Sound Verification and Synthesis with Logic and Data

Alessandro Abate

Department of Computer Science

oxcav.web.ox.ac.uk

3 April 2024

[references at end of deck]

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data

Outline

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

© Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data

Outline

@ Why this Matters: Science and Technology Drivers

n and Synthesis with Logic and Data

Control theory vs Formal verification

@ dynamical models

x € R"
G CcR%Yie {1,...171}
Vx e G, x=fi(x)

@ stability,
safety,
reachability

@ Lyapunov functions,
barrier certificates,
reach-set computation

A. Abate, oxcav.web.ox.ac.uk

@ software programs

34: x float
35: ...

36: while Gi(x)
37: xT = fi(x)
38: endwhile
39: ...

@ termination,
assertion violation

@ ranking functions,

program/loop invariants,
symbolic search

Sound Verification and Synthesis with Logic and Data

Cyber-Physical Systems

@ complex embedded systems

@ interleaving of
cyber/digital components with
physical/analogue dynamics

@ hybrid models

@ dynamics, control and
computation

(and communication)

@ safety-critical applications

1

correct-by-design control
— sound and automated synthesis

v.web.ox.ac.uk

Formal verification in a nutshell

@ industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

Formal verification in a nutshell

@ industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

@ model-based algorithms (and SW tools)
@ automated, sound, and formal proofs (e.g., via certificates)

cav.web.ox.ac.uk So an vith Logic and Data

Formal verification in a nutshell

@ industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

@ model-based algorithms (and SW tools)
@ automated, sound, and formal proofs (e.g., via certificates)

av.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

@ as specifications, requirements for verification, e.g., safety
@ as objectives for control synthesis, e.g., reachability

@ without manual reward engineering

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data

Properties: Encoding rich dynamical behaviour

xeR"
G CRYie{l,...m}
VxeG, xt=fix)

e
&
%

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

x e R"

= flx)

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

x € R"
G CRYie{l,...m}
x" = f(x)
G
9 G
xt = f(x) X =f(x)
Xg — X1 — Xy —

gXO — gX1 — ng —

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

@ consider (class of) properties/requirements/specifications

VxpeZ, ITeN', Vvke{01,...,T—1}, Vr>T:
xTeg/ 7 xTef

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

o consider (class of) properties/requirements/specifications

Vxp€Z, 3IT€N', vke{0,1,...,T—1}, Vr>T:

xr €G, , xc € F
RIFCH Fd- &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g RSWA h: RAR

@ class encompasses stability, invariance, safety, reachability, reach-avoid, ...

A. Abate, oxcav.web.ox.ac.uk ound Verification and Synthesis with Logic and Data

Properties: Encoding rich dynamical behaviour

o consider (class of) properties/requirements/specifications

Vxg€Z, 3T€N', Vvke{0,1,...,T—1}, Vr>T:
XTGQ, 7 XTG.F

a: Stability b: ROA ¢ Safety

@ connections to:
© automata theory
@ temporal logics
© formal languages

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data

Outline

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

© Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data

Outline

© Sound Inductive Synthesis with Neural Certificates

n and Synthesis with Logic and Data

Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
o find satisfying assignment of Boolean functions
@ e.g., assume Boolean x;, check

Ix1, x0,x3 0 (X1 Vxg) A (—x1 Vg Vaxz) A -

A. Abate, oxcav.web.ox.ac.uk

Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
o find satisfying assignment of Boolean functions
@ e.g., assume Boolean x;, check

Ix1, x0,x3 0 (X1 Vxg) A (—x1 Vg Vaxz) A -

SMT is a decision problem for logical formulae within a theory

instance: theory of non-linear arithmetics over real closed fields

e.g., assume reals x; € IR, check

dx1,x0: x1>20=3x1+2x+1>0

A. Abate, oxcav.web.ox.ac.uk ound Verification and Synthesis with Logic and Data

From decision to synthesis problems

o consider (harder) problem:
assume integers x; € Z,
seek function F: Z X Z — Z, s.t.

EIF,Vxl,xz :
F(xq,x2) > 21 AF(x1,x2) > 20 A (F(xq,x2) = x1 V F(x1,%2) = x2)

A. Abate, oxcav.web.ox.ac.uk

Lyapunov functions

e consider ¥ = f(x), assume x, € R" is an equilibrium, f(x.) =0
@ ensure asymptotic stability of x, in D C R”
@ by finding Lyapunov function V(x), satisfying

@ lower bound:
V(xe) =0 (1)

@ positive definiteness:
V(x) >0, Vx € D\ {x.} (2)

© negative Lie derivative:

V(x) =VV(x) f(x) <0, Vx € D\ {x.} (3)

A. Abate, oxcav.web.ox.ac.uk

Lyapunov functions

e consider ¥ = f(x), assume x, € R" is an equilibrium, f(x.) =0
@ ensure asymptotic stability of x, in D C R”
@ by finding Lyapunov function V(x), satisfying

@ lower bound:

V(xe) =0 (1)
@ positive definiteness:
V(x) >0, Vx € D\ {x.} (2)
© negative Lie derivative:
V(x) =VV(x) f(x) <0, Vx € D\ {x.} (3)

@ that is, solve following synthesis problem:

FV:D <R st VxeD, conditions (1) A(2)A(3) hold

A. Abate, oxcav.web.ox.ac.uk

Counterexample-guided inductive synthesis (CEGIS)

f(x),D 1. Learner
‘ generates candidates V' over
v finite set
T valid 2. Verifier
Learner \/@ v certifies validity on D, or

c provides counterexample(s) ¢

A. Abate, oxcav.web.ox.ac.uk

Counterexample-guided inductive synthesis (CEGIS)
f(x),D 1. Learner

generates candidates V' over
v finite set
T valid 2. Verifier
L Verifi b—» v e .
camner e certifies validity on D, or
_/ .
c provides counterexample(s) ¢

@ inductive synthesis loop

1. sample (finite) set S C D

2. Learner generates V() via query SMT solver on formula:
36 : (1) A (2) A (3) on points s € S

3. Verifier checks either V(x) valid over dense D, or counterexample ¢ :
query SMT solver on formula 3c € D : =(1) vV =(2) V ~(3)

4. S+ SUc, loop back to 2

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthe:

Counterexample-guided inductive synthesis (CEGIS)
f(x),D 1. Learner

generates candidates V' over
v finite set
T valid 2. Verifier
L Verifi b—~ v e .
cemer o certifies validity on D, or
_/ .
c provides counterexample(s) ¢

@ inductive synthesis loop

1. sample (finite) set S C D

2. Learner generates V() via query SMT solver on formula:
36 : (1) A (2) A (3) on points s € S

3. Verifier checks either V(x) valid over dense D, or counterexample ¢ :
query SMT solver on formula 3c € D : =(1) vV =(2) V ~(3)

4. S+ SUc, loop back to 2

@ sound, but not complete: infinite search space (6 in V) and domain D

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthe:

Lyapunov functions as neural networks

@ neural nets are general and flexible @
(universal function approximators)
@ Learner trains shallow neural network ‘
V(x) = Wy -1 (Wix +by) . @ .

W 14%
(W; weights, (07) activation fcns) ! ?

@ loss function enforces Lyapunov conditions in (2) and (3) on points in S:

L(S) =) max{0,—V(s)} +)_ max{0,V(s)}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk

Lyapunov functions as neural networks

f(x),D
I
\4
S
valid
Learner @ \
\/

c

@ surprisingly effectivel Communication Learner <> Verifier is crucial

@ loss function enforces Lyapunov conditions in (2) and (3) on points in S:

L(S) =) max{0,—V(s)} + }_ max{0,V(s)}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk

Synthesis of Lyapunov functions - example

100
50
b
=50
~100
E g 150 ———112000000 000
-150 ~100 -50 [50 100 -150 -100 -50 0 50 0 -150 -100 =50 [50 100

cav.web.ox.ac.uk and Data

Barrier certificates

@ consider sets Z (initial) and U (unsafe)

@ ensure there exists no trajectory starting in Z ever entering U

© negativity within initial set Z:
B(x) <0VxeZ
@ positivity within unsafe set U:
B(x)>0Vxel
@ set invariance property via Lie derivative:

B(x) <0Vxst.B(x)=0

oxcav.web.ox.ac.uk Sound Verification and Syn

Barrier certificates

oo o7 o0 w25 oo0 oz ok o7 1o

@ negativity within initial set Z:

B(x) <0VxeZ
@ positivity within unsafe set U:

B(x) >0VxelU
© set invariance property via Lie derivative:

B(x) <0 Vxst B(x)=0

Sound Verification and Synt

Synthesis of barrier certificates - examples

Barrier Certificate

--- Unsafe Set
21 Initial Set

Barrier Border
2.0 — - = =
\ N Unsafe Set
Initial Set

15
R N T e e
600 05
400
200
B
o ~ 009,
-200
-400
. “
a
«
o -
“«
00 05 10 15 20

Synthesis of barrier certificates - examples

Barrier Certificate

== Initial Set Barrier Border
—— Unsafe Set 100 =]
s =T N == Initial Set
075 7 ~ _ == Unsafeset
/ N
T 1
0504 1 !
\ >]
3 7
a
025 S 2
NN 7

>~ 000
A
-0.25 A h
" R}

-0501 N N\

-0.75 1\,

-1.00
-1.00 -0.75 -050 -025 0.00
x

> [20] - Softplus

Synthesis of barrier certificates - examples

Barrier Certificate

1 Initial Set Barrier Border

1 Unsafe Set 20

yo=—r—y+}

Synthesis of barrier certificates - benchmarks

Benchmark CEGIS (this work) BC! S0S?
Learn Verify ~ Samples lters Learn Verify Samples Synth
Darboux 316 0.01 0.5 k 2 54.9 20.8 65 k X -
Exponential 15.9 0.07 1.5 k 2 234.0 11.3 65 k X -
Obstacle 55.5 1.83 2.0 k 9 3165.3 1003.3 2097 k X -
Polynomial 64.5 4.20 2.3k 2 1731.0 635.3 65 k 8.10 X
Hybrid mod 0.58 2.01 0.5 k 1 - - - 1230 0.11
4-d ODE 29.31 0.07 1k 1 - - - 1290 OOT
6-d ODE 89.52 1.61 1k 3 - - - 16.60 OOT
8-d ODE 1045 8251 1k 3 - - - 26.10 OOT

@ time for Learning and Verification steps in [sec]
@ ‘Samples’ = size of input data for Learner (in thousands)
@ 'lters’ = number of iterations of CEGIS loop

@ X = synthesis or verification failure, OOT = verification timeout

1 H. Zhao, X. Zeng, T. Chen, and Z. Liu. Synthesizing Barrier Certificates Using Neural Networks. In Proceedings of the 23rd International

Conference on Hybrid Systems: Computation and Control, HSCC, 2020.

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for
MATLAB, 2013.

av.web.ox.ac.uk Sound Verification and Syn

Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”

@ modify known synthesis problem:

JV:D—-R st VxeD conditions (1) A (2) A (3) hold

A. Abate, oxcav.web.ox.ac.uk

Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”
@ approach:

@ control policies are NN-templated
@ concurrent synthesis controls & certificates

av.web.ox.ac.uk Sound Verification and Syn

Synthesis of control certificates for complex tasks
e dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”

o (back to) broad class of properties/requirements

Vxg€Z, ITeN', vte{0,...,T—1}, Vt>T:

xr €G, X €U, Xr € F
7 0 A N
2R [v

a: Stability b: ROA ¢ Safety d: SWA e: Reachability f: RWA g RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk

Synthesis of control certificates for complex tasks
e dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”

Ns Nu Property Neurons Activations T (s) Success (%)

min P max S

1 2 0 Stability [6] [2] 0.01 (= 0.00) 0.16 (0.15) 1.50 (1.48) 100
2 30 Stability [8] [2] 0.28 (= 0.00) 2.22 (0.45) 1257 (3.31) 100
3 2 2 Swbility [4] [2] 0.07 (0.01) 0.19 (0.02) 047 (0.04) 100
4 22 Swbility [5] [2] 0.09 (0.01) 026 (0.02) 0.54 (0.03) 100
5 2 0 ROA [51 [osoft] 0.21 (0.12) 14.09 (12.59) 25.32 (22.13) 40
6 3 3 ROA 81 [2] 1.24 (0.02) 39.08 (0.03) 287.89 (0.04) 100
7 20 Safety [15] (o] 0.44 (0.35) 336 290) 7.61 (7.11) 100
9 8§ 0 Safety [10] [1] 12,63 (7.71) 51.97 (32.75) 70.59 (44.66) 70
03 I Safety [15] [ot] 1.57 (0.19) 11.87 (2.50) 51.08 (7.52) 90
113 0 SWA [61, [51 [2], [0 0.19 (0.05) 246 (0.100) 12.10 (0.20) 90
12 2 0 SWA [51, [5. 51 [p2]. [Osig 2] 0.13 (0.06) 027 (0.14) 039 (0.20) 100
13 2 1 SWA 81, [5] [2l, [p2] 0.06 (0.03) 020 (0.10) 0.58 (0.24) 90
4 3 1 SWA (101, [8] [p2], [o¢] 4.06 (0.87) 19.81 (2.73) 103.49 (7.23) 90
15 2 0 RWA [4] [2] 0.14 (0.09) 181 (175) 470 (4.63) 100
16 3 0 RWA [16] [2] 136 (0.09) 14.10 (0.14) 72.97 (0.20) 90
17 2 1 RWA [4, 4] [0sigsp2] 0.59 (0.27) 6.82 (3. 20.07 (11.46) 100
18 3 1 RWA [5] [2] 0.46 (0.11) 16.06 (53.81) 72.47 (44.64) 80
19 2 2 RWA [5] [0sig] 0.69 (0.40) 138 (0.94) 2.14 (1.90) 100
20 2 0 RSWA [4] [2] 0.19 (0.03) 1.29 (1.04) 379 (3.37) 100
21 3 0 RSWA [l6] [2] 4.81 (0.13) 2714 (0.19) 80.95 (0.25) 100
22 2 0 RSWA [5.5] [osigsp2] 1.52 (0.06) 4.45 (0.19) 10.97 (0.35) 100
23 2 1 RSWA [8] [2] 0.21 (0.05) 0.67 (0.25) 1.19 (0.91) 100
24 2 2 RSWA [5.5] [osig.p2] 0.98 (0.16) 1.23 (0.28) 1.61 (0.46) 100
25 2 0 RAR (61, [6] [osoft], [2] 6.65 (1.08) 2474 (6.46) 77.80 (15.06) 100
26 2 2 RAR [6, 6], [6, 6] [Tsig.p2], [Tsigp2] 5.13 (1.34) 26.99 (9.90) 101.23 (60.14) 100

ion and Synth

Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”

Phase Plane

ROA for NL model, B
non-poly Lyapunov, 2 = RAR certificate for

2 disjoint initial sets RWA: reach-while-avoid closed-loop NL model

dashed lines: level sets; dark blue: Z; light blue: S; green: G; - F

cav.web.ox.ac.uk tion and Syntl

Software for Neural Synthesis - Fossil 2.0

Synthesis Engine

Learner J

A

Fossil 2.0
Problem

T
1 Enhanced

' 1 Communicatioh
LY w Valid Controller
Verifier (SMT Solvers) ' A and Certificate
Z3 JL CVC5 J dReal J |
|| Parser/ L 3 ™~ Unknown
Interpreter |

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis wit

Extension: discrete-time, prob. programs/models

o discrete-time models (e.g. SW programs)
while g(x), x := f(x)
— similar Lyapunov-like conditions, except concerning “next step”:

V(F(x)) < V(x), VxeD\{x}

@ stochastic models:
xt = f(x)+o(x), o~N(0Z(x))
— same story, “next step”-condition in expectation (super-martingale):

E[V(f(x)) [x] <V(x), VxeD\{x}

A. Abate, oxcav.web.ox.ac.uk

Outline

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

© Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Outline

© Formal Verification with Neural Abstractions

v.web.ox.ac.uk

Formal abstractions

complex
model

specification

Sound Verification and Synt

Formal abstractions

¢-quantitative
abstraction

complex

specification
model P

Sound Verification and Synt

Formal abstractions

abstract .

F-model specification
¢-quantitative
abstraction

complex .

modZI specification

Sound Verification and Synths

Formal abstractions

abstract ¢-specification
model P
¢-quantitative
abstraction
complex o .
P specification
model

Sound Verification and Synths

Formal abstractions

abstract automated
model ¢-specification verification
¢-quantitative
abstraction
complex —
P specification
model

Sound Verification and Synths

Formal abstractions

SAT,
model
checking
abstract automated
model ¢-specification verification
¢-quantitative
abstraction
complex —
P specification
model

v.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions

SAT,
model
checking
automated
. - hol
r -specification verification .
abstract f N ¢-spec holds,
model policy pz = C-spec
¢-quantitative
abstraction
complex .
f
model specitication

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification G SpeC Mo ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex .
f
model specitication

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification 6 Spec no ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex specification spec holds,
model policy p |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn

Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification G SpeC Mo ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
[. hol
compiex specification) spe.c olds,
model if not, policy p |= spec
tune ¢

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn

From uncountable to finite stochastic models

co-space Markov process finite-space Markov chain
s € R" {z1,20,23,...,2p}

Pll .. plp
s+:f(s)+(7(s), UNN(O/Z(S)) T=1|
Pp1

A. Abate, oxcav.web.ox.ac.uk

From uncountable to finite stochastic models

A. Abate, oxcav.web.ox.ac.uk

From uncountable to finite stochastic models

A. Abate, oxcav.web.ox.ac.uk

From uncountable to finite stochastic models

A. Abate, oxcav.web.ox.ac.uk

From uncountable to finite stochastic models

A. Abate, oxcav.web.ox.ac.uk

From uncountable to finite stochastic models

A. Abate, oxcav.web.ox.ac.uk

From uncountable to finite stochastic models

@ error ¢ ~ 11,0T, where
- max diameter of partitions
T - time horizon

- local kernel stiffness (Lipschitz constant)

A. Abate, oxcav.web.ox.ac.uk

From uncountable to finite stochastic models

)

@ error ¢ ~ T, where
- max diameter of partitions
T - time horizon

- local kernel stiffness (Lipschitz constant)

@ probabilistic safety:
prob. ps that execution, started at s € Z, stays in set A = U° within [0, T],

A. Abate, oxcav.web.ox.ac.uk

From uncountable to finite stochastic models

)

@ error ¢ ~ T, where
- max diameter of partitions
T - time horizon

- local kernel stiffness (Lipschitz constant)

@ probabilistic safety:
prob. ps that execution, started at s € Z, stays in set A = U° within [0, T],

can be computed on abstract model as i, so that ps = p, £¢

A. Abate, oxcav.web.ox.ac.uk

Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

=
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk

Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

At
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk

Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

IR 195G 1955
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk

Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

R
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk

Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

AR e
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk

Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

= = = sourceforge.net/projects/faust2

= = gitlab.com/natchi92/StocHy

EPIC Series in Computing
i sth -

@ numerous extensions -
. . N
and appllcatlons stocty ARCH-COMP21 Category Report: Stochastic Models
@ wide ecosystem of SHS —
abstractions -
@ annual ARCH HYPEG
competition o IS

cps-vo.org/group/ARCH

Model hybridisations

OXFORD

e safety verification of non-linear models X = f(x) over x € X C R”",

@ it is in general hard - not automated, not scalable

¥ =-—y—15x2-05x>-05
y =3x-y

X =[-1,1?

A. Abate, oxcav.web.ox.ac.uk

Model hybridisations

e safety verification of non-linear models X = f(x) over x € X C R",

@ it is in general hard - not automated, not scalable

@ leverage formal abstractions (simulations) for verification

@ abstraction as hybridisation:
partition X, locally approximate f(x) as f(x)

each partition has own flow f(x) & transitions to other partitions

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Model hybridisations

e safety verification of non-linear models X = f(x) over x € X C R",

@ it is in general hard - not automated, not scalable

@ leverage formal abstractions (simulations) for verification

@ abstraction as hybridisation:

partition X, locally approximate f(x) as f(x)

each partition has own flow f(x) & transitions to other partitions
@ compute upper-bound ¢ to error; obtain simulation as

f=fx)+d, |ldl<¢ xex

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Model hybridisations

e safety verification of non-linear models X = f(x) over x € X C R",

@ it is in general hard - not automated, not scalable

@ leverage formal abstractions (simulations) for verification

@ abstraction as hybridisation:

partition X, locally approximate f(x) as f(x)

each partition has own flow f(x) & transitions to other partitions
@ compute upper-bound ¢ to error; obtain simulation as

f=fx)+d, |ldl<¢ xex

@ more partitions — larger abstraction
I mesh size & shape important for small error bound ¢

oxcav.web.ox.ac.uk Sound Verification and Syn:

Model hybridisations as neural abstractions

OXFORD

Wix+b;p =0

Wiax +b;p =0

o neural network N as abstraction f of nonlinear vector field f
e N(x):R" — R" approximates f(x)
e H neurons — at most 2! total partitions

A. Abate, oxcav.web.ox.ac.uk

Model hybridisations as neural abstractions

Wix+bpp =0

Wiax+ b1 =0

@ synthesis of neural abstractions via CEGIS
@ learn parameters of NN N w/ MSE loss £ = ||f(S) — N(S)]|, S finite

© SMT solver formally checks upper bound ¢ on approximation error:

Jee X st | f(c)=N(o)|| >¢

A. Abate, oxcav.web.ox.ac.uk

Model hybridisations as neural abstractions - exampleg

{

¥ =y—15x2 0523

y

=3x—y

7/ @{\
§'

=

Model hybridisations as neural abstractions - exampleg

Model hybridisations as neural abstractions - exampleg

¥ =y—15x2 0523
y =3x-y

x =y—15x%—0.5x
y =3x—y

av.web.ox.ac.uk

(7]
[
kS
-
O
T
—
)
(0]
0
(9]
“©
—
=)
(D)
[
.
>
c
.0
)
Q]
O
U=
-
(D)
>
>
©
u—
T
wm

Abstraction

synthesis

Model
translation

Safety
verification

A. Abate, oxcav.web.ox.ac.uk

Neural abstractions: alternative templates

oxcav.web.ox.ac.uk

Piecewise constant

Piecewise affine

Nonlinear

Concrete model

Nonlinear,
non-Lipschitz

Nonlinear,
non-Lipschitz

Nonlinear,
non-Lipschitz

Activation functions

4

-

Training procedure

Particle swarm

Gradient descent

Gradient descent

Loss function

1 Lses (s)

Abstract model

PWA with

PWC with

NL-ODE with

Safety veri-
fication tech

Symbolic
model checking

Reach algorithm

Flowpipe propagatior
(Taylor models)

n

Safety veri-
fication tool

PHAVer

Spacex

Flow*

with L

Neural abstractions: alternative templates

‘q

\i ,

(a) Neural PWC (b) Neural PWA (c) Sigmoidal

abstraction abstraction abstraction.

(a) Flowpipes for (b) Flowpipe for (c) Flowpipe for
neural PWC neural PWA sigmoidal model.
model. 11.6s model. 76.5s 1084.3s

A. Abate, oxcav.web.ox.ac.uk

Outline

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

© Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Outline

© Safe and Certified Learning

Reinforcement learning

@ learning algorithm, relies on reward signal from environment

@ synthesises policies (actions) maximising cumulative reward

Reward Signal

Reward
Action Function

Environment

Reinforcement learning

OXFORD

@ learning algorithm, relies on reward signal from environment

@ synthesises policies (actions) maximising cumulative reward

Reward Signal

Reward
Action Function

Environment

@ rewards are not enough!

@ verification goal: certified synthesis of policies satisfying requirement, task

av.web.ox.ac.uk

Certified reinforcement learning: LCRL

IN requirement, task
- encode task, e.g. temporal requirement in LTL formula, as automaton
- synchronise automaton with environment % via labels
- synthesise policies via RL % automaton guides/rewards exploration

OUT certified policies: max probability of task satisfaction

Reward
Function

Action

Labelling
Function |[MVTYSN

Y onised Envir Task

cav.web.ox.ac.uk

Certified reinforcement learning: LCRL

@ model-free — extracts information efficiently
@ guided learning — faster convergence, high-dimensional environments
@ flexible — numerous extensions and applications

Ambiguity and Misspecification in Inverse RL

@ inverse RL: from expert
behaviour to rewards

@ preference elicitation and
alignment
o formalising reward learning with

© invariances

reward

output space .
P P learning

reward space

reward space 71 output space
—

K R/ TCR=TTR/
® .

[T T —

AAAI23 BPA

A. Abate, oxcav.web.ox.ac.uk

Sound Verification and Syn:

Ambiguity and Misspecification in Inverse RL

e rewa rd

. - reward space
learning

output spac

@ inverse RL: from expert
behaviour to rewards reward space 71 output space

@ preference elicitation and
alignment

o formalising reward learning with

© invariances
@ metrics

AAAI23 BPA

A. Abate, oxcav.web.ox.ac.uk

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

@ Safe and Certified Learning

Sound Verification and Synthe

Thank you for your attention

oxcav.web.ox.ac.uk

All images used are under Wikimedia CCAS license, or by author

Selected References on Sound Neural Synthesis
A. Abate, M. Giacobbe, and D. Roy, “Stochastic Omega-Regular Verification and Control with Supermartingales,” CAV24, In Press, 2024.

A. Edwards, A. Peruffo and A. Abate, “A General Verification Framework for Dynamical and Control Models via Certificate Synthesis,”
arXiv:2309.06090, 2023.

A. Abate, A. Edwards, M. Giacobbe, H. Punchihewa, and D. Roy, “Quantitative Neural Verification of Probabilistic Programs,” CONCUR23,
arXiv:2301.06136, 2023.

D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3-26, 2021.

A. Abate, D. Ahmed, A. Edwards, M. Giacobbe and A. Peruffo, “FOSSIL: A Software Tool for the Formal Synthesis of Lyapunov Functions and
Barrier Certificates using Neural Networks,” HSCC, pp. 1-11, 2021.

A. Abate, D. Ahmed and A. Peruffo, “Automated Formal Synthesis of Neural Barrier Certificates for Dynamical Models,” TACAS21, LNCS
12651, pp. 370-388, 2021.

D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,” TACAS20, LNCS 12078, pp.
97-114, 2020.

A. Abate, D. Ahmed, M. Giacobbe and A. Peruffo “Automated Formal Synthesis of Lyapunov Neural Networks,” IEEE Control Systems Letters, 5
(3), 773-778, 2020.

A. Edwards, M. Giacobbe, and A. Abate, “On the Trade-off Between Efficiency and Precision of Neural Abstraction,” QEST23, LNCS 14287, pp.
152-171, 2023.

A. Abate, A. Edwards, and M. Giacobbe, “Neural Abstractions,” NeurlPS22, Advances in Neural Information Processing Systems 35,
26432-26447, 2022.

A. Abate, |. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli, D. Kroening and E. Polgreen, “Automated Formal Synthesis of Provably Safe
Digital Controllers for Continuous Plants,” Acta Informatica, 57(3), 2020.

Selected Journal References on (Model- and Sample-Based) Formal Abstractions

T. Badings, L Romao, A. Abate, D. Parker, H. Poonawala, M. Stoelinga and N. Jansen, “Robust Control for Dynamical Systems with'
Non-Gaussian Noise via Formal Abstractions,” JAIR, vol 76, pp.341-391, 2023.

T.S. Badings, A. Abate, N. Jansen, D. Parker, H.A. Poonawala, and M. Stoelinga, “Sampling-Based Robust Control of Autonomous Systems with
Non-Gaussian Noise,” AAAI22, 36 (9), pp. 9669-9678, 2022.

A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated Verification and Synthesis of Stochastic Hybrid Systems: A Survey,” Automatica,
vol. 146, Dec. 2022.

L. Laurenti, M. Lahijanian, A. Abate, L. Cardelli and M. Kwiatkowska, “Formal and Efficient Control Synthesis for Continuous-Time Stochastic
Processes,” |IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 17-32, Jan 2021.

S. Haesaert, S.E.Z. Soudjani, and A. Abate, “Verification of general Markov decision processes by approximate similarity relations and policy
refinement,” SIAM Journal on Control and Optimisation, vol. 55, nr. 4, pp. 2333-2367, 2017.

I. Tkachev, A. Mereacre, J.-P. Katoen, and A. Abate, "Quantitative Model Checking of Controlled Discrete-Time Markov Processes,” Information
and Computation, vol. 253, nr. 1, pp. 1-35, 2017.

S. Haesaert, N. Cauchi and A. Abate, “Certified policy synthesis for general Markov decision processes: An application in building automation
systems,” Performance Evaluation, vol. 117, pp. 75-103, 2017.

S.E.Z. Soudjani and A. Abate, “Aggregation and Control of Populations of Thermostatically Controlled Loads by Formal Abstractions,” IEEE
Transactions on Control Systems Technology. vol. 23, nr. 3, pp. 975-990, 2015.

S.E.Z. Soudjani and A. Abate, "Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions,” Logical
Methods in Computer Science, Vol. 11, nr. 3, Oct. 2015.

M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros, “Symbolic control of stochastic systems via approximately bisimilar
finite abstractions,” IEEE Transactions on Automatic Control, vol. 59 nr. 12, pp. 3135-3150, Dec. 2014.

I. Tkachev and A. Abate, “Characterization and computation of infinite horizon specifications over Markov processes,” Theoretical Computer
Science, vol. 515, pp. 1-18, 2014.

S. Soudjani and A. Abate, “Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic Processes,” SIAM Journal on Applied
Dynamical Systems, vol. 12, nr. 2, pp. 921-956, 2013.

A. Abate, J.P Katoen, J. Lygeros and M. Prandini, "Approximate Model Checking of Stochastic Hybrid Systems,” European Journal of Control,
16(6), 624-641, 2010.

A. Abate, M. Prandini, J. Lygeros and S. Sastry, “Probabilistic Reachability and Safety Analysis of Controlled Discrete-Time Stochastic Hybrid
Systems,” Automatica, 44(11), 2724-2734, Nov. 2008.

Selected references - Certified and Cautious Reinforcement Learning
M. Hasanbeig, A. Abate, D. Kroening, “Certified Reinforcement Learning with Logic Guidance,” AlJ, In Press, 2023. arXiv:1801.08099.

R. Mitta, H. Hasanbeig, Jun W, D. Kroening, Y. Kantaros, and A. Abate, “Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis,” AAAI24, 2024.

A. Abate, Y. Almulla, J. Fox, D. Hyland, and M. Wooldridge, “Learning Task Automata for RL Using Hidden Markov Models,” ECAI23, 2023.
M. Hasanbeig, A. Abate, and D. Kroening, “Logically-Constrained Neural Fitted Q-Iteration,” AAMAS19, pp. 2012-2014, 2019.

M. Hasanbeig, A. Abate and D. Kroening, “Cautious Reinforcement Learning with Logical Constraints,” AAMAS20, pp. 483-491, 2020.

M. Hasanbeig, D. Kroening and A. Abate, “Deep Reinforcement Learning with Temporal Logics,” FORMATS20, LNCS 12288, pp. 1-22, 2020.

M. Hasanbeig, N. Jeppu, A. Abate, T. Melham and D. Kroening, “DeepSynth: Program Synthesis for Automatic Task Segmentation in Deep
Reinforcement Learning,” AAAI 2021.

L. Hammond, A. Abate, J. Gutierrez, and M. Wooldridge, “Multi-Agent Reinforcement Learning with Temporal Logic Specifications,” AAAMAS
2021.

J. Skalse, L. Hammond, and A. Abate, “Lexicographic Multi-Objective Reinforcement Learning,” 1JCAI-ECAI 2022.

J. Skalse, L. Farnik, S. Motwani, E, Jenner, A. Gleave, and A. Abate, “STARC: A General Framework For Quantifying Differences Between
Reward Functions,” ICLR24, In Print, 2023.

J. Skalse, M. Farrugia-Roberts, S. Russell, A. Abate, and A. Gleave, “Invariance in Policy Optimisation and Partial Identifiability in Reward
Learning,” ICML23, PMLR, pp. 32033-32058, 2023.

J. Skalse and A. Abate, “Misspecification in Inverse Reinforcement Learning,” AAAI23, vol. 37, nr. 12, pp. 15136-15143, 2023.

Backup slides

with L

Formal abstractions: algorithm

@ approximate stochastic process (S, 7T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S8 xS — [0,1] — transition probability matrix

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn

Formal abstractions: algorithm

@ approximate stochastic process (S, 7T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S8 xS —[0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7T)

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn

Formal abstractions: algorithm

@ approximate stochastic process (S, T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S8 xS — [0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7))
1 select finite partition S = ulesi

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions: algorithm

@ approximate stochastic process (S, 7T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S xS —[0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7T)
1 select finite partition S = UleSi
2 select representative points z; € §;

3 define finite state space S := {z;,i = 1,.., p}

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions: algorithm

@ approximate stochastic process (S, T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S8 xS — [0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7))
select finite partition S = ulesi
select representative points z; € S;

define finite state space S := {z;,i =1,.., p}

A 0w NN =

compute transition probability matrix: T(z;,z;) = T(S; | z;)
output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions: algorithm

@ approximate stochastic process (S, T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S xS — [0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7T)
select finite partition S = ulesl-
select representative points z; € S;

define finite state space S := {z;,i =1,..,p}

A W NN =

compute transition probability matrix: T(z;,z;) = T (S; | z;)

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions: error ¢

OXFORD

e consider T (d5|s) = t(5|s)ds; assume t is Lipschitz continuous, namely

J0<h <oo: |t(3|s) —t(5|s")| < ho|ls—5'||, Vs, s,5€S

A. Abate, oxcav.web.ox.ac.uk

Formal abstractions: error ¢

e consider T (d5|s) = t(5|s)ds; assume t is Lipschitz continuous, namely

J0<h <oo: |t(3|s) —t(5|s")| < ho|ls—5'||, Vs, s,5€S

e one-step error

€= , max diameter of partition sets

e -step error (tuneable via ¢)
o, 1) =eT

A. Abate, oxcav.web.ox.ac.uk

Formal abstractions: error ¢

e consider T (d5|s) = t(5|s)ds; assume t is Lipschitz continuous, namely

J0<h <oo: |t(3|s) —t(5|s")| < ho|ls—5'||, Vs, s,5€S

o _ (related to approximate probabilistic bisimulation)

€ = 1.0, ¢ max diameter of partition sets

° _ (tuneable via ¢)

&0, T)=€T

— improved and generalised error ¢

xcav.web.ox.ac.uk

Formal abstractions: error ¢

e consider T (d5|s) = t(5|s)ds; assume t is Lipschitz continuous, namely

J0<h <oo: |t(3|s) —t(5|s")| < ho|ls—5'||, Vs, s,5€S

o _ (related to approximate probabilistic bisimulation)

€ = 1.0, ¢ max diameter of partition sets

° _ (tuneable via ¢)

&0, T)=€T

— improved and generalised error ¢

xcav.web.ox.ac.uk

Formal abstractions: probabilistic safety

@ recall temporal logic properties, e.g. probabilistic safety: @

probability that execution, started at s € Z,
stays in safe set A = U° within [0, T

Ps(A) = Ps(sp € A,Vk € [0, T])

@ probabilistic safe set with safety level 6 € [0,1] is

A. Abate, oxcav.web.ox.ac.uk

Formal abstractions: probabilistic safety

@ recall temporal logic properties, e.g. probabilistic safety: @

probability that execution, started at s € Z,
stays in safe set A = U° within [0, T

@ probabilistic safe set with safety level 6 € [0,1] is

S(0) = {s € S:Ps(A) >0}

@ whenever stochastic process (S,7T) is controlled, sup_ Ps(A)

A. Abate, oxcav.web.ox.ac.uk

Formal abstractions: probabilistic safety

OXFORD

X1

@ J-abstract (S,T) as MC (S, T), so that A — Ay,

quantify error (J,T) as above @

Xy

= probabilistic safe set on (S, T)

S(0) = {s€S:Ps(A) >0}

A. Abate, oxcav.web.ox.ac.uk

Formal abstractions: probabilistic safety

OXFORD

@ J-abstract (S,T) as MC (S, T), so that A — Ay,

quantify error (J,T) as above @

Xy

= probabilistic safe set on (S, T)
S(0) ={seS:Ps(A) >0}
is automatically computed with model checker (e.g. PRISM) on (S, T) as
ZO‘(Q—Fé‘) = Sat (]1)29+g (DST Aa))

— {z €S:zFPsp¢ (DSTAd)}

@ whenever stochastic process (S,7T) is controlled, obtain argsup_ Ps(A)

A. Abate, oxcav.web.ox.ac.uk

Formal abstractions with data

@ alluring idea: can we abstract models by sampling their dynamics?

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions with data

OXFORD

— 1

“Timed data, et dona ferentés” [Laocoon, Aeneid]

@ alluring idea: can we abstract models by sampling their dynamics?

@ Beware many subtle issues: zero-measure sets, memory dependencies, ...

Yoy1.-y1e =01110111011101110111

xt = x+60mod 27

Formal abstractions with data

xT = A(a)x+Ba)u+o

@ 0 ~ P unknown - aleatoric uncertainty

@ « € O - epistemic uncertainty

(p is trace of (probabilistic
closed-loop . @ reach-avoid
trajectory) specification)

Given T € IN, and sets G (goal) and uc (safe), find controller s.t., Vxo € Z,

Pr{p | U°USTG} > 6, with confidence > 1 —

AAAI22 BPA

A. Abate, oxcav.web.ox.ac.uk

Formal abstractions with data

AAAI22 BPA

xcav.web.ox.ac.uk

Formal abstractions with data

xt = A(a)x+ B(a)u+o
@ 0 ~ P unknown - aleatoric uncertainty
" () (&)
'

@ scenario approach for convex optimisation: P{p < P(s' | s;,a) < p} >1—
@ abstraction as iMDP

AAAI22 BPA

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthe:

Formal abstractions with data

xt =A(a)x+ B(a)u+o

@ « € O - epistemic uncertainty

‘ e © o
Max. o | T
o ° L]
° °
°
°
°

Min.

@ abstraction as iMDP

AAAI22 BPA

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions with data

xt =A(a)x+ B(a)u+o

@ « € O - epistemic uncertainty

e o
Max. 1 Te .
.
® []
[J
[]
[]
Min.

@ abstraction as iMDP

AAAI22 BPA

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:

Formal abstractions with data

xt =A(a)x+ B(a)u+0o
@ & € O - epistemic uncertainty

A o] ®
Max. sq,‘q
I R i
Min.

LB

@ abstraction as iIMDP

AAAI22 BPA

A. Abate, oxcav.web.ox.ac.uk

Formal abstractions

Velocity

% safe controllers

with data

©—& Low Lurbulence
_%—n High turbulence

Our robust approach Baseline (no epist.unc.)
T i
2| A
k) Ly
K]
GJ
>
Position Position

100%
Parameter
robustness limit
80%
With parameter uncertainty
—e— Neglect param. uncertainty
60%
m = 1.00 m = 0.75 m = 0.50

True system parameter

AAAI22 BPA

	Why this Matters: Science and Technology Drivers
	Sound Inductive Synthesis with Neural Certificates
	Formal Verification with Neural Abstractions
	Safe and Certified Learning

