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Outline

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

© Safe and Certified Learning
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Control theory vs Formal verification

@ dynamical models

x € R"
G CcR%Yie {1,...171}
Vx e G, x=fi(x)

@ stability,
safety,
reachability

@ Lyapunov functions,
barrier certificates,
reach-set computation

A. Abate, oxcav.web.ox.ac.uk

@ software programs

34: x float
35: ...

36: while Gi(x)
37:  xT = fi(x)
38: endwhile
39: ...

@ termination,
assertion violation

@ ranking functions,

program/loop invariants,
symbolic search

Sound Verification and Synthesis with Logic and Data




Cyber-Physical Systems

@ complex embedded systems

@ interleaving of
cyber/digital components with
physical/analogue dynamics

@ hybrid models

@ dynamics, control and
computation

(and communication)

@ safety-critical applications

1

correct-by-design control
— sound and automated synthesis

v.web.ox.ac.uk



Formal verification in a nutshell

@ industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software




Formal verification in a nutshell

@ industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

@ model-based algorithms (and SW tools)
@ automated, sound, and formal proofs (e.g., via certificates)
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Formal verification in a nutshell

@ industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

@ model-based algorithms (and SW tools)
@ automated, sound, and formal proofs (e.g., via certificates)
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Properties: Encoding rich dynamical behaviour

@ as specifications, requirements for verification, e.g., safety
@ as objectives for control synthesis, e.g., reachability

@ without manual reward engineering
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Properties: Encoding rich dynamical behaviour

xeR"
G CRYie{l,...m}
VxeG, xt=fix)

e
&
%
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Properties: Encoding rich dynamical behaviour

x e R"

= flx)
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Properties: Encoding rich dynamical behaviour

x € R"
G CRYie{l,...m}
x" = f(x)
G
9 G
xt = f(x) X =f(x)
Xg — X1 — Xy —

gXO — gX1 — ng —
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Properties: Encoding rich dynamical behaviour

@ consider (class of) properties/requirements/specifications

VxpeZ, ITeN', Vvke{01,...,T—1}, Vr>T:
xTeg/ 7 xTef
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Properties: Encoding rich dynamical behaviour

o consider (class of) properties/requirements/specifications

Vxp€Z, 3IT€N', vke{0,1,...,T—1}, Vr>T:

xr €G, , xc € F
RIFCH Fd- &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g RSWA h: RAR

@ class encompasses stability, invariance, safety, reachability, reach-avoid, ...
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Properties: Encoding rich dynamical behaviour

o consider (class of) properties/requirements/specifications

Vxg€Z, 3T€N', Vvke{0,1,...,T—1}, Vr>T:
XTGQ, 7 XTG.F

a: Stability b: ROA ¢ Safety

@ connections to:
© automata theory
@ temporal logics
© formal languages
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Outline

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

© Safe and Certified Learning
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Outline

© Sound Inductive Synthesis with Neural Certificates

n and Synthesis with Logic and Data



Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
o find satisfying assignment of Boolean functions
@ e.g., assume Boolean x;, check

Ix1, x0,x3 0 (X1 Vxg) A (—x1 Vg Vaxz) A -
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Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
o find satisfying assignment of Boolean functions
@ e.g., assume Boolean x;, check

Ix1, x0,x3 0 (X1 Vxg) A (—x1 Vg Vaxz) A -

SMT is a decision problem for logical formulae within a theory

instance: theory of non-linear arithmetics over real closed fields

e.g., assume reals x; € IR, check

dx1,x0: x1>20=3x1+2x+1>0

A. Abate, oxcav.web.ox.ac.uk ound Verification and Synthesis with Logic and Data



From decision to synthesis problems

o consider (harder) problem:
assume integers x; € Z,
seek function F: Z X Z — Z, s.t.

EIF,Vxl,xz :
F(xq,x2) > 21 AF(x1,x2) > 20 A (F(xq,x2) = x1 V F(x1,%2) = x2)

A. Abate, oxcav.web.ox.ac.uk



Lyapunov functions

e consider ¥ = f(x), assume x, € R" is an equilibrium, f(x.) =0
@ ensure asymptotic stability of x, in D C R”
@ by finding Lyapunov function V(x), satisfying

@ lower bound:
V(xe) =0 (1)

@ positive definiteness:
V(x) >0, Vx € D\ {x.} (2)

© negative Lie derivative:

V(x) =VV(x) f(x) <0, Vx € D\ {x.} (3)
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Lyapunov functions

e consider ¥ = f(x), assume x, € R" is an equilibrium, f(x.) =0
@ ensure asymptotic stability of x, in D C R”
@ by finding Lyapunov function V(x), satisfying

@ lower bound:

V(xe) =0 (1)
@ positive definiteness:
V(x) >0, Vx € D\ {x.} (2)
© negative Lie derivative:
V(x) =VV(x) f(x) <0, Vx € D\ {x.} (3)

@ that is, solve following synthesis problem:

FV:D <R st VxeD, conditions (1) A(2)A(3) hold

A. Abate, oxcav.web.ox.ac.uk



Counterexample-guided inductive synthesis (CEGIS)

f(x),D 1. Learner
‘ generates candidates V' over
v finite set
T valid 2. Verifier
Learner \/@ v certifies validity on D, or

c provides counterexample(s) ¢

A. Abate, oxcav.web.ox.ac.uk



Counterexample-guided inductive synthesis (CEGIS)
f(x),D 1. Learner

generates candidates V' over
v finite set
T valid 2. Verifier
L Verifi b—» v e .
camner e certifies validity on D, or
\_/ .
c provides counterexample(s) ¢

@ inductive synthesis loop

1. sample (finite) set S C D

2. Learner generates V() via query SMT solver on formula:
36 : (1) A (2) A (3) on points s € S

3. Verifier checks either V(x) valid over dense D, or counterexample ¢ :
query SMT solver on formula 3c € D : =(1) vV =(2) V ~(3)

4. S+ SUc, loop back to 2
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Counterexample-guided inductive synthesis (CEGIS)
f(x),D 1. Learner

generates candidates V' over
v finite set
T valid 2. Verifier
L Verifi b—~ v e .
cemer o certifies validity on D, or
\_/ .
c provides counterexample(s) ¢

@ inductive synthesis loop

1. sample (finite) set S C D

2. Learner generates V() via query SMT solver on formula:
36 : (1) A (2) A (3) on points s € S

3. Verifier checks either V(x) valid over dense D, or counterexample ¢ :
query SMT solver on formula 3c € D : =(1) vV =(2) V ~(3)

4. S+ SUc, loop back to 2

@ sound, but not complete: infinite search space (6 in V) and domain D
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Lyapunov functions as neural networks

@ neural nets are general and flexible @
(universal function approximators)
@ Learner trains shallow neural network ‘
V(x) = Wy -1 (Wix +by) . @ .

W 14%
(W; weights, (07) activation fcns) ! ?

@ loss function enforces Lyapunov conditions in (2) and (3) on points in S:

L(S) =) max{0,—V(s)} + )_ max{0,V(s)}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk



Lyapunov functions as neural networks

f(x),D
I
\4
S
valid
Learner @ \
\/

c

@ surprisingly effectivel Communication Learner <> Verifier is crucial

@ loss function enforces Lyapunov conditions in (2) and (3) on points in S:

L(S) =) max{0,—V(s)} + }_ max{0,V(s)}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula
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Synthesis of Lyapunov functions - example

100
50
b
=50
~100
E g 150 ———112000000 000
-150 ~100 -50 [ 50 100 -150 -100 -50 0 50 0 -150 -100 =50 [ 50 100
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Barrier certificates

@ consider sets Z (initial) and U (unsafe)

@ ensure there exists no trajectory starting in Z ever entering U

© negativity within initial set Z:
B(x) <0VxeZ
@ positivity within unsafe set U:
B(x)>0Vxel
@ set invariance property via Lie derivative:

B(x) <0Vxst.B(x)=0

oxcav.web.ox.ac.uk Sound Verification and Syn




Barrier certificates

oo o7 o0 w25 oo0 oz ok o7 1o

@ negativity within initial set Z:

B(x) <0VxeZ
@ positivity within unsafe set U:

B(x) >0VxelU
© set invariance property via Lie derivative:

B(x) <0 Vxst B(x)=0

Sound Verification and Synt



Synthesis of barrier certificates - examples

Barrier Certificate

--- Unsafe Set
21 Initial Set

Barrier Border
2.0 — - = =
\ N Unsafe Set
Initial Set

15
R N T e e
600 05
400
200
B
o ~ 009,
-200
-400
. “
a
«
o -
“«
00 05 10 15 20




Synthesis of barrier certificates - examples

Barrier Certificate

== Initial Set Barrier Border
—— Unsafe Set 100 = ]
s =T N == Initial Set
075 7 ~ _ == Unsafeset
/ N
T 1
0504 1 !
\ > ]
3 7
a
025 S 2
NN 7
_______
>~ 000
A
-0.25 A h
" R}

-0501 N N\

-0.75 1\,

-1.00
-1.00 -0.75 -050 -025 0.00
x

> [20] - Softplus




Synthesis of barrier certificates - examples

Barrier Certificate

1 Initial Set Barrier Border

1 Unsafe Set 20

yo=—r—y+}




Synthesis of barrier certificates - benchmarks

Benchmark CEGIS (this work) BC! S0S?
Learn Verify ~ Samples lters Learn Verify Samples Synth
Darboux 316 0.01 0.5 k 2 54.9 20.8 65 k X -
Exponential 15.9 0.07 1.5 k 2 234.0 11.3 65 k X -
Obstacle 55.5 1.83 2.0 k 9 3165.3 1003.3 2097 k X -
Polynomial 64.5 4.20 2.3k 2 1731.0 635.3 65 k 8.10 X
Hybrid mod 0.58 2.01 0.5 k 1 - - - 1230 0.11
4-d ODE 29.31 0.07 1k 1 - - - 1290 OOT
6-d ODE 89.52 1.61 1k 3 - - - 16.60 OOT
8-d ODE 1045 8251 1k 3 - - - 26.10 OOT

@ time for Learning and Verification steps in [sec]
@ ‘Samples’ = size of input data for Learner (in thousands)
@ 'lters’ = number of iterations of CEGIS loop

@ X = synthesis or verification failure, OOT = verification timeout

1 H. Zhao, X. Zeng, T. Chen, and Z. Liu. Synthesizing Barrier Certificates Using Neural Networks. In Proceedings of the 23rd International

Conference on Hybrid Systems: Computation and Control, HSCC, 2020.

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for
MATLAB, 2013.
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Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”

@ modify known synthesis problem:

JV:D—-R st VxeD conditions (1) A (2) A (3) hold

A. Abate, oxcav.web.ox.ac.uk



Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”
@ approach:

@ control policies are NN-templated
@ concurrent synthesis controls & certificates

av.web.ox.ac.uk Sound Verification and Syn




Synthesis of control certificates for complex tasks
e dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”

o (back to) broad class of properties/requirements

Vxg€Z, ITeN', vte{0,...,T—1}, Vt>T:

xr €G, X €U, Xr € F
7 0 A N
2R [ v

a: Stability b: ROA ¢ Safety d: SWA e: Reachability f: RWA g RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk



Synthesis of control certificates for complex tasks
e dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”

Ns  Nu Property Neurons Activations T (s) Success (%)

min P max S

1 2 0 Stability [6] [2] 0.01 (= 0.00)  0.16 (0.15) 1.50 (1.48) 100
2 30 Stability [8] [2] 0.28 (= 0.00)  2.22 (0.45) 1257 (3.31) 100
3 2 2 Swbility [4] [2] 0.07 (0.01) 0.19 (0.02) 047 (0.04) 100
4 22 Swbility [5] [2] 0.09 (0.01) 026 (0.02)  0.54 (0.03) 100
5 2 0 ROA [51 [osoft ] 0.21 (0.12) 14.09 (12.59)  25.32 (22.13) 40
6 3 3 ROA 81 [2] 1.24 (0.02) 39.08 (0.03)  287.89 (0.04) 100
7 20 Safety  [15] (o] 0.44 (0.35) 336 290)  7.61 (7.11) 100
9 8§ 0 Safety  [10] [1] 12,63 (7.71)  51.97 (32.75)  70.59 (44.66) 70
03 I Safety  [15] [ot] 1.57 (0.19) 11.87 (2.50)  51.08 (7.52) 90
113 0 SWA [61, [51 [2], [0 0.19 (0.05) 246 (0.100)  12.10 (0.20) 90
12 2 0 SWA [51, [5. 51 [p2]. [Osig 2] 0.13 (0.06) 027 (0.14) 039 (0.20) 100
13 2 1 SWA 81, [5] [2l, [p2] 0.06 (0.03) 020 (0.10)  0.58 (0.24) 90
4 3 1 SWA (101, [8] [p2], [o¢] 4.06 (0.87) 19.81 (2.73)  103.49 (7.23) 90
15 2 0 RWA [4] [2] 0.14 (0.09) 181 (175) 470 (4.63) 100
16 3 0 RWA [16] [2] 136 (0.09) 14.10 (0.14)  72.97 (0.20) 90
17 2 1 RWA [4, 4] [0sigsp2] 0.59 (0.27) 6.82 (3. 20.07 (11.46) 100
18 3 1 RWA [5] [2] 0.46 (0.11) 16.06 (53.81)  72.47 (44.64) 80
19 2 2 RWA [5] [0sig] 0.69 (0.40) 138 (0.94) 2.14 (1.90) 100
20 2 0 RSWA [4] [2] 0.19 (0.03) 1.29 (1.04) 379 (3.37) 100
21 3 0 RSWA  [l6] [2] 4.81 (0.13) 2714 (0.19)  80.95 (0.25) 100
22 2 0 RSWA  [5.5] [osigsp2] 1.52 (0.06) 4.45 (0.19) 10.97 (0.35) 100
23 2 1 RSWA  [8] [2] 0.21 (0.05) 0.67 (0.25) 1.19 (0.91) 100
24 2 2 RSWA  [5.5] [osig.p2] 0.98 (0.16) 1.23 (0.28) 1.61 (0.46) 100
25 2 0 RAR (61, [6] [osoft ], [2] 6.65 (1.08) 2474 (6.46)  77.80 (15.06) 100
26 2 2 RAR [6, 6], [6, 6]  [Tsig.p2], [Tsigp2]  5.13 (1.34) 26.99 (9.90) 101.23 (60.14) 100

ion and Synth



Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

x = f(x,u)

— synthesis of “control certificates”

Phase Plane

ROA for NL model, B
non-poly Lyapunov, 2 = RAR  certificate  for

2 disjoint initial sets RWA: reach-while-avoid closed-loop NL model

dashed lines: level sets; dark blue: Z; light blue: S; green: G; - F

cav.web.ox.ac.uk tion and Syntl



Software for Neural Synthesis - Fossil 2.0

Synthesis Engine

Learner J

A

Fossil 2.0
Problem

T
1 Enhanced

' 1 Communicatioh
LY w Valid Controller
Verifier (SMT Solvers) ' A and Certificate
Z3 JL CVC5 J dReal J |
|| Parser/ L 3 ™~ Unknown
Interpreter |
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Extension: discrete-time, prob. programs/models

o discrete-time models (e.g. SW programs)
while g(x), x := f(x)
— similar Lyapunov-like conditions, except concerning “next step”:

V(F(x)) < V(x), VxeD\{x}

@ stochastic models:
xt = f(x)+o(x), o~N(0Z(x))
— same story, “next step”-condition in expectation (super-martingale):

E[V(f(x)) [ x] <V(x), VxeD\{x}

A. Abate, oxcav.web.ox.ac.uk



Outline

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

© Safe and Certified Learning
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Outline

© Formal Verification with Neural Abstractions
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Formal abstractions

complex
model

specification

Sound Verification and Synt




Formal abstractions

¢-quantitative
abstraction

complex

specification
model P
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Formal abstractions

abstract .

F-model specification
¢-quantitative
abstraction

complex .

modZI specification
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Formal abstractions

abstract ¢-specification
model P
¢-quantitative
abstraction
complex o .
P specification
model

Sound Verification and Synths



Formal abstractions

abstract automated
model ¢-specification verification
¢-quantitative
abstraction
complex —
P specification
model

Sound Verification and Synths



Formal abstractions

SAT,
model
checking
abstract automated
model ¢-specification verification
¢-quantitative
abstraction
complex —
P specification
model

v.web.ox.ac.uk Sound Verification and Syn:



Formal abstractions

SAT,
model
checking
automated
. - hol
r -specification verification .
abstract f N ¢-spec holds,
model policy pz = C-spec
¢-quantitative
abstraction
complex .
f
model specitication

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:



Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification G SpeC Mo ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex .
f
model specitication
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Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification 6 Spec no ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex specification spec holds,
model policy p |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn



Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification G SpeC Mo ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
[ . hol
compiex specification ) spe.c olds,
model if not, policy p |= spec
tune ¢

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn



From uncountable to finite stochastic models

co-space Markov process finite-space Markov chain
s € R" {z1,20,23,...,2p}

Pll .. plp
s+:f(s)+(7(s), UNN(O/Z(S)) T=1| .. .. ...
Pp1

A. Abate, oxcav.web.ox.ac.uk



From uncountable to finite stochastic models
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From uncountable to finite stochastic models
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From uncountable to finite stochastic models
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From uncountable to finite stochastic models
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From uncountable to finite stochastic models
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From uncountable to finite stochastic models

@ error ¢ ~ 11,0T, where
- max diameter of partitions
T - time horizon

- local kernel stiffness (Lipschitz constant)

A. Abate, oxcav.web.ox.ac.uk



From uncountable to finite stochastic models

)

@ error ¢ ~ T, where
- max diameter of partitions
T - time horizon

- local kernel stiffness (Lipschitz constant)

@ probabilistic safety:
prob. ps that execution, started at s € Z, stays in set A = U° within [0, T],

A. Abate, oxcav.web.ox.ac.uk



From uncountable to finite stochastic models

)

@ error ¢ ~ T, where
- max diameter of partitions
T - time horizon

- local kernel stiffness (Lipschitz constant)

@ probabilistic safety:
prob. ps that execution, started at s € Z, stays in set A = U° within [0, T],

can be computed on abstract model as i, so that ps = p, £¢

A. Abate, oxcav.web.ox.ac.uk



Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

=
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk



Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

At
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR
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Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

IR 195G 1955
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR
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Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

R
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR
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Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

AR e
RIFFL &

a: Stability b: ROA c: Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk



Software for formal abstractions - FAUST? & StocHy

@ sequential, adaptive, anytime

= = = sourceforge.net/projects/faust2

= = gitlab.com/natchi92/StocHy

EPIC Series in Computing
i sth -

@ numerous extensions -
. . N
and appllcatlons stocty ARCH-COMP21 Category Report: Stochastic Models
@ wide ecosystem of SHS —
abstractions -
@ annual ARCH HYPEG
competition o IS

cps-vo.org/group/ARCH




Model hybridisations

OXFORD

e safety verification of non-linear models X = f(x) over x € X C R”",

@ it is in general hard - not automated, not scalable

¥ =-—y—15x2-05x>-05
y =3x-y

X =[-1,1?

A. Abate, oxcav.web.ox.ac.uk



Model hybridisations

e safety verification of non-linear models X = f(x) over x € X C R",

@ it is in general hard - not automated, not scalable

@ leverage formal abstractions (simulations) for verification

@ abstraction as hybridisation:
partition X, locally approximate f(x) as f(x)

each partition has own flow f(x) & transitions to other partitions

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn:



Model hybridisations

e safety verification of non-linear models X = f(x) over x € X C R",

@ it is in general hard - not automated, not scalable

@ leverage formal abstractions (simulations) for verification

@ abstraction as hybridisation:

partition X, locally approximate f(x) as f(x)

each partition has own flow f(x) & transitions to other partitions
@ compute upper-bound ¢ to error; obtain simulation as

f=fx)+d, |ldl<¢ xex
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Model hybridisations

e safety verification of non-linear models X = f(x) over x € X C R",

@ it is in general hard - not automated, not scalable

@ leverage formal abstractions (simulations) for verification

@ abstraction as hybridisation:

partition X, locally approximate f(x) as f(x)

each partition has own flow f(x) & transitions to other partitions
@ compute upper-bound ¢ to error; obtain simulation as

f=fx)+d, |ldl<¢ xex

@ more partitions — larger abstraction
I mesh size & shape important for small error bound ¢

oxcav.web.ox.ac.uk Sound Verification and Syn:



Model hybridisations as neural abstractions

OXFORD

Wix+b;p =0

Wiax +b;p =0

o neural network N as abstraction f of nonlinear vector field f
e N(x):R" — R" approximates f(x)
e H neurons — at most 2! total partitions

A. Abate, oxcav.web.ox.ac.uk



Model hybridisations as neural abstractions

Wix+bpp =0

Wiax+ b1 =0

@ synthesis of neural abstractions via CEGIS
@ learn parameters of NN N w/ MSE loss £ = ||f(S) — N(S)]|, S finite

© SMT solver formally checks upper bound ¢ on approximation error:

Jee X st | f(c)=N(o)|| >¢

A. Abate, oxcav.web.ox.ac.uk



Model hybridisations as neural abstractions - exampleg
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Model hybridisations as neural abstractions - exampleg




Model hybridisations as neural abstractions - exampleg

¥ =y—15x2 0523
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Neural abstractions: alternative templates

oxcav.web.ox.ac.uk

Piecewise constant

Piecewise affine

Nonlinear

Concrete model

Nonlinear,
non-Lipschitz

Nonlinear,
non-Lipschitz

Nonlinear,
non-Lipschitz

Activation functions

4

-

Training procedure

Particle swarm

Gradient descent

Gradient descent

Loss function

1 Lses (s)

Abstract model

PWA with

PWC with

NL-ODE with

Safety veri-
fication tech

Symbolic
model checking

Reach algorithm

Flowpipe propagatior
(Taylor models)

n

Safety veri-
fication tool

PHAVer

Spacex

Flow*

with L




Neural abstractions: alternative templates

‘q

\i ,

(a) Neural PWC (b) Neural PWA (c) Sigmoidal

abstraction abstraction abstraction.

(a) Flowpipes for (b) Flowpipe for (c) Flowpipe for
neural PWC neural PWA sigmoidal model.
model. 11.6s model. 76.5s 1084.3s
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Outline

@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

© Safe and Certified Learning
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Outline

© Safe and Certified Learning




Reinforcement learning

@ learning algorithm, relies on reward signal from environment

@ synthesises policies (actions) maximising cumulative reward

Reward Signal

Reward
Action Function

Environment




Reinforcement learning

OXFORD

@ learning algorithm, relies on reward signal from environment

@ synthesises policies (actions) maximising cumulative reward

Reward Signal

Reward
Action Function

Environment

@ rewards are not enough!

@ verification goal: certified synthesis of policies satisfying requirement, task

av.web.ox.ac.uk



Certified reinforcement learning: LCRL

IN requirement, task
- encode task, e.g. temporal requirement in LTL formula, as automaton
- synchronise automaton with environment % via labels
- synthesise policies via RL % automaton guides/rewards exploration

OUT certified policies: max probability of task satisfaction

Reward
Function

Action

Labelling
Function |[MVTYSN

Y onised Envir Task

cav.web.ox.ac.uk



Certified reinforcement learning: LCRL

@ model-free — extracts information efficiently
@ guided learning — faster convergence, high-dimensional environments
@ flexible — numerous extensions and applications




Ambiguity and Misspecification in Inverse RL

@ inverse RL: from expert
behaviour to rewards

@ preference elicitation and
alignment
o formalising reward learning with

© invariances

reward

output space .
P P learning

reward space

reward space 71  output space
—

K R/ TCR=TTR/
® .

[T T —

AAAI23 BPA

A. Abate, oxcav.web.ox.ac.uk
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Ambiguity and Misspecification in Inverse RL

e rewa rd

. - reward space
learning

output spac

@ inverse RL: from expert
behaviour to rewards reward space 71  output space

@ preference elicitation and
alignment

o formalising reward learning with

© invariances
@ metrics

AAAI23 BPA
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@ Why this Matters: Science and Technology Drivers

© Sound Inductive Synthesis with Neural Certificates

© Formal Verification with Neural Abstractions

@ Safe and Certified Learning

Sound Verification and Synthe



Thank you for your attention
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Formal abstractions: algorithm

@ approximate stochastic process (S, 7T ) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S8 xS — [0,1] — transition probability matrix

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Syn



Formal abstractions: algorithm

@ approximate stochastic process (S, 7T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S8 xS —[0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7T)

output: Markov chain (S, T)
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Formal abstractions: algorithm

@ approximate stochastic process (S, T ) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S8 xS — [0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7))
1 select finite partition S = ulesi

output: Markov chain (S, T)
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Formal abstractions: algorithm

@ approximate stochastic process (S, 7T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S xS —[0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7T)
1 select finite partition S = UleSi
2 select representative points z; € §;

3 define finite state space S := {z;,i = 1,.., p}

output: Markov chain (S, T)
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Formal abstractions: algorithm

@ approximate stochastic process (S, T ) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S8 xS — [0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7))
select finite partition S = ulesi
select representative points z; € S;

define finite state space S := {z;,i =1,.., p}

A 0w NN =

compute transition probability matrix: T(z;,z;) = T(S; | z;)
output: Markov chain (S, T)
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Formal abstractions: algorithm

@ approximate stochastic process (S, T) as Markov chain (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:S xS — [0,1] — transition probability matrix

@ algorithm:

input: stochastic process (S, 7T)
select finite partition S = ulesl-
select representative points z; € S;

define finite state space S := {z;,i =1,..,p}

A W NN =

compute transition probability matrix: T(z;,z;) = T (S; | z;)

output: Markov chain (S, T)
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Formal abstractions: error ¢

OXFORD

e consider T (d5|s) = t(5|s)ds; assume t is Lipschitz continuous, namely

J0<h <oo:  |t(3|s) —t(5|s")| < ho|ls—5'||, Vs, s,5€S

A. Abate, oxcav.web.ox.ac.uk



Formal abstractions: error ¢

e consider T (d5|s) = t(5|s)ds; assume t is Lipschitz continuous, namely

J0<h <oo:  |t(3|s) —t(5|s")| < ho|ls—5'||, Vs, s,5€S

e one-step error

€= , max diameter of partition sets

e  -step error (tuneable via ¢)
o, 1) =eT
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Formal abstractions: error ¢

e consider T (d5|s) = t(5|s)ds; assume t is Lipschitz continuous, namely

J0<h <oo:  |t(3|s) —t(5|s")| < ho|ls—5'||, Vs, s,5€S

o _ (related to approximate probabilistic bisimulation)

€ = 1.0, ¢ max diameter of partition sets

° _ (tuneable via ¢)

&0, T)=€T

— improved and generalised error ¢
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Formal abstractions: error ¢

e consider T (d5|s) = t(5|s)ds; assume t is Lipschitz continuous, namely

J0<h <oo:  |t(3|s) —t(5|s")| < ho|ls—5'||, Vs, s,5€S

o _ (related to approximate probabilistic bisimulation)

€ = 1.0, ¢ max diameter of partition sets

° _ (tuneable via ¢)

&0, T)=€T

— improved and generalised error ¢
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Formal abstractions: probabilistic safety

@ recall temporal logic properties, e.g. probabilistic safety: @

probability that execution, started at s € Z,
stays in safe set A = U° within [0, T

Ps(A) = Ps(sp € A,Vk € [0, T])

@ probabilistic safe set with safety level 6 € [0,1] is

A. Abate, oxcav.web.ox.ac.uk



Formal abstractions: probabilistic safety

@ recall temporal logic properties, e.g. probabilistic safety: @

probability that execution, started at s € Z,
stays in safe set A = U° within [0, T

@ probabilistic safe set with safety level 6 € [0,1] is

S(0) = {s € S:Ps(A) >0}

@ whenever stochastic process (S,7T) is controlled, sup_ Ps(A)

A. Abate, oxcav.web.ox.ac.uk



Formal abstractions: probabilistic safety

OXFORD

X1

@ J-abstract (S,T) as MC (S, T), so that A — Ay,

quantify error (J,T) as above @

Xy

= probabilistic safe set on (S, T)

S(0) = {s€S:Ps(A) >0}
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Formal abstractions: probabilistic safety

OXFORD

@ J-abstract (S,T) as MC (S, T), so that A — Ay,

quantify error (J,T) as above @

Xy

= probabilistic safe set on (S, T)
S(0) ={seS:Ps(A) >0}
is automatically computed with model checker (e.g. PRISM) on (S, T) as
ZO‘(Q—Fé‘) = Sat (]1)29+g (DST Aa))

— {z €S:zFPsp¢ (DSTAd)}

@ whenever stochastic process (S,7T) is controlled, obtain argsup_ Ps(A)

A. Abate, oxcav.web.ox.ac.uk



Formal abstractions with data

@ alluring idea: can we abstract models by sampling their dynamics?
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Formal abstractions with data

OXFORD

— 1

“Timed data, et dona ferentés” [Laocoon, Aeneid]

@ alluring idea: can we abstract models by sampling their dynamics?

@ Beware many subtle issues: zero-measure sets, memory dependencies, ...

Yoy1.-y1e =01110111011101110111

xt = x+60mod 27




Formal abstractions with data

xT = A(a)x+Ba)u+o

@ 0 ~ P unknown - aleatoric uncertainty

@ « € O - epistemic uncertainty

(p is trace of (probabilistic
closed-loop . @ reach-avoid
trajectory) specification)

Given T € IN, and sets G (goal) and uc (safe), find controller s.t., Vxo € Z,

Pr{p | U°USTG} > 6, with confidence > 1 —

AAAI22 BPA
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Formal abstractions with data

AAAI22 BPA
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Formal abstractions with data

xt = A(a)x+ B(a)u+o
@ 0 ~ P unknown - aleatoric uncertainty
" () (&)
'

@ scenario approach for convex optimisation: P{p < P(s' | s;,a) < p} >1—
@ abstraction as iMDP

AAAI22 BPA
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Formal abstractions with data

xt =A(a)x+ B(a)u+o

@ « € O - epistemic uncertainty

‘ e © o
Max. o | T
o ° L]
° °
°
°
°

Min.

@ abstraction as iMDP

AAAI22 BPA
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Formal abstractions with data

xt =A(a)x+ B(a)u+o

@ « € O - epistemic uncertainty

e o
Max. 1  Te .
.
® [ ]
[ J
[ ]
[ ]
Min.

@ abstraction as iMDP

AAAI22 BPA
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Formal abstractions with data

xt =A(a)x+ B(a)u+0o
@ & € O - epistemic uncertainty

A o] ®
Max. sq,‘q
I R i
Min.

LB

@ abstraction as iIMDP

AAAI22 BPA
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Formal abstractions

Velocity

% safe controllers

with data

©—& Low Lurbulence
_%—n High turbulence

Our robust approach Baseline (no epist.unc.)
T i
2| A
k) Ly
K]
GJ
>
Position Position

100%
Parameter
robustness limit
80%
With parameter uncertainty
—e— Neglect param. uncertainty
60%
m = 1.00 m = 0.75 m = 0.50

True system parameter
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