now we pre-multiply with Sat-indicator vector) .

Time-bounded until: uniformisation

- Have shown that we can calculate the probabilities as:

PrOb((I)] U[O,t] (I)Z) — Zjoo(Yq-t,i. (Punif(C[d)z][—'d)]/\—'(l)z])) . (IQJ

- Infinite summation can be truncated using techniques by

Fox and Glynn [FG88]

- Can compute iteratively to avoid matrix powers:

(Punif(C))O . CI)Z _ ¢2

(Punif(C))iH. b, = Punif(C)_((Punif(C))i_ dﬁ]

— (note slight imprecision in Greek gamma var, 15t equation)

12

Time-bounded until - Example

+ Pooes [FO751full] = Poggs [true U751 full]
— “probability of the queue becoming full within 7.5 time units”

. State s; satisfies full and no states satisfy —true

— in C[full][-true A— full] only state s; made absorbing

(2/3

2/3

1/3

0

0"

matrix of unif(C[full][-true A—=full])
with uniformisation rate
maXscsE(s)=4.5 (=3+3/2)

--

{empty} /2 3/2 3/2 tfull)
OBoBol
3 3 3

13

Time-bounded until - Example

- Computing the summation of matrix-vector multiplications

© if —biA— i
Prob(@, U) = 37 [Voo - (PrTCteor o) g, |
— vyields Prob(FI0.7-51full) ~ [0.6482, 0.6823, 0.7811, 1]

« P.oesl FI%7-21 full] satisfied in states s;, s, and s;

{empty} 3/2 3/2 3/2 tfull)
OBoBol
3 3 3

14

Time-bounded until - P_, [$; UtT ¢,]

In this case the computation can be split into two parts:

1. Probability of remaining in ¢, states until time t

— can be computed as transient probabilities on the CTMC
where states satisfying —¢; have been made absorbing

- 2. Probability of reaching a ¢, state, while remaining in
states satisfying ¢, within the time interval [0,t’ -]

— i.e. computing Prob(d; Ut~ ¢b5)

Prob(s, b, U) =3 1 *(s")-Prob(s', b, U &)

__ N

“sum over states : : Probability of reaching state : proboal?ility
. satisfyingd; | | S attimetand satisfying | | ¢ Utoet 432

Time-bounded until - P_, [$; UtT ¢,]

- Let Proby, (s, ¢,U0t"tUd,) = Prob(s, ¢,Ul0t-1g,) if seSat(d,),
and 0 otherwise

- From the previous slide we have:

Prob(¢, U1 ¢,) = TI*!-Prob, (¢, U ¢,)

= (ZZO Youi- (|:)unif(C[ﬁ<1>1]))i) md)] (d)] yro.t-t ¢2)

_ Zio(Yq.t,i . (Punif(C[ﬁcbl]))i . @d)](cb] U[O,t‘—t] ¢2))

— summation can be truncated using Fox and Glynn [FG88]

— can compute iteratively (only scalar and matrix-vector
operations)

16

Time-bounded until - P_, [¢; UL™) b,]

- Letting Probgy, (s, ¢,U%®)¢,) = Prob(s, ¢,U0-*)g,) if
seSat(¢,) and 0 otherwise, we have:

Prob(¢, U™ &,) = T Proby™ (¢, U d,)
= (37 Vau (P)) Probs™ (4, U)

_ ZZO(YC‘“] (I:)unif(C[ﬂdD]]))i _ M:nb(@(d)] U cl)z))

— summation can be truncated using Fox and Glynn [FG88]

— can compute iteratively (only scalar and matrix-vector
operations)

17

Model Checking - S_,[¢]

- A state s satisfies the formula S_[¢] if 2 4 TE(S") ~p

— 1%(s’) is probability, having started in state s, of being in
state s’ in the long run

- Thus reduces to computing and then summing steady-
state probabilities for the CTMC (recall results earlier)

If CTMC is irreducible:

— solution of one system of linear equations
If CTMC is reducible:

— determine set of BSCCs for the CTMC

— solve two systems of linear equations, for each BSCC T:
1. one to obtain the vector ProbReachemb©)(T)

2. the other to compute the steady state probabilities Tt7 for T

18

S.,[®]-Example

+ Scoql full]
- CTMC is irreducible (comprises a single BSCC)

— steady state probabilities independent of starting state
— can be computed by solving -Q=0 and X 11(s)=1

-3/2 3/2 0 0
3 -9/2 3/2 0

0 3 -9/2 3/2
0 0 3 -3

3/2 3/2 3/2 fFull}

{emplty‘ I ‘ I ' I
3 3 3

19

S.,[®]-Example

-3/2-1(s,) + 3-11(S,) =0
3/2-1m(sy) - 9/2-m(s) + 3-7(s,) =0
3/2-1(s)) - 9/2-m(s,) + 3-m(s;) = O
3/2-m(s,) - 3-m(s;) = O
ms,) + m(s) + m(s,) + mls;) =]

3/2 3/2 3/2

{empty} {full}
ofoSclo
3 3 3

— solution: m=[8/15,4/15,2/15,1/15]
— ¢ csarfuly TT(s7) = 1/15 < 0.1
— so all states satisfy S.q [full]

20

Rewards (or costs)

Like DTMCs, we can augment CTMCs with rewards
— real-valued quantities assigned to states and/or transitions
— can be interpreted in two ways: instantaneous/cumulative
— properties considered: expected value of rewards
— formal property specifications as an extension of CSL

For a CTMC (§,s,it,R,L), a reward structure is a pair (p,L)
— p:S —R.,is a vector of state rewards
—1:S XS —>R.pis amatrix of transition rewards

For cumulative reward-based properties of CTMCs
— state rewards interpreted as rate at which reward is gained

— if the CTMC remains in state s for teR., time units, a reward
of t-p(s) is acquired
21

Reward structures — Examples

3/2 3/2 3/2

{empty. l .{full}
3 3 o 7
: instantaneous
. Example “Slze Of message queue” / ...
— _Q(Sl)zl and L(S”SJ):O Vl,J Cumulatlve

- Example: “time for which queue is not full”

— p(sp=1 for i<3, p(s3)=0 and (s;,s;)=0 Vi,j

22

Reward structures — Examples

{empty}

0)

O
O
O

3/2

and

3/2

L

3/2

3 3 3

- Example: “number of requests served”

{full}

O
O

O

©c O O O

cumulative

23

CSL and rewards

- PRISM extends CSL to incorporate reward-based properties
— adds R operator, as in PCTL

S\

_CI) = | R~r[| t] | R~r[C<t]| R~r[F¢]| R~r[S]

o - AN

. “instantaneous” | | “cumulative” | | “reachability” i “steady-state”

— wherer,t € R.g, ~ € {<,>,<,>}

- R., [-] means “the expected value of - satisfies ~r”

24

Types of reward formulae

Instantaneous: R_, [I7t]
— the expected value of the reward at time instant t is ~r
— “the expected queue size after 6.7 seconds is at most 2”

. Cumulative: R_, [C=t]

— the expected reward cumulated up to time instant t is ~r

— “the expected requests served within the first 4.5 seconds of
operation is less than 10”

Reachability: R, [F ¢]
— the expected reward cumulated before reaching ¢ is ~r
— “the expected requests served before the queue becomes full”
- Steady-state: R_, [S]
— the long-run average expected reward is ~r
— “expected long-run queue size is at least 1.2”

25

Reward properties in PRISM

- Quantitative form:

— e.g. R, [C=t]
— what is the expected reward cumulated up to time instant t?

- Add labels to R operator to distinguish between multiple
reward structures defined on the same CTMC

— €.4. R{num_req}:? [C=4->]

— “the expected number of requests served within the first 4.5
seconds of operation”

— €.9. R{pow}:? [CS4'5]

— “the expected power consumption within the first 4.5 seconds
of operation”

26

Reward formula semantics

Formal semantics of the four reward operators:

—sER.,[IF] = Exp(s, Xi—) ~ r
—sER.,[C=t] = Exp(s, Xc<t) ~ 1
—seER.,[F®] = Exp(s, Xpp) ~ I
—sER,[S] < lime.(1/t - Exp(s, Xc<t)) ~ 1

- Where recall:

— Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R.q with respect to the probability measure Pr,

27

Reward formula semantics

Definition of random variables:

— path w= setes1t;S;... state of w attimet { | time spentin

X (W) = plw@t) . time spent in states, | | tUmeunits
E oeeeeesseeseseemsssmstmass s eseessesseessesesssesssemeans s : have elapsed
X (W) = Z(ti -p(s;) + L(Si,Si+]))+
i=0
0 if s, € Sat(d)
Xpp(W) =+ o0 if s, ¢ Sat(¢p) foralli>0
\ Z:j;_]ti.g(si)+L(si,si+]) otherwise

— where ji=min{j | £, tt>t}and ky = min{i | s = ¢}

— (note: typo in index of first formula: I=k should be I=t) 28

Model checking reward formulae

Instantaneous: R_, [I7t]
— reduces to transient analysis (state of the CTMC at time t)
— use uniformisation

. Cumulative: R_, [C=t]

— extends approach for time-bounded until
— based on uniformisation
Reachability: R, [F ¢]
— can be computed on the embedded DTMC
— reduces to solving a system of linear equations
- Steady-state: R_, [S]
— similar to steady-state formulae S., [¢]
— graph based analysis (compute BSCCs)

— solve systems of linear equations (compute steady state
probabilities of each BSCC)

29

CSL model checking complexity

For model checking of a CTMC complexity:
— linear in |®| and polynomial in |S]

— linear in g-tmax (tmax 1S maximum finite bound in intervals, g
is uniformisation rate)

P_,[®; Ul0.%) @], S.p[®], R.; [F ®] and R_; [S]
— require solution of linear equation system of size |S|
— can be solved with Gaussian elimination: cubic in |S]
— precomputation algorithms (max |S| steps)
P.,[®; U &,], R, [C=] and R, [I71]
— at most two iterative sequences of matrix-vector products
— operation is quadratic in the size of the matrix, i.e. |S|
— total number of iterations bounded by Fox and Glynn
— the bound is linear in the size of g-t

30

Summing up...

Model checking a CSL formula ¢ on a CTMC
— recursive: bottom-up traversal of parse tree of ¢

Main work: computing probabilities for P and S operators
— untimed (X @, &; U $,): perform on embedded DTMC

— time-bounded until: use uniformisation-based methods,
rather than more expensive solution of integral equations

— other forms of time-bounded until, i.e. [t;,t;] and [t,),
reduce to two sequential computations like for [0,t]

— S operator: summation of steady-state probabilities
Rewards - similar to DTMCs

— except for continuous-time accumulation of state rewards

— extension of CSL with R operator

— model checking of R comparable with that of P

31

