
[references at end of deck]

Sound Verification and Synthesis with Logic and Data

Alessandro Abate

Department of Computer Science

oxcav.web.ox.ac.uk

3 April 2024

OXFORD CONTROL AND VERIFICATION

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 1 /32

Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 2 /32

Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 2 /32

Control theory vs Formal verification
dynamical models

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}
∀x ∈ Gi, x+ = fi(x)

stability,
safety,
reachability

Lyapunov functions,
barrier certificates,
reach-set computation

G1

G2
G3

x+ = f1(x)

x 2 G1

x+ = f3(x)

x 2 G3

x+ = f2(x)

x 2 G2

x 2 G1

x 2 G3

x 2 G2

x 2 G3

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 41 /43

G1

G2
G3

x+ = f1(x)

x 2 G1

x+ = f3(x)

x 2 G3

x+ = f2(x)

x 2 G2

x 2 G1

x 2 G3

x 2 G2

x 2 G3

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 41 /43

software programs

34: x float

35: . . .
36: while Gi(x)
37: x+ := fi(x)
38: endwhile
39: . . .
termination,
assertion violation

ranking functions,
program/loop invariants,
symbolic search

def add5(x):
return x+5

def dotwrite(ast):
nodename = getNodename()
label=symbol.sym_name.get(int(ast[0]),ast[0])
print ' %s [label="%s' % (nodename, label),
if isinstance(ast[1], str):

if ast[1].strip():
print '= %s"];' % ast[1]

else:
print '"]'

else:
print '"];'
children = []
for n, child in enumerate(ast[1:]):

children.append(dotwrite(child))
print ' %s -> {' % nodename,
for name in children:

print '%s' % name,

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 3 /32

Cyber-Physical Systems

complex embedded systems

interleaving of
cyber/digital components with
physical/analogue dynamics

hybrid models

dynamics, control and
computation

(and communication)

safety-critical applications

→ correct-by-design control

→ sound and automated synthesis

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 4 /32

Formal verification in a nutshell

industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

model-based algorithms (and SW tools)

automated, sound, and formal proofs (e.g., via certificates)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 5 /32

Formal verification in a nutshell

industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

model-based algorithms (and SW tools)

automated, sound, and formal proofs (e.g., via certificates)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 5 /32

Formal verification in a nutshell

industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

model-based algorithms (and SW tools)

automated, sound, and formal proofs (e.g., via certificates)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 5 /32

Properties: Encoding rich dynamical behaviour

as specifications, requirements for verification, e.g., safety

as objectives for control synthesis, e.g., reachability

without manual reward engineering

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 6 /32

Properties: Encoding rich dynamical behaviour

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}
∀x ∈ Gi, x+ = fi(x)

G1

G2
G3

x+ = f1(x)

x 2 G1

x+ = f3(x)

x 2 G3

x+ = f2(x)

x 2 G2

x 2 G1

x 2 G3

x 2 G2

x 2 G3

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 41 /43

G1

G2
G3

x+ = f1(x)

x 2 G1

x+ = f3(x)

x 2 G3

x+ = f2(x)

x 2 G2

x 2 G1

x 2 G3

x 2 G2

x 2 G3

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 41 /43

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 6 /32

Properties: Encoding rich dynamical behaviour

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}

x+ = f (x)

x+ = f (x)

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

x : x0 → x1 → x2 → . . .
ρ : Gx0 → Gx1 → Gx2 → . . .

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 6 /32

Properties: Encoding rich dynamical behaviour

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}
x+ = f (x)

x+ = f (x)

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

x : x0 → x1 → x2 → . . .
ρ : Gx0 → Gx1 → Gx2 → . . .

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 6 /32

Properties: Encoding rich dynamical behaviour

consider (class of) properties/requirements/specifications

∀x0 ∈ I , ∃T ∈N+, ∀k ∈ {0, 1, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xk ̸∈ U , xτ ∈ F

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RARA. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 6 /32

Properties: Encoding rich dynamical behaviour

consider (class of) properties/requirements/specifications

∀x0 ∈ I , ∃T ∈N+, ∀k ∈ {0, 1, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xk ̸∈ U , xτ ∈ F

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

class encompasses stability, invariance, safety, reachability, reach-avoid, . . .

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 6 /32

Properties: Encoding rich dynamical behaviour

consider (class of) properties/requirements/specifications

∀x0 ∈ I , ∃T ∈N+, ∀k ∈ {0, 1, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xk ̸∈ U , xτ ∈ F

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

connections to:
1 automata theory
2 temporal logics
3 formal languages

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 6 /32

Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 7 /32

Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 7 /32

Decision problems: SAT and SMT

SAT is a decision problem (yes/no question)

find satisfying assignment of Boolean functions

e.g., assume Boolean xi, check

∃x1, x2, x3 : (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

SMT is a decision problem for logical formulae within a theory

instance: theory of non-linear arithmetics over real closed fields

e.g., assume reals xi ∈ R, check

∃x1, x2 : x1 ≥ 0⇒ 3x1 + 2x2 + 1 > 0

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 8 /32

Decision problems: SAT and SMT

SAT is a decision problem (yes/no question)

find satisfying assignment of Boolean functions

e.g., assume Boolean xi, check

∃x1, x2, x3 : (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

SMT is a decision problem for logical formulae within a theory

instance: theory of non-linear arithmetics over real closed fields

e.g., assume reals xi ∈ R, check

∃x1, x2 : x1 ≥ 0⇒ 3x1 + 2x2 + 1 > 0

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 8 /32

From decision to synthesis problems

consider (harder) problem:
assume integers xi ∈ Z,
seek function F : Z×Z→ Z, s.t.

∃F, ∀x1, x2 :

F(x1, x2) ≥ x1 ∧ F(x1, x2) ≥ x2 ∧ (F(x1, x2) = x1 ∨ F(x1, x2) = x2)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 9 /32

Lyapunov functions

consider ẋ = f (x), assume xe ∈ Rn is an equilibrium, f (xe) = 0
ensure asymptotic stability of xe in D ⊆ Rn

by finding Lyapunov function V(x), satisfying

1 lower bound:
V(xe) = 0 (1)

2 positive definiteness:
V(x) > 0, ∀x ∈ D \ {xe} (2)

3 negative Lie derivative:

V̇(x) = ∇V(x) · f (x) < 0, ∀x ∈ D \ {xe} (3)

that is, solve following synthesis problem:

∃V : D → R s.t. ∀x ∈ D, conditions (1)∧ (2)∧ (3) hold

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 10 /32

Lyapunov functions

consider ẋ = f (x), assume xe ∈ Rn is an equilibrium, f (xe) = 0
ensure asymptotic stability of xe in D ⊆ Rn

by finding Lyapunov function V(x), satisfying

1 lower bound:
V(xe) = 0 (1)

2 positive definiteness:
V(x) > 0, ∀x ∈ D \ {xe} (2)

3 negative Lie derivative:

V̇(x) = ∇V(x) · f (x) < 0, ∀x ∈ D \ {xe} (3)

that is, solve following synthesis problem:

∃V : D → R s.t. ∀x ∈ D, conditions (1)∧ (2)∧ (3) hold

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 10 /32

Counterexample-guided inductive synthesis (CEGIS)

Learner Verifier

V

c

f (x),D

V
valid

1. Learner

generates candidates V over
finite set

2. Verifier

certifies validity on D, or
provides counterexample(s) c

inductive synthesis loop

1. sample (finite) set S ⊂ D

2. Learner generates V(θ) via query SMT solver on formula:
∃θ : (1) ∧ (2) ∧ (3) on points s ∈ S

3. Verifier checks either V(x) valid over dense D, or counterexample c :
query SMT solver on formula ∃c ∈ D : ¬(1) ∨¬(2) ∨¬(3)

4. S← S ∪ c, loop back to 2

sound, but not complete: infinite search space (θ in V) and domain D

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 11 /32

Counterexample-guided inductive synthesis (CEGIS)

Learner Verifier

V

c

f (x),D

V
valid

1. Learner

generates candidates V over
finite set

2. Verifier

certifies validity on D, or
provides counterexample(s) c

inductive synthesis loop

1. sample (finite) set S ⊂ D

2. Learner generates V(θ) via query SMT solver on formula:
∃θ : (1) ∧ (2) ∧ (3) on points s ∈ S

3. Verifier checks either V(x) valid over dense D, or counterexample c :
query SMT solver on formula ∃c ∈ D : ¬(1) ∨¬(2) ∨¬(3)

4. S← S ∪ c, loop back to 2

sound, but not complete: infinite search space (θ in V) and domain D

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 11 /32

Counterexample-guided inductive synthesis (CEGIS)

Learner Verifier

V

c

f (x),D

V
valid

1. Learner

generates candidates V over
finite set

2. Verifier

certifies validity on D, or
provides counterexample(s) c

inductive synthesis loop

1. sample (finite) set S ⊂ D

2. Learner generates V(θ) via query SMT solver on formula:
∃θ : (1) ∧ (2) ∧ (3) on points s ∈ S

3. Verifier checks either V(x) valid over dense D, or counterexample c :
query SMT solver on formula ∃c ∈ D : ¬(1) ∨¬(2) ∨¬(3)

4. S← S ∪ c, loop back to 2

sound, but not complete: infinite search space (θ in V) and domain D
A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 11 /32

Lyapunov functions as neural networks

neural nets are general and flexible

(universal function approximators)

Learner trains shallow neural network

V(x) = W2 · σ1(W1x + b1)

(Wi weights, (σ1) activation fcns)

σ1

σ1

W1 W2

loss function enforces Lyapunov conditions in (2) and (3) on points in S:

L(S) = ∑
s∈S

max{0,−V(s)}+ ∑
s∈S

max{0, V̇(s)}

loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 12 /32

Lyapunov functions as neural networks

Learner Verifier

V

c

f (x),D

V
valid

surprisingly effective! Communication Learner ↔ Verifier is crucial

loss function enforces Lyapunov conditions in (2) and (3) on points in S:

L(S) = ∑
s∈S

max{0,−V(s)}+ ∑
s∈S

max{0, V̇(s)}

loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 12 /32

Synthesis of Lyapunov functions - example

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 13 /32

Barrier certificates

consider sets I (initial) and U (unsafe)

ensure there exists no trajectory starting in I ever entering U

1 negativity within initial set I :

B(x) ≤ 0 ∀x ∈ I

2 positivity within unsafe set U :

B(x) > 0 ∀x ∈ U

3 set invariance property via Lie derivative:

Ḃ(x) < 0 ∀x s.t. B(x) = 0

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 14 /32

Barrier certificates

1 negativity within initial set I :

B(x) ≤ 0 ∀x ∈ I

2 positivity within unsafe set U :

B(x) > 0 ∀x ∈ U

3 set invariance property via Lie derivative:

Ḃ(x) < 0 ∀x s.t. B(x) = 0

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 14 /32

Synthesis of barrier certificates - examples

{
ẋ = y + 2xy,
ẏ = −x + 2x2 − y2 [10] · Linear

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 15 /32

Synthesis of barrier certificates - examples

{
ẋ = exp(−x) + y− 1,
ẏ = − sin(x)2 [20] · Softplus

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 15 /32

Synthesis of barrier certificates - examples

{
ẋ = y,
ẏ = −x− y + 1

3 x3 [20, 20] · Sigmoid, Sigmoid

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 15 /32

Synthesis of barrier certificates - benchmarks

Benchmark CEGIS (this work) BC1 SOS2

Darboux
Exponential
Obstacle
Polynomial
Hybrid mod
4-d ODE
6-d ODE
8-d ODE

Learn Verify Samples Iters

31.6 0.01 0.5 k 2
15.9 0.07 1.5 k 2
55.5 1.83 2.0 k 9
64.5 4.20 2.3 k 2
0.58 2.01 0.5 k 1
29.31 0.07 1 k 1
89.52 1.61 1 k 3
104.5 82.51 1 k 3

Learn Verify Samples

54.9 20.8 65 k
234.0 11.3 65 k
3165.3 1003.3 2097 k
1731.0 635.3 65 k

– – –
– – –
– – –
– – –

Synth Verify

× –
× –
× –
8.10 ×
12.30 0.11
12.90 OOT
16.60 OOT
26.10 OOT

time for Learning and Verification steps in [sec]

‘Samples’ = size of input data for Learner (in thousands)

‘Iters’ = number of iterations of CEGIS loop

× = synthesis or verification failure, OOT = verification timeout

1
H. Zhao, X. Zeng, T. Chen, and Z. Liu. Synthesizing Barrier Certificates Using Neural Networks. In Proceedings of the 23rd International

Conference on Hybrid Systems: Computation and Control, HSCC, 2020.
2

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for
MATLAB, 2013.

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 16 /32

Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”

modify known synthesis problem:

∃V : D → R s.t. ∀x ∈ D conditions (1)∧ (2)∧ (3) hold

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 17 /32

Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”

approach:
1 control policies are NN-templated
2 concurrent synthesis controls & certificates

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 17 /32

Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”

(back to) broad class of properties/requirements

∀x0 ∈ I , ∃T ∈N+, ∀t ∈ {0, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xt ̸∈ U , xτ ∈ F

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 17 /32

Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”EDWARDS et al.: A GENERAL VERIFICATION FRAMEWORK FOR DYNAMICAL AND CONTROL MODELS VIA CERTIFICATE SYNTHESIS 9

Ns Nu Property Neurons Activations T (s) Success (%)

min µ max S

1 2 0 Stability [6] ['2] 0.01 (⇡ 0.00) 0.16 (0.15) 1.50 (1.48) 100
2 3 0 Stability [8] ['2] 0.28 (⇡ 0.00) 2.22 (0.45) 12.57 (3.31) 100
3 2 2 Stability [4] ['2] 0.07 (0.01) 0.19 (0.02) 0.47 (0.04) 100
4 2 2 Stability [5] ['2] 0.09 (0.01) 0.26 (0.02) 0.54 (0.03) 100

5 2 0 ROA [5] [�soft] 0.21 (0.12) 14.09 (12.59) 25.32 (22.13) 40
6 3 3 ROA [8] ['2] 1.24 (0.02) 39.08 (0.03) 287.89 (0.04) 100

7 2 0 Safety [15] [�t] 0.44 (0.35) 3.36 (2.90) 7.61 (7.11) 100
9 8 0 Safety [10] ['1] 12.63 (7.71) 51.97 (32.75) 70.59 (44.66) 70
10 3 1 Safety [15] [�t] 1.57 (0.19) 11.87 (2.50) 51.08 (7.52) 90

11 3 0 SWA [6], [5] ['2], [�t] 0.19 (0.05) 2.46 (0.100) 12.10 (0.20) 90
12 2 0 SWA [5], [5, 5] ['2], [�sig,'2] 0.13 (0.06) 0.27 (0.14) 0.39 (0.20) 100
13 2 1 SWA [8], [5] ['2], ['2] 0.06 (0.03) 0.20 (0.10) 0.58 (0.24) 90
14 3 1 SWA [10], [8] ['2], [�t] 4.06 (0.87) 19.81 (2.73) 103.49 (7.23) 90

15 2 0 RWA [4] ['2] 0.14 (0.09) 1.81 (1.75) 4.70 (4.63) 100
16 3 0 RWA [16] ['2] 1.36 (0.09) 14.10 (0.14) 72.97 (0.20) 90
17 2 1 RWA [4, 4] [�sig,'2] 0.59 (0.27) 6.82 (3.32) 20.07 (11.46) 100
18 3 1 RWA [5] ['2] 0.46 (0.11) 16.06 (5.81) 72.47 (44.64) 80
19 2 2 RWA [5] [�sig] 0.69 (0.40) 1.38 (0.94) 2.14 (1.90) 100

20 2 0 RSWA [4] ['2] 0.19 (0.03) 1.29 (1.04) 3.79 (3.37) 100
21 3 0 RSWA [16] ['2] 4.81 (0.13) 27.14 (0.19) 80.95 (0.25) 100
22 2 0 RSWA [5, 5] [�sig,'2] 1.52 (0.06) 4.45 (0.19) 10.97 (0.35) 100
23 2 1 RSWA [8] ['2] 0.21 (0.05) 0.67 (0.25) 1.19 (0.91) 100
24 2 2 RSWA [5, 5] [�sig,'2] 0.98 (0.16) 1.23 (0.28) 1.61 (0.46) 100

25 2 0 RAR [6], [6] [�soft], ['2] 6.65 (1.08) 24.74 (6.46) 77.80 (15.06) 100
26 2 2 RAR [6, 6], [6, 6] [�sig,'2], [�sig,'2] 5.13 (1.34) 26.99 (9.90) 101.23 (60.14) 100

TABLE I: Results of synthesising certificates for all properties presented in this work. The first column indexes the benchmarks.
Ns: Number of states, Nu: number of control inputs. We show the Property being verified and network structure (Neurons and
Activations). For certificates of two functions, comma-separated lists shows the different structures. Finally, we report success
rate (S) and the minimum, mean (µ) and maximum computation time T over successful runs, in seconds. In brackets we show
the time spent during the learning phase.

continuous-time models, both autonomous and controlled.
Further, Fossil 2.0 can verify stability and safety properties
for discrete-time models (the discussion of which is omitted
for brevity). The extension to all the presented properties
in discrete time is matter of future work. We showcase the
efficacy of our framework and corresponding tool across 26
benchmarks, borrowed from existing literature on certificate
synthesis [10], [50], [55], [63]. Note that, in some cases,
we have modified these benchmarks to further challenge our
approach, for instance by using disjoint, non-convex sets in the
specifications. We consider a key strength of our approach to
be its flexibility - we are able to perform well on straight-
forward and challenging benchmarks using certificates that
represent both polynomials and more complex non-polynomial
functions (as determined by the activation function of the neu-
ral network). We reflect this in our selection of benchmarks,
including dynamics that are relatively simple and dynamics
that involve transcendental and trigonometric functions. Due
to the large number of benchmarks, details on the dynamics
and sets can be found in an extended version of this paper [64],
and in the corresponding code-base, https://github.com/oxford-
oxcav/fossil, where additional benchmarks can be also found.

The results are reported in Table I, where for each bench-
mark we outline the number of variables Ns and of control
input Nu, the property to be verified (cf. acronyms introduced
earlier), the number of neurons in each hidden layer and

the corresponding activation functions for these layers. The
number of neurons is denoted as a list, e.g. [n1, n2] indicates
that the first and second hidden layers are composed of n1 and
n2 neurons, respectively. The activation functions for these
hidden layers are denoted similarly. As mentioned, a strength
of our methodology is its flexibility in terms of the form that
certificates may take: we are able to synthesise polynomial
certificates as well as non-polynomial certificates that repre-
sent more “neural-typical” functions – this is illustrated in
the “Activations” column of Table I. By 'j we denote that
the layer represents a polynomial function of order j; �sig
represents the sigmoid function, �t represents the hyperbolic
tangent function and �soft is the softplus function.

For almost all benchmarks, we use a linear control function.
Our approach can handle more general nonlinear templates,
but we emphasise that, as we solve a verification problem,
rather than a control problem, we only seek a feedback law
such that the property is satisfied by the closed-loop dynamics,
and thus offer no guarantee on the optimality of this controller.
Still, we use a nonlinear controller employing �t functions for
the benchmark number 10 of Table I.

We measure the robustness performance by running each
experiment 10 times, where we initialise the network with
different weights and a new dataset across separate random
seeds. Our procedure is not guaranteed to terminate, so after a
maximum number of CEGIS loops we stop it and consider the

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 17 /32

Synthesis of control certificates for complex tasks

dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 17 /32

Software for Neural Synthesis - Fossil 2.0

.py

.yaml

Fossil 2.0
Problem

Parser/
Interpreter

Synthesis Engine

Learner

Verifier (SMT Solvers)

Z3 CVC5 dReal

Enhanced
Communication

Valid Controller
and Certificate

Unknown

github.com/oxford-oxcav/fossil

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 18 /32

Extension: discrete-time, prob. programs/models

discrete-time models (e.g. SW programs)

while g(x), x+ := f(x)

→ similar Lyapunov-like conditions, except concerning “next step”:

V(f (x)) < V(x), ∀x ∈ D \ {xe}

stochastic models:

x+ = f (x) + σ(x), σ ∼ N (0, Σ(x))

→ same story, “next step”-condition in expectation (super-martingale):

E[V(f (x)) | x] < V(x), ∀x ∈ D \ {xe}

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 18 /32

Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 19 /32

Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 19 /32

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?

abstract
ξ-model

specification

abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?

abstract
model

ξ-specification

automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?

abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification
@

@
@

@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 20 /32

From uncountable to finite stochastic models

∞-space Markov process finite-space Markov chain

s ∈ Rn {z1, z2, z3, . . . , zp}

s+ = f (s) + σ(s), σ ∼ N (0, Σ(s)) T =

 p11 · · · p1p
· · · · · · · · ·
pp1 · · · · · ·



0.5 0.8

0.2 0.2

0.3

1 1

1

1

1

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

From uncountable to finite stochastic models

0.5 0.8

0.2 0.2

0.3

1 1

1

1

1

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

From uncountable to finite stochastic models

0.5 0.8

0.2 0.2

0.3

1 1

1

1

1

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

From uncountable to finite stochastic models

0.5 0.8

0.2 0.2

0.3

1 1

1

1

1

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

From uncountable to finite stochastic models

0.5 0.8

0.2 0.2

0.3

1 1

1

1

1

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

From uncountable to finite stochastic models

0.5 0.8

0.2 0.2

0.3

1 1

1

1

1

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

From uncountable to finite stochastic models

error ξ ∼ hsδT, where
δ - max diameter of partitions

T - time horizon

hs - local kernel stiffness (Lipschitz constant)

probabilistic safety:

prob. ps that execution, started at s ∈ I , stays in set A = U c within [0, T],
can be computed on abstract model as p̃z, so that ps = p̃z ± ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

From uncountable to finite stochastic models

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

error ξ ∼ hsδT, where
δ - max diameter of partitions

T - time horizon

hs - local kernel stiffness (Lipschitz constant)

probabilistic safety:

prob. ps that execution, started at s ∈ I , stays in set A = U c within [0, T],

can be computed on abstract model as p̃z, so that ps = p̃z ± ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

From uncountable to finite stochastic models

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

error ξ ∼ hsδT, where
δ - max diameter of partitions

T - time horizon

hs - local kernel stiffness (Lipschitz constant)

probabilistic safety:

prob. ps that execution, started at s ∈ I , stays in set A = U c within [0, T],
can be computed on abstract model as p̃z, so that ps = p̃z ± ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 21 /32

Software for formal abstractions - FAUST2 & StocHy

sequential, adaptive, anytime

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

numerous extensions
and applications

wide ecosystem of SHS
abstractions

annual ARCH
competition
cps-vo.org/group/ARCH

EPiC Series in Computing

Volume 80, 2021, Pages 55–89

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP21 Category Report: Stochastic Models

Alessandro Abate1, Henk Blom2, Marc Bouissou3, Nathalie Cauchi1, Hassane
Chraibi3, Joanna Delicaris4, Sofie Haesaert5, Arnd Hartmanns6, Mahmoud

Khaled7, Abolfazl Lavaei8, Hao Ma2, Kaushik Mallik9, Mathis Niehage4, Anne
Remke4, Stefan Schupp10, Fedor Shmarov11, Sadegh Soudjani12, Adam Thorpe13,

Vlad Turcuman1, and Paolo Zuliani12

1 University of Oxford, Oxford, UK
2 Delft University of Technology, Delft, The Netherlands
3 R&D Division of Electricité de France (EDF), France

4 University of Münster, Germany
5 TU Eindhoven, Eindhoven, The Netherlands

6 University of Twente, Enschede, The Netherlands
7 Technical University of Munich, Germany

8 ETH Zurich, Switzerland
9 Max Planck Institute for Software Systems, Germany

10 TU Wien, Vienna, Austria
11 University of Manchester, Manchester, UK

12 Newcastle University, Newcastle upon Tyne, UK
13 University of New Mexico, USA

Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks within this
category, and recommends next steps for this category towards next year’s edition of
the competition. The friendly competition took place as part of the workshop Applied
Verification for Continuous and Hybrid Systems (ARCH) in Spring/Summer 2021.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@tuwien.ac.at), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).

G. Frehse and M. Altho↵ (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 55–89

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 22 /32

Software for formal abstractions - FAUST2 & StocHy

sequential, adaptive, anytime

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

numerous extensions
and applications

wide ecosystem of SHS
abstractions

annual ARCH
competition
cps-vo.org/group/ARCH

EPiC Series in Computing

Volume 80, 2021, Pages 55–89

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP21 Category Report: Stochastic Models

Alessandro Abate1, Henk Blom2, Marc Bouissou3, Nathalie Cauchi1, Hassane
Chraibi3, Joanna Delicaris4, Sofie Haesaert5, Arnd Hartmanns6, Mahmoud

Khaled7, Abolfazl Lavaei8, Hao Ma2, Kaushik Mallik9, Mathis Niehage4, Anne
Remke4, Stefan Schupp10, Fedor Shmarov11, Sadegh Soudjani12, Adam Thorpe13,

Vlad Turcuman1, and Paolo Zuliani12

1 University of Oxford, Oxford, UK
2 Delft University of Technology, Delft, The Netherlands
3 R&D Division of Electricité de France (EDF), France

4 University of Münster, Germany
5 TU Eindhoven, Eindhoven, The Netherlands

6 University of Twente, Enschede, The Netherlands
7 Technical University of Munich, Germany

8 ETH Zurich, Switzerland
9 Max Planck Institute for Software Systems, Germany

10 TU Wien, Vienna, Austria
11 University of Manchester, Manchester, UK

12 Newcastle University, Newcastle upon Tyne, UK
13 University of New Mexico, USA

Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks within this
category, and recommends next steps for this category towards next year’s edition of
the competition. The friendly competition took place as part of the workshop Applied
Verification for Continuous and Hybrid Systems (ARCH) in Spring/Summer 2021.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@tuwien.ac.at), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).

G. Frehse and M. Altho↵ (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 55–89

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 22 /32

Software for formal abstractions - FAUST2 & StocHy

sequential, adaptive, anytime

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

numerous extensions
and applications

wide ecosystem of SHS
abstractions

annual ARCH
competition
cps-vo.org/group/ARCH

EPiC Series in Computing

Volume 80, 2021, Pages 55–89

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP21 Category Report: Stochastic Models

Alessandro Abate1, Henk Blom2, Marc Bouissou3, Nathalie Cauchi1, Hassane
Chraibi3, Joanna Delicaris4, Sofie Haesaert5, Arnd Hartmanns6, Mahmoud

Khaled7, Abolfazl Lavaei8, Hao Ma2, Kaushik Mallik9, Mathis Niehage4, Anne
Remke4, Stefan Schupp10, Fedor Shmarov11, Sadegh Soudjani12, Adam Thorpe13,

Vlad Turcuman1, and Paolo Zuliani12

1 University of Oxford, Oxford, UK
2 Delft University of Technology, Delft, The Netherlands
3 R&D Division of Electricité de France (EDF), France

4 University of Münster, Germany
5 TU Eindhoven, Eindhoven, The Netherlands

6 University of Twente, Enschede, The Netherlands
7 Technical University of Munich, Germany

8 ETH Zurich, Switzerland
9 Max Planck Institute for Software Systems, Germany

10 TU Wien, Vienna, Austria
11 University of Manchester, Manchester, UK

12 Newcastle University, Newcastle upon Tyne, UK
13 University of New Mexico, USA

Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks within this
category, and recommends next steps for this category towards next year’s edition of
the competition. The friendly competition took place as part of the workshop Applied
Verification for Continuous and Hybrid Systems (ARCH) in Spring/Summer 2021.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@tuwien.ac.at), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).

G. Frehse and M. Altho↵ (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 55–89

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 22 /32

Software for formal abstractions - FAUST2 & StocHy

sequential, adaptive, anytime

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

numerous extensions
and applications

wide ecosystem of SHS
abstractions

annual ARCH
competition
cps-vo.org/group/ARCH

EPiC Series in Computing

Volume 80, 2021, Pages 55–89

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP21 Category Report: Stochastic Models

Alessandro Abate1, Henk Blom2, Marc Bouissou3, Nathalie Cauchi1, Hassane
Chraibi3, Joanna Delicaris4, Sofie Haesaert5, Arnd Hartmanns6, Mahmoud

Khaled7, Abolfazl Lavaei8, Hao Ma2, Kaushik Mallik9, Mathis Niehage4, Anne
Remke4, Stefan Schupp10, Fedor Shmarov11, Sadegh Soudjani12, Adam Thorpe13,

Vlad Turcuman1, and Paolo Zuliani12

1 University of Oxford, Oxford, UK
2 Delft University of Technology, Delft, The Netherlands
3 R&D Division of Electricité de France (EDF), France

4 University of Münster, Germany
5 TU Eindhoven, Eindhoven, The Netherlands

6 University of Twente, Enschede, The Netherlands
7 Technical University of Munich, Germany

8 ETH Zurich, Switzerland
9 Max Planck Institute for Software Systems, Germany

10 TU Wien, Vienna, Austria
11 University of Manchester, Manchester, UK

12 Newcastle University, Newcastle upon Tyne, UK
13 University of New Mexico, USA

Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks within this
category, and recommends next steps for this category towards next year’s edition of
the competition. The friendly competition took place as part of the workshop Applied
Verification for Continuous and Hybrid Systems (ARCH) in Spring/Summer 2021.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@tuwien.ac.at), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).

G. Frehse and M. Altho↵ (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 55–89

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 22 /32

Software for formal abstractions - FAUST2 & StocHy

sequential, adaptive, anytime

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

numerous extensions
and applications

wide ecosystem of SHS
abstractions

annual ARCH
competition
cps-vo.org/group/ARCH

EPiC Series in Computing

Volume 80, 2021, Pages 55–89

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP21 Category Report: Stochastic Models

Alessandro Abate1, Henk Blom2, Marc Bouissou3, Nathalie Cauchi1, Hassane
Chraibi3, Joanna Delicaris4, Sofie Haesaert5, Arnd Hartmanns6, Mahmoud

Khaled7, Abolfazl Lavaei8, Hao Ma2, Kaushik Mallik9, Mathis Niehage4, Anne
Remke4, Stefan Schupp10, Fedor Shmarov11, Sadegh Soudjani12, Adam Thorpe13,

Vlad Turcuman1, and Paolo Zuliani12

1 University of Oxford, Oxford, UK
2 Delft University of Technology, Delft, The Netherlands
3 R&D Division of Electricité de France (EDF), France

4 University of Münster, Germany
5 TU Eindhoven, Eindhoven, The Netherlands

6 University of Twente, Enschede, The Netherlands
7 Technical University of Munich, Germany

8 ETH Zurich, Switzerland
9 Max Planck Institute for Software Systems, Germany

10 TU Wien, Vienna, Austria
11 University of Manchester, Manchester, UK

12 Newcastle University, Newcastle upon Tyne, UK
13 University of New Mexico, USA

Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks within this
category, and recommends next steps for this category towards next year’s edition of
the competition. The friendly competition took place as part of the workshop Applied
Verification for Continuous and Hybrid Systems (ARCH) in Spring/Summer 2021.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@tuwien.ac.at), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).

G. Frehse and M. Altho↵ (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 55–89

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 22 /32

Software for formal abstractions - FAUST2 & StocHy
sequential, adaptive, anytime

sourceforge.net/projects/faust2

gitlab.com/natchi92/StocHy

numerous extensions
and applications

wide ecosystem of SHS
abstractions

annual ARCH
competition
cps-vo.org/group/ARCH

EPiC Series in Computing

Volume 80, 2021, Pages 55–89

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP21 Category Report: Stochastic Models

Alessandro Abate1, Henk Blom2, Marc Bouissou3, Nathalie Cauchi1, Hassane
Chraibi3, Joanna Delicaris4, Sofie Haesaert5, Arnd Hartmanns6, Mahmoud

Khaled7, Abolfazl Lavaei8, Hao Ma2, Kaushik Mallik9, Mathis Niehage4, Anne
Remke4, Stefan Schupp10, Fedor Shmarov11, Sadegh Soudjani12, Adam Thorpe13,

Vlad Turcuman1, and Paolo Zuliani12

1 University of Oxford, Oxford, UK
2 Delft University of Technology, Delft, The Netherlands
3 R&D Division of Electricité de France (EDF), France

4 University of Münster, Germany
5 TU Eindhoven, Eindhoven, The Netherlands

6 University of Twente, Enschede, The Netherlands
7 Technical University of Munich, Germany

8 ETH Zurich, Switzerland
9 Max Planck Institute for Software Systems, Germany

10 TU Wien, Vienna, Austria
11 University of Manchester, Manchester, UK

12 Newcastle University, Newcastle upon Tyne, UK
13 University of New Mexico, USA

Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks within this
category, and recommends next steps for this category towards next year’s edition of
the competition. The friendly competition took place as part of the workshop Applied
Verification for Continuous and Hybrid Systems (ARCH) in Spring/Summer 2021.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@tuwien.ac.at), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).

G. Frehse and M. Altho↵ (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 55–89

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 22 /32

X = [−1, 1]2

Model hybridisations

safety verification of non-linear models ẋ = f (x) over x ∈ X ⊂ Rn,

it is in general hard - not automated, not scalable

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1 0 1
1

0

1

{
ẋ = −y− 1.5x2 − 0.5x3 − 0.5
ẏ = 3x− y

{
ẋ = x2 + y
ẏ =

3√x2 − x

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 23 /32

Model hybridisations

safety verification of non-linear models ẋ = f (x) over x ∈ X ⊂ Rn,

it is in general hard - not automated, not scalable

leverage formal abstractions (simulations) for verification

abstraction as hybridisation:

partition X , locally approximate f (x) as f̃ (x)
each partition has own flow f̃ (x) & transitions to other partitions

compute upper-bound ξ to error; obtain simulation as

ẋ = f̃ (x) + d, ∥d∥ ≤ ξ, x ∈ X

more partitions → larger abstraction

! mesh size & shape important for small error bound ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 23 /32

Model hybridisations

safety verification of non-linear models ẋ = f (x) over x ∈ X ⊂ Rn,

it is in general hard - not automated, not scalable

leverage formal abstractions (simulations) for verification

abstraction as hybridisation:

partition X , locally approximate f (x) as f̃ (x)
each partition has own flow f̃ (x) & transitions to other partitions

compute upper-bound ξ to error; obtain simulation as

ẋ = f̃ (x) + d, ∥d∥ ≤ ξ, x ∈ X

more partitions → larger abstraction

! mesh size & shape important for small error bound ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 23 /32

Model hybridisations

safety verification of non-linear models ẋ = f (x) over x ∈ X ⊂ Rn,

it is in general hard - not automated, not scalable

leverage formal abstractions (simulations) for verification

abstraction as hybridisation:

partition X , locally approximate f (x) as f̃ (x)
each partition has own flow f̃ (x) & transitions to other partitions

compute upper-bound ξ to error; obtain simulation as

ẋ = f̃ (x) + d, ∥d∥ ≤ ξ, x ∈ X

more partitions → larger abstraction

! mesh size & shape important for small error bound ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 23 /32

Model hybridisations as neural abstractions

...
x

...

...
ẋ

W1 W2b1 b2

ReLU
W11x + b11 = 0

W12x + b12 = 0

neural network N as abstraction f̃ of nonlinear vector field f
N (x) : Rn → Rn approximates f (x)
H neurons → at most 2H total partitions

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 24 /32

Model hybridisations as neural abstractions

...
x

...

...
ẋ

W1 W2b1 b2

ReLU
W11x + b11 = 0

W12x + b12 = 0

synthesis of neural abstractions via CEGIS
1 learn parameters of NN N w/ MSE loss L = ∥ f (S)−N (S)∥, S finite

2 SMT solver formally checks upper bound ξ on approximation error:

∃c ∈ X s.t. ∥ f (c)−N (c)∥ > ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 24 /32

Model hybridisations as neural abstractions - examples

{
ẋ = y− 1.5x2 − 0.5x3

ẏ = 3x− y

{
ẋ = exp(−x) + y− 1
ẏ = − sin(x)2

{
ẋ = x2 + y
ẏ =

3√x2 − x

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1 0 1
1

0

1

concrete model

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

neural abstraction
A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 25 /32

Model hybridisations as neural abstractions - examples

{
ẋ = y− 1.5x2 − 0.5x3

ẏ = 3x− y

{
ẋ = exp(−x) + y− 1
ẏ = − sin(x)2

{
ẋ = x2 + y
ẏ =

3√x2 − x

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1 0 1
1

0

1

concrete model

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

neural abstraction
A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 25 /32

Model hybridisations as neural abstractions - examples

{
ẋ = y− 1.5x2 − 0.5x3

ẏ = 3x− y

{
ẋ = exp(−x) + y− 1
ẏ = − sin(x)2

{
ẋ = x2 + y
ẏ =

3√x2 − x

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1 0 1
1

0

1

concrete model

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

neural abstraction
A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 25 /32

Model hybridisations as neural abstractions - examples

{
ẋ = y− 1.5x2 − 0.5x3

ẏ = 3x− y

{
ẋ = exp(−x) + y− 1
ẏ = − sin(x)2

{
ẋ = x2 + y
ẏ =

3√x2 − x

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1 0 1
1

0

1

concrete model

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

neural abstractionA. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 25 /32

Safety verification via neural abstractions
Safety Verification Using Neural Abstractions

Concrete nonlinear system

x
...

ẋ

ReLU

Neural abstraction

Abstract hybrid automatonFlowpipe propagation

Abstraction
synthesis

Model
translation

Safety
verification

Edwards & Abate (OxCAV) Neural Abstractions AIMS - Systems Verification - HT 23
A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 26 /32

Neural abstractions: alternative templates

Piecewise constant Piecewise affine Nonlinear

Concrete model Nonlinear,
non-Lipschitz

Nonlinear,
non-Lipschitz

Nonlinear,
non-Lipschitz

Activation functions

−1

1

−1

1

−1

1

Training procedure Particle swarm Gradient descent Gradient descent

Loss function maxs∈S l∞(s) 1
|S| ∑s∈S l2(s) 1

|S| ∑s∈S l2(s)

Abstract model PWA with
disturbance

PWC with
disturbance

NL-ODE with
disturbance

Safety veri-
fication tech

Symbolic
model checking

Reach algorithm Flowpipe propagation
(Taylor models)

Safety veri-
fication tool

PHAVer SpaceEx Flow*

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 27 /32

Neural abstractions: alternative templates
Tradeo↵ between Accuracy and E�ciency

(a) Neural PWC
abstraction

(b) Neural PWA
abstraction

(c) Sigmoidal
abstraction.

(a) Flowpipes for
neural PWC
model. 11.6s

(b) Flowpipe for
neural PWA
model. 76.5s

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

(c) Flowpipe for
sigmoidal model.
1084.3s

Edwards & Abate (OxCAV) Neural Abstractions AIMS - Systems Verification - HT 23
A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 27 /32

Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 28 /32

Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 28 /32

Reinforcement learning

learning algorithm, relies on reward signal from environment

synthesises policies (actions) maximising cumulative reward

rewards are not enough!

verification goal: certified synthesis of policies satisfying requirement, task

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 29 /32

Reinforcement learning

learning algorithm, relies on reward signal from environment

synthesises policies (actions) maximising cumulative reward

rewards are not enough!

verification goal: certified synthesis of policies satisfying requirement, task

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 29 /32

Certified reinforcement learning: LCRL

IN requirement, task

- encode task, e.g. temporal requirement in LTL formula, as automaton

- synchronise automaton with environment % via labels

- synthesise policies via RL % automaton guides/rewards exploration

OUT certified policies: max probability of task satisfaction

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 30 /32

Certified reinforcement learning: LCRL

q1start q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

q13

q12

¬t1

t1

¬t2

t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

¬t3 ¬t4 ¬t5 ¬t6 ¬t7 ¬t8 ¬t9 ¬t10 ¬t11

u
u

u
u

u u

u
u

u
u

u

t12

True

q1start

q2

q3

¬G1 ∧ ¬U

G1 ∧ ¬G2 ∧ ¬U

G2 ∧ ¬U

G1 ∧ ¬G2 ∧ ¬U

¬G2 ∧ ¬U

¬G1 ∧ ¬U

model-free → extracts information efficiently
guided learning → faster convergence, high-dimensional environments
flexible → numerous extensions and applications

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 30 /32

AAAI23 BPA

Ambiguity and Misspecification in Inverse RL

inverse RL: from expert
behaviour to rewards

preference elicitation and
alignment

formalising reward learning with
1 invariances

2 metrics

output space reward spacereward
learning

πR
R?R?

reward space output spaceπ

R R′ πR=πR′

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 31 /32

AAAI23 BPA

Ambiguity and Misspecification in Inverse RL

inverse RL: from expert
behaviour to rewards

preference elicitation and
alignment

formalising reward learning with
1 invariances
2 metrics

output space reward spacereward
learning

πR
R?R?

reward space output spaceπ

R R′ πR=πR′

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 31 /32

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Thank you for your attention

oxcav.web.ox.ac.uk

All images used are under Wikimedia CCAS license, or by author

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Selected References on Sound Neural Synthesis

A. Abate, M. Giacobbe, and D. Roy, “Stochastic Omega-Regular Verification and Control with Supermartingales,” CAV24, In Press, 2024.

A. Edwards, A. Peruffo and A. Abate, “A General Verification Framework for Dynamical and Control Models via Certificate Synthesis,”
arXiv:2309.06090, 2023.

A. Abate, A. Edwards, M. Giacobbe, H. Punchihewa, and D. Roy, “Quantitative Neural Verification of Probabilistic Programs,” CONCUR23,
arXiv:2301.06136, 2023.

D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3–26, 2021.

A. Abate, D. Ahmed, A. Edwards, M. Giacobbe and A. Peruffo, “FOSSIL: A Software Tool for the Formal Synthesis of Lyapunov Functions and
Barrier Certificates using Neural Networks,” HSCC, pp. 1-11, 2021.

A. Abate, D. Ahmed and A. Peruffo, “Automated Formal Synthesis of Neural Barrier Certificates for Dynamical Models,” TACAS21, LNCS
12651, pp. 370–388, 2021.

D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,” TACAS20, LNCS 12078, pp.
97-114, 2020.

A. Abate, D. Ahmed, M. Giacobbe and A. Peruffo “Automated Formal Synthesis of Lyapunov Neural Networks,” IEEE Control Systems Letters, 5
(3), 773-778, 2020.

A. Edwards, M. Giacobbe, and A. Abate, “On the Trade-off Between Efficiency and Precision of Neural Abstraction,” QEST23, LNCS 14287, pp.
152-171, 2023.

A. Abate, A. Edwards, and M. Giacobbe, “Neural Abstractions,” NeurIPS22, Advances in Neural Information Processing Systems 35,
26432-26447, 2022.

A. Abate, I. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli, D. Kroening and E. Polgreen, “Automated Formal Synthesis of Provably Safe
Digital Controllers for Continuous Plants,” Acta Informatica, 57(3), 2020.

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Selected Journal References on (Model- and Sample-Based) Formal Abstractions

T. Badings, L Romao, A. Abate, D. Parker, H. Poonawala, M. Stoelinga and N. Jansen, “Robust Control for Dynamical Systems with
Non-Gaussian Noise via Formal Abstractions,” JAIR, vol 76, pp.341-391, 2023.

T.S. Badings, A. Abate, N. Jansen, D. Parker, H.A. Poonawala, and M. Stoelinga, “Sampling-Based Robust Control of Autonomous Systems with
Non-Gaussian Noise,” AAAI22, 36 (9), pp. 9669-9678, 2022.

A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated Verification and Synthesis of Stochastic Hybrid Systems: A Survey,” Automatica,
vol. 146, Dec. 2022.

L. Laurenti, M. Lahijanian, A. Abate, L. Cardelli and M. Kwiatkowska, “Formal and Efficient Control Synthesis for Continuous-Time Stochastic
Processes,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 17-32, Jan 2021.

S. Haesaert, S.E.Z. Soudjani, and A. Abate, “Verification of general Markov decision processes by approximate similarity relations and policy
refinement,” SIAM Journal on Control and Optimisation, vol. 55, nr. 4, pp. 2333-2367, 2017.

I. Tkachev, A. Mereacre, J.-P. Katoen, and A. Abate, “Quantitative Model Checking of Controlled Discrete-Time Markov Processes,” Information
and Computation, vol. 253, nr. 1, pp. 1–35, 2017.

S. Haesaert, N. Cauchi and A. Abate, “Certified policy synthesis for general Markov decision processes: An application in building automation
systems,” Performance Evaluation, vol. 117, pp. 75-103, 2017.

S.E.Z. Soudjani and A. Abate, “Aggregation and Control of Populations of Thermostatically Controlled Loads by Formal Abstractions,” IEEE
Transactions on Control Systems Technology. vol. 23, nr. 3, pp. 975–990, 2015.

S.E.Z. Soudjani and A. Abate, “Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions,” Logical
Methods in Computer Science, Vol. 11, nr. 3, Oct. 2015.

M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros, “Symbolic control of stochastic systems via approximately bisimilar
finite abstractions,” IEEE Transactions on Automatic Control, vol. 59 nr. 12, pp. 3135-3150, Dec. 2014.

I. Tkachev and A. Abate, “Characterization and computation of infinite horizon specifications over Markov processes,” Theoretical Computer
Science, vol. 515, pp. 1-18, 2014.

S. Soudjani and A. Abate, “Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic Processes,” SIAM Journal on Applied
Dynamical Systems, vol. 12, nr. 2, pp. 921-956, 2013.

A. Abate, J.P Katoen, J. Lygeros and M. Prandini, “Approximate Model Checking of Stochastic Hybrid Systems,” European Journal of Control,
16(6), 624-641, 2010.

A. Abate, M. Prandini, J. Lygeros and S. Sastry, “Probabilistic Reachability and Safety Analysis of Controlled Discrete-Time Stochastic Hybrid
Systems,” Automatica, 44(11), 2724-2734, Nov. 2008.

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Selected references - Certified and Cautious Reinforcement Learning

M. Hasanbeig, A. Abate, D. Kroening, “Certified Reinforcement Learning with Logic Guidance,” AIJ, In Press, 2023. arXiv:1801.08099.

R. Mitta, H. Hasanbeig, Jun W, D. Kroening, Y. Kantaros, and A. Abate, “Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis,” AAAI24, 2024.

A. Abate, Y. Almulla, J. Fox, D. Hyland, and M. Wooldridge, “Learning Task Automata for RL Using Hidden Markov Models,” ECAI23, 2023.

M. Hasanbeig, A. Abate, and D. Kroening, “Logically-Constrained Neural Fitted Q-Iteration,” AAMAS19, pp. 2012-2014, 2019.

M. Hasanbeig, A. Abate and D. Kroening, “Cautious Reinforcement Learning with Logical Constraints,” AAMAS20, pp. 483-491, 2020.

M. Hasanbeig, D. Kroening and A. Abate, “Deep Reinforcement Learning with Temporal Logics,” FORMATS20, LNCS 12288, pp. 1-22, 2020.

M. Hasanbeig, N. Jeppu, A. Abate, T. Melham and D. Kroening, “DeepSynth: Program Synthesis for Automatic Task Segmentation in Deep
Reinforcement Learning,” AAAI 2021.

L. Hammond, A. Abate, J. Gutierrez, and M. Wooldridge, “Multi-Agent Reinforcement Learning with Temporal Logic Specifications,” AAAMAS
2021.

J. Skalse, L. Hammond, and A. Abate, “Lexicographic Multi-Objective Reinforcement Learning,” IJCAI-ECAI 2022.

J. Skalse, L. Farnik, S. Motwani, E, Jenner, A. Gleave, and A. Abate, “STARC: A General Framework For Quantifying Differences Between
Reward Functions,” ICLR24, In Print, 2023.

J. Skalse, M. Farrugia-Roberts, S. Russell, A. Abate, and A. Gleave, “Invariance in Policy Optimisation and Partial Identifiability in Reward
Learning,” ICML23, PMLR, pp. 32033-32058, 2023.

J. Skalse and A. Abate, “Misspecification in Inverse Reinforcement Learning,” AAAI23, vol. 37, nr. 12, pp. 15136-15143, 2023.

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Backup slides

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions: algorithm

approximate stochastic process (S , T) as Markov chain (S, T), where
S = {z1, z2, . . . , zp} – finite set of abstract states

T : S × S → [0, 1] – transition probability matrix

algorithm:

input: stochastic process (S , T)

1 select finite partition S = ∪p
i=1Si [aligned with Gi]

2 select representative points zi ∈ Si

3 define finite state space S := {zi, i = 1, ..., p}
4 compute transition probability matrix: T(zi, zj) = T (Sj | zi)

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions: algorithm
approximate stochastic process (S , T) as Markov chain (S, T), where

S = {z1, z2, . . . , zp} – finite set of abstract states

T : S × S → [0, 1] – transition probability matrix

algorithm:

input: stochastic process (S , T)

1 select finite partition S = ∪p
i=1Si [aligned with Gi]

2 select representative points zi ∈ Si

3 define finite state space S := {zi, i = 1, ..., p}
4 compute transition probability matrix: T(zi, zj) = T (Sj | zi)

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions: algorithm
approximate stochastic process (S , T) as Markov chain (S, T), where

S = {z1, z2, . . . , zp} – finite set of abstract states

T : S × S → [0, 1] – transition probability matrix

algorithm:

input: stochastic process (S , T)
1 select finite partition S = ∪p

i=1Si [aligned with Gi]

2 select representative points zi ∈ Si

3 define finite state space S := {zi, i = 1, ..., p}
4 compute transition probability matrix: T(zi, zj) = T (Sj | zi)

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions: algorithm
approximate stochastic process (S , T) as Markov chain (S, T), where

S = {z1, z2, . . . , zp} – finite set of abstract states

T : S × S → [0, 1] – transition probability matrix

algorithm:

input: stochastic process (S , T)
1 select finite partition S = ∪p

i=1Si [aligned with Gi]

2 select representative points zi ∈ Si

3 define finite state space S := {zi, i = 1, ..., p}

4 compute transition probability matrix: T(zi, zj) = T (Sj | zi)

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions: algorithm
approximate stochastic process (S , T) as Markov chain (S, T), where

S = {z1, z2, . . . , zp} – finite set of abstract states

T : S × S → [0, 1] – transition probability matrix

algorithm:

input: stochastic process (S , T)
1 select finite partition S = ∪p

i=1Si [aligned with Gi]

2 select representative points zi ∈ Si

3 define finite state space S := {zi, i = 1, ..., p}
4 compute transition probability matrix: T(zi, zj) = T (Sj | zi)

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions: algorithm

approximate stochastic process (S , T) as Markov chain (S, T), where
S = {z1, z2, . . . , zp} – finite set of abstract states

T : S × S → [0, 1] – transition probability matrix

algorithm:

input: stochastic process (S , T)
1 select finite partition S = ∪p

i=1Si [aligned with Gi]

2 select representative points zi ∈ Si

3 define finite state space S := {zi, i = 1, ..., p}
4 compute transition probability matrix: T(zi, zj) = T (Sj | zi)

output: Markov chain (S, T)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions: error ξ

consider T (ds̄|s) = t(s̄|s)ds̄; assume t is Lipschitz continuous, namely

∃ 0 ≤ hs < ∞ :
∣∣t(s̄|s)− t(s̄|s′)

∣∣ ≤ hs
∥∥s− s′

∥∥ , ∀s, s′, s̄ ∈ S

• one-step error

(related to approximate probabilistic bisimulation)

ϵ = hsδ, δ max diameter of partition sets

• T-step error (tuneable via δ)

ξ(δ, T) = ϵT

→ improved and generalised error ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions: error ξ

consider T (ds̄|s) = t(s̄|s)ds̄; assume t is Lipschitz continuous, namely

∃ 0 ≤ hs < ∞ :
∣∣t(s̄|s)− t(s̄|s′)

∣∣ ≤ hs
∥∥s− s′

∥∥ , ∀s, s′, s̄ ∈ S

• one-step error

(related to approximate probabilistic bisimulation)

ϵ = hsδ, δ max diameter of partition sets

• T-step error (tuneable via δ)

ξ(δ, T) = ϵT

→ improved and generalised error ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

0.5 0.8

0.2 0.2

0.3

1 1

1

1

1

Formal abstractions: error ξ

consider T (ds̄|s) = t(s̄|s)ds̄; assume t is Lipschitz continuous, namely

∃ 0 ≤ hs < ∞ :
∣∣t(s̄|s)− t(s̄|s′)

∣∣ ≤ hs
∥∥s− s′

∥∥ , ∀s, s′, s̄ ∈ S

• one-step error (related to approximate probabilistic bisimulation)

ϵ = hsδ, δ max diameter of partition sets

• T-step error (tuneable via δ)

ξ(δ, T) = ϵT

→ improved and generalised error ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

0.51 0.8

0.19 0.2

0.3

0.9
0.1 1

1

1

1

Formal abstractions: error ξ

consider T (ds̄|s) = t(s̄|s)ds̄; assume t is Lipschitz continuous, namely

∃ 0 ≤ hs < ∞ :
∣∣t(s̄|s)− t(s̄|s′)

∣∣ ≤ hs
∥∥s− s′

∥∥ , ∀s, s′, s̄ ∈ S

• one-step error (related to approximate probabilistic bisimulation)

ϵ = hsδ, δ max diameter of partition sets

• T-step error (tuneable via δ)

ξ(δ, T) = ϵT

→ improved and generalised error ξ

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

Formal abstractions: probabilistic safety

recall temporal logic properties, e.g. probabilistic safety:

probability that execution, started at s ∈ I ,
stays in safe set A = U c within [0, T]

Ps(A) = Ps(sk ∈ A, ∀k ∈ [0, T])

probabilistic safe set with safety level θ ∈ [0, 1] is

S(θ) = {s ∈ S : Ps(A) ≥ θ}

whenever stochastic process (S , T) is controlled, supπ Ps(A)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

Formal abstractions: probabilistic safety

recall temporal logic properties, e.g. probabilistic safety:

probability that execution, started at s ∈ I ,
stays in safe set A = U c within [0, T]

Ps(A) = Ps(sk ∈ A, ∀k ∈ [0, T])

probabilistic safe set with safety level θ ∈ [0, 1] is

S(θ) = {s ∈ S : Ps(A) ≥ θ}

whenever stochastic process (S , T) is controlled, supπ Ps(A)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

EDWARDS et al.: A GENERAL VERIFICATION FRAMEWORK FOR DYNAMICAL AND CONTROL MODELS VIA CERTIFICATE SYNTHESIS 5

x⇤XI

(a) Stability

XI

x⇤

(b) ROA

XI

XU

(c) Safety

XI

XU

x⇤

(d) SWA

XI

XG

XU

(e) RWA

XI

XF

XG

XU

(f) RSWA

XI

XG

XF

XU

(g) RAR

Fig. 1: Pictorial depiction of relevant properties in this work. Here, XI is the initial set, XU the unsafe set (XS is its safe
complement), XG the goal/target set, XF the final set. (The entire state space is X .) Here, a dashed background denotes that
the corresponding set’s existence is implied by the corresponding certificate, but that it is not explicitly defined in the property.

after reaching it. Formally, trajectories should satisfy the
property

9XG : 8⇠(t0) 2 XI , 9T 2 R, 8t 2 [t0, T], ⇠(t) 2 XU
{

^ ⇠(T) 2 XG ^ 8⌧ � T : ⇠(⌧) 2 XF . (13)

Notably, this property does not require that trajectories reach
the final set and remain within it, and may enter and leave the
final set as long as they eventually remain within the final set.
However, in finite time trajectories must reach some subset of
the final set a goal set, after which point they must remain
within the final set for all time.

Certificate 5 (RSWA): Define an unsafe set XU = X \XS ,
where XS is a compact safe set, then define a compact initial
set XI ⇢ int(XS), and a compact final set XF ⇢ int(XS). A
RSWA [51] certificate is a function V : Rn ! R, V 2 C1,
that satisfies the following:

V (x)  0 8x 2 XI , (14a)
V (x) > 0 8x 2 @XS , (14b)

V̇ (x) < 0 8x 2 {x 2 XS |V (x)  0} \ XF , (14c)
V (x) > � 8x 2 @XF , (14d)

V̇ (x) < 0 8x 2 XF \ int({x 2 XS |V (x)  �}), (14e)

for some constant � 2 R.
Theorem 7 (Reach-and-stay while avoid): Given a model

(2) and a certificate corresponding to the given sets of interest,
then (13) holds. ⌅

The sub-level set of V given by � defines an invariant set
contained with the final set, and ensures that trajectories reach
this set in finite time without entering an unsafe region. Note
that the specification described in (13) - and the corresponding
certificate - permit trajectories to enter and leave the final set,
as long as trajectories eventually enter a goal set and do not
leave the final set again.

G. Reach, Avoid and Remain

The final property we consider is again similar to the
previous Reach and Stay While Avoid property, but, as with the
ROA certificate, we seek to remove the existential quantifier
over the goal set from (13). This means that the Reach
Avoid Remain (RAR) property requires that trajectories remain

within a final set after reaching a goal set, but for two given
goal and final sets. We express this formally, as follows:

8⇠(t0) 2 XI , 9T 2 R, 8t 2 [t0, T] :

⇠(t) 2 XU
{ ^ ⇠(T) 2 XG ^ 8⌧ � T : ⇠(⌧) 2 XF . (15)

Certificate 6 (RAR): Define an unsafe set XU = X \ XS ,
where XS is a compact safe set, a compact initial set XI ⇢
int(XS), a compact final XF ⇢ int(XS), and a compact goal
set XG ⇢ int(XF) with non-empty interior. Let V : Rn ! R
be a RWA certificate, and a function B : Rn ! R, B 2 C1,
such that:

B(x)  0 8x 2 XG, (16a)
B(x) > 0 8x 2 @XF , (16b)

Ḃ(x) < 0 8x 2 {x : B(x) = 0}. (16c)

The pair (V, B) define a Reach-Avoid-Remain certificate. ⌅

As with the Stable-While-Avoid certificate, we choose to
formulate this certificate as a pair of separate functions, rather
than collapsing the conditions to a single function. This choice,
which of course does not affect the soundness of the approach,
renders synthesis practically easier and more modular.

Theorem 8 (Reach-Avoid-Remain): Given a model (2) and
a certificate pair V, B satisfying the conditions in Certificate
6, then (15) holds. ⌅

We note that here, the certificate B is similar to a Barrier
certificate as defined in (9), though with XG as the initial set
and @XF as the unsafe set. We have restated the function in
this context for clarity.

H. Summary and Classification of Properties

So far, we have presented a number of different properties
that a dynamical model may conform to. These properties,
and the certificates that sufficiently prove them to hold, can
be complex and subtly different. However, we observe the
following similarities between them:

• All certificates rely on a set on initial conditions XI . In
the case of a Lyapunov function, this set is implicitly
defined a-posteriori to the synthesis of the certificate.

• XU denotes a region trajectories should avoid (and thus
relate to a safety requirement).

Formal abstractions: probabilistic safety

δ-abstract (S , T) as MC (S, T), so that A→ Aδ,
quantify error ξ(δ, T) as above

⇒ probabilistic safe set on (S , T)

S(θ) = {s ∈ S : Ps(A) ≥ θ}

is automatically computed with model checker (e.g. PRISM) on (S, T) as

Zδ(θ+ξ)
.
= Sat

(
P≥θ+ξ

(
□≤T Aδ

))
=

{
z ∈ S : z |= P≥θ+ξ

(
□≤T Aδ

)}
whenever stochastic process (S , T) is controlled, obtain arg supπ Ps(A)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

EDWARDS et al.: A GENERAL VERIFICATION FRAMEWORK FOR DYNAMICAL AND CONTROL MODELS VIA CERTIFICATE SYNTHESIS 5

x⇤XI

(a) Stability

XI

x⇤

(b) ROA

XI

XU

(c) Safety

XI

XU

x⇤

(d) SWA

XI

XG

XU

(e) RWA

XI

XF

XG

XU

(f) RSWA

XI

XG

XF

XU

(g) RAR

Fig. 1: Pictorial depiction of relevant properties in this work. Here, XI is the initial set, XU the unsafe set (XS is its safe
complement), XG the goal/target set, XF the final set. (The entire state space is X .) Here, a dashed background denotes that
the corresponding set’s existence is implied by the corresponding certificate, but that it is not explicitly defined in the property.

after reaching it. Formally, trajectories should satisfy the
property

9XG : 8⇠(t0) 2 XI , 9T 2 R, 8t 2 [t0, T], ⇠(t) 2 XU
{

^ ⇠(T) 2 XG ^ 8⌧ � T : ⇠(⌧) 2 XF . (13)

Notably, this property does not require that trajectories reach
the final set and remain within it, and may enter and leave the
final set as long as they eventually remain within the final set.
However, in finite time trajectories must reach some subset of
the final set a goal set, after which point they must remain
within the final set for all time.

Certificate 5 (RSWA): Define an unsafe set XU = X \XS ,
where XS is a compact safe set, then define a compact initial
set XI ⇢ int(XS), and a compact final set XF ⇢ int(XS). A
RSWA [51] certificate is a function V : Rn ! R, V 2 C1,
that satisfies the following:

V (x)  0 8x 2 XI , (14a)
V (x) > 0 8x 2 @XS , (14b)

V̇ (x) < 0 8x 2 {x 2 XS |V (x)  0} \ XF , (14c)
V (x) > � 8x 2 @XF , (14d)

V̇ (x) < 0 8x 2 XF \ int({x 2 XS |V (x)  �}), (14e)

for some constant � 2 R.
Theorem 7 (Reach-and-stay while avoid): Given a model

(2) and a certificate corresponding to the given sets of interest,
then (13) holds. ⌅

The sub-level set of V given by � defines an invariant set
contained with the final set, and ensures that trajectories reach
this set in finite time without entering an unsafe region. Note
that the specification described in (13) - and the corresponding
certificate - permit trajectories to enter and leave the final set,
as long as trajectories eventually enter a goal set and do not
leave the final set again.

G. Reach, Avoid and Remain

The final property we consider is again similar to the
previous Reach and Stay While Avoid property, but, as with the
ROA certificate, we seek to remove the existential quantifier
over the goal set from (13). This means that the Reach
Avoid Remain (RAR) property requires that trajectories remain

within a final set after reaching a goal set, but for two given
goal and final sets. We express this formally, as follows:

8⇠(t0) 2 XI , 9T 2 R, 8t 2 [t0, T] :

⇠(t) 2 XU
{ ^ ⇠(T) 2 XG ^ 8⌧ � T : ⇠(⌧) 2 XF . (15)

Certificate 6 (RAR): Define an unsafe set XU = X \ XS ,
where XS is a compact safe set, a compact initial set XI ⇢
int(XS), a compact final XF ⇢ int(XS), and a compact goal
set XG ⇢ int(XF) with non-empty interior. Let V : Rn ! R
be a RWA certificate, and a function B : Rn ! R, B 2 C1,
such that:

B(x)  0 8x 2 XG, (16a)
B(x) > 0 8x 2 @XF , (16b)

Ḃ(x) < 0 8x 2 {x : B(x) = 0}. (16c)

The pair (V, B) define a Reach-Avoid-Remain certificate. ⌅

As with the Stable-While-Avoid certificate, we choose to
formulate this certificate as a pair of separate functions, rather
than collapsing the conditions to a single function. This choice,
which of course does not affect the soundness of the approach,
renders synthesis practically easier and more modular.

Theorem 8 (Reach-Avoid-Remain): Given a model (2) and
a certificate pair V, B satisfying the conditions in Certificate
6, then (15) holds. ⌅

We note that here, the certificate B is similar to a Barrier
certificate as defined in (9), though with XG as the initial set
and @XF as the unsafe set. We have restated the function in
this context for clarity.

H. Summary and Classification of Properties

So far, we have presented a number of different properties
that a dynamical model may conform to. These properties,
and the certificates that sufficiently prove them to hold, can
be complex and subtly different. However, we observe the
following similarities between them:

• All certificates rely on a set on initial conditions XI . In
the case of a Lyapunov function, this set is implicitly
defined a-posteriori to the synthesis of the certificate.

• XU denotes a region trajectories should avoid (and thus
relate to a safety requirement).

Formal abstractions: probabilistic safety

δ-abstract (S , T) as MC (S, T), so that A→ Aδ,
quantify error ξ(δ, T) as above

⇒ probabilistic safe set on (S , T)

S(θ) = {s ∈ S : Ps(A) ≥ θ}

is automatically computed with model checker (e.g. PRISM) on (S, T) as

Zδ(θ+ξ)
.
= Sat

(
P≥θ+ξ

(
□≤T Aδ

))
=

{
z ∈ S : z |= P≥θ+ξ

(
□≤T Aδ

)}
whenever stochastic process (S , T) is controlled, obtain arg supπ Ps(A)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions with data

“Timeō dāta, et dōna ferentēs” [Laocoon, Aeneid]

alluring idea: can we abstract models by sampling their dynamics?

Beware many subtle issues: zero-measure sets, memory dependencies, . . .

DATA-DRIVEN MEMORY-DEPENDENT ABSTRACTIONS OF DYNAMICAL SYSTEMS

Figure 1: (Left) Pictorial represen-
tation of a discrete-time dynamical
system. The state-space is parti-
tioned into two cells (labelled a and
b) and allowable transitions are in-
dicated by the arrows. (Right) Illus-
tration of two possible abstractions,
a memory-1 and a memory-2 one.

an example of this phenomenon, consider the pictorial discrete-time dynamical system in Figure 1
and a partition of its state space into two cells corresponding to labels a and b. All initial states from
the light-red region of a are mapped into the same region, as depicted by the self-loop, and all states
in the dark-red region are mapped into a measure-zero subset of b – represented by the black line
segment contained in b. Initial states at the yellow region of b are mapped into the same region, and
points in the line segment are mapped back into partition a.

On the top-right corner of Figure 1 we illustrate an abstraction obtained by sampling initial con-
ditions from a known distribution and using the frequencies of the different transitions to compute
the probabilities shown on the edges; notice that nodes of this model are in one-to-one correspon-
dence with elements in the partition. Using the obtained abstraction to infer transitions of our
dynamics leads to erroneous conclusions. First, observe that words abb or aabb may happen with
non-zero probability in the top-right model of Figure 1 but are, in fact, not valid trajectories of the
original dynamics since each ab must necessarily be followed by an a. We call these words spurious.
Notice also that the same model does not represent all allowable words. To see this, observe that
word aba is not allowed in the abstraction, despite it being a valid word in the original dynamics.
We call such words missing.

In this paper, we propose a new, sequential approach to build abstractions, where the uncer-
tainty raising from the abstraction step is quantified probabilistically. Such an approach entails
turning epistemic uncertainty about the dynamics into aleatoric uncertainty represented by transi-
tion probabilities of the Markov chain, a feature we believe to be unique to our strategy, as far as
abstraction of dynamical systems is concerned. By handling abstract probabilistic models, we can
analyse the convergence of the probabilistic behaviours. As the abstraction precision increases, we
can heuristically estimate the error associated to our models.

Consider now the abstraction illustrated in the bottom-right of Figure 1. The states of this al-
ternative model contains information about one-step transitions, i.e., word ab represents knowledge
that we are currently at some state in partition b, which was previously in partition a. Due to richer
states, our abstraction can now capture all possible words associated with the dynamics and, as
opposed to the memory-1 model, does not possess spurious words. Hence, increasing memory is
beneficial to representing dynamical systems.

We prove below that, under some reasonable assumptions, our abstraction procedure converges
to the original system in a sense to be described in the sequel. We show on numerical examples that
the technique works well even when the assumptions are not satisfied.

The idea of adding memory to produce richer abstractions has been largely explored in different
fields of mathematics, engineering, and computer science (see, e.g. Belta et al. (2017); McCallum
(1996); Schmuck and Raisch (2014); Frezzatto et al. (2016)). In particular, Coppola et al. (2022)

2

x0

x1 = x0 +
= 1 + 5

2

H(x) = 0

H(x) = 1

y0y1 y19 = 01110111011101110111

x+ = x + θ mod 2π

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

Formal abstractions with data

“Timeō dāta, et dōna ferentēs” [Laocoon, Aeneid]

alluring idea: can we abstract models by sampling their dynamics?

Beware many subtle issues: zero-measure sets, memory dependencies, . . .

DATA-DRIVEN MEMORY-DEPENDENT ABSTRACTIONS OF DYNAMICAL SYSTEMS

Figure 1: (Left) Pictorial represen-
tation of a discrete-time dynamical
system. The state-space is parti-
tioned into two cells (labelled a and
b) and allowable transitions are in-
dicated by the arrows. (Right) Illus-
tration of two possible abstractions,
a memory-1 and a memory-2 one.

an example of this phenomenon, consider the pictorial discrete-time dynamical system in Figure 1
and a partition of its state space into two cells corresponding to labels a and b. All initial states from
the light-red region of a are mapped into the same region, as depicted by the self-loop, and all states
in the dark-red region are mapped into a measure-zero subset of b – represented by the black line
segment contained in b. Initial states at the yellow region of b are mapped into the same region, and
points in the line segment are mapped back into partition a.

On the top-right corner of Figure 1 we illustrate an abstraction obtained by sampling initial con-
ditions from a known distribution and using the frequencies of the different transitions to compute
the probabilities shown on the edges; notice that nodes of this model are in one-to-one correspon-
dence with elements in the partition. Using the obtained abstraction to infer transitions of our
dynamics leads to erroneous conclusions. First, observe that words abb or aabb may happen with
non-zero probability in the top-right model of Figure 1 but are, in fact, not valid trajectories of the
original dynamics since each ab must necessarily be followed by an a. We call these words spurious.
Notice also that the same model does not represent all allowable words. To see this, observe that
word aba is not allowed in the abstraction, despite it being a valid word in the original dynamics.
We call such words missing.

In this paper, we propose a new, sequential approach to build abstractions, where the uncer-
tainty raising from the abstraction step is quantified probabilistically. Such an approach entails
turning epistemic uncertainty about the dynamics into aleatoric uncertainty represented by transi-
tion probabilities of the Markov chain, a feature we believe to be unique to our strategy, as far as
abstraction of dynamical systems is concerned. By handling abstract probabilistic models, we can
analyse the convergence of the probabilistic behaviours. As the abstraction precision increases, we
can heuristically estimate the error associated to our models.

Consider now the abstraction illustrated in the bottom-right of Figure 1. The states of this al-
ternative model contains information about one-step transitions, i.e., word ab represents knowledge
that we are currently at some state in partition b, which was previously in partition a. Due to richer
states, our abstraction can now capture all possible words associated with the dynamics and, as
opposed to the memory-1 model, does not possess spurious words. Hence, increasing memory is
beneficial to representing dynamical systems.

We prove below that, under some reasonable assumptions, our abstraction procedure converges
to the original system in a sense to be described in the sequel. We show on numerical examples that
the technique works well even when the assumptions are not satisfied.

The idea of adding memory to produce richer abstractions has been largely explored in different
fields of mathematics, engineering, and computer science (see, e.g. Belta et al. (2017); McCallum
(1996); Schmuck and Raisch (2014); Frezzatto et al. (2016)). In particular, Coppola et al. (2022)

2

x0

x1 = x0 +
= 1 + 5

2

H(x) = 0

H(x) = 1

y0y1 y19 = 01110111011101110111

x+ = x + θ mod 2π

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

(probabilistic
reach-avoid
specification)

(ρ is trace of
closed-loop
trajectory)

AAAI22 BPA

Formal abstractions with data

x+ = A(α)x + B(α)u + σ

σ ∼ P unknown - aleatoric uncertainty

α ∈ Θ - epistemic uncertainty

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

Given T ∈N, and sets G (goal) and UC (safe), find controller s.t., ∀x0 ∈ I ,

PI{ρ |= UCU≤TG} ≥ θ, with confidence ≥ 1− β

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

AAAI22 BPA

Formal abstractions with data

x+ = A(ᾱ)x + B(ᾱ)u + σ

Thom Badings | 7

• Abstraction of a nominal model that
neglects any uncertainty
• Partition state space into finite set of

discrete states
• Define finite set of actions

• Compute enabled actions through
backward reachability computations

February 2023

Finite-state abstraction

"!
"" "#

"$

"′
$

• What about uncertainty?
• Aleatoric uncertainty: probabilistic transitions
• Epistemic uncertainty: nondeterministic transitions

Thom Badings | 7

• Abstraction of a nominal model that
neglects any uncertainty
• Partition state space into finite set of

discrete states
• Define finite set of actions

• Compute enabled actions through
backward reachability computations

February 2023

Finite-state abstraction

"!
"" "#

"$

"′
$

• What about uncertainty?
• Aleatoric uncertainty: probabilistic transitions
• Epistemic uncertainty: nondeterministic transitions

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

AAAI22 BPA

Formal abstractions with data

x+ = A(α)x + B(α)u + σ

σ ∼ P unknown - aleatoric uncertainty

Thom Badings | 8

What is the probability !(#!, %)(#") of reaching #′ via action % in state #!?

• Recall the distribution of the aleatoric uncertainty is unknown
• Instead, assume access to a simulator from which we can sample
• Each sample gives a successor state under that value of the noise

February 2023

• Probability intervals [),)] via the scenario approach and Hoeffding’s inequality

ℙ) ≤ ! #!, % #′ ≤) ≥ -
• Bounds) and) depend on the number of samples contained in state .′

Capturing aleatoric uncertainty

"! "′
$

$

Thom Badings | 7

• Abstraction of a nominal model that
neglects any uncertainty
• Partition state space into finite set of

discrete states
• Define finite set of actions

• Compute enabled actions through
backward reachability computations

February 2023

Finite-state abstraction

"!
"" "#

"$

"′
$

• What about uncertainty?
• Aleatoric uncertainty: probabilistic transitions
• Epistemic uncertainty: nondeterministic transitions

scenario approach for convex optimisation: P{p ≤ P(s′ | si, a) ≤ p̄} ≥ 1− β

abstraction as iMDP

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

AAAI22 BPA

Formal abstractions with data

x+ = A(α)x + B(α)u + σ

α ∈ Θ - epistemic uncertainty

Robustness to epistemic uncertainty

February 2023Thom Badings | 9

• The outcome of an action depends on the actual value of the parameter

Min.

Max.

abstraction as iMDP

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

AAAI22 BPA

Formal abstractions with data

x+ = A(α)x + B(α)u + σ

α ∈ Θ - epistemic uncertainty

Robustness to epistemic uncertainty

February 2023Thom Badings | 10

• The outcome of an action depends on the actual value of the parameter

Min.

Max.

abstraction as iMDP

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

AAAI22 BPA

Formal abstractions with data

x+ = A(α)x + B(α)u + σ

α ∈ Θ - epistemic uncertainty

Robustness to epistemic uncertainty

February 2023Thom Badings | 11

• The outcome of an action depends on the actual value of the parameter

Min.

Max.

• Each successor state sample remains the set around it, regardless of the value of the mass
• Robustness against any realization of the epistemic uncertainty

abstraction as iMDP

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

AAAI22 BPA

Formal abstractions with data
"�/BM;b- _QK�Q- �#�i2- S�`F2`- SQQM�r�H�- aiQ2HBM;� � C�Mb2M

6B;m`2 N, ai�i2 i`�D2+iQ`v 7Q` i?2 b�i2HHBi2
#2M+?K�`F UN = 3200 rBi? BKT`Qp2/ TQH@
B+v bvMi?2bBb b+?2K2VX h?2 +?�b2` b�i2HHBi2
Ur?Bi2V Kmbi M�pB;�i2 iQ i?2 i�`;2i U;`22MV
r?BH2 MQi +QHHB/BM; rBi? i?2 QM2 BM `2/X

6B;m`2 Ry, l�o `2�+?@�pQB/ T`Q#H2K U;Q�H
BM ;`22Mc Q#bi�+H2b BM `2/V- THmb i`�D2+iQ`B2b
mM/2` i?2 QTiBK�H BJ.S@#�b2/ +QMi`QHH2`
7`QK BMBiB�H bi�i2 x0 = [−14, 0, 6, 0,−6, 0]!-
mM/2` ?B;? �M/ HQr im`#mH2M+2X

iQQHb 7Q` +QMi`QHH2` bvMi?2bBb #�b2/ QM 7Q`K�H �#bi`�+iBQMbX 6BM�HHv- r2 /2KQMbi`�i2 i?2
�TTHB+�#BHBiv Q7 Qm` i2+?MB[m2b iQ BM}MBi2@?Q`BxQM T`QT2`iB2bX

eXR a�i2HHBi2 _2M/2xpQmb S`Q#H2K
q2 +QMbB/2` i?2 b�i2HHBi2 #2M+?K�`F T`Q#H2K 7`QK C2rBbQM �M/ 1`rBM UkyReVX JQ`2 bT2+B7@
B+�HHv- r2 +QMbB/2` T?�b2 R Q7 i?2B` b�i2HHBi2 `2M/2xpQmb T`Q#H2K- BM r?B+? � +?�b2` b�i2HHBi2
M22/b iQ /Q+F rBi? � i�`;2i b�i2HHBi2 r?BH2 #2BM; BM Q`#BiX h?2 `2H�iBp2 KQiBQM Q7 i?2
+?�b2` b�i2HHBi2 rBi? `2bT2+i iQ i?2 i�`;2i Bb KQ/2H2/ #v i?2 bQ@+�HH2/ *HQ?2bbv@qBHib?B`2@
>BHH U*q>V 2[m�iBQMb U*HQ?2bbv � qBHib?B`2- RNeyVX q2 T`2b2Mi i?2 7mHH e@/BK2MbBQM�H
HBM2�` /vM�KB+�H bvbi2K BM �TT2M/Bt *XRX LQi�#Hv- r2 T�`iBiBQM i?2 e@/BK2MbBQM�H bi�i2
bT�+2 BMiQ 11× 23× 5× 5× 5× 5 = 158 125 /Bb+`2i2 `2;BQMb �M/ /2}M2 i?2 b�K2 MmK#2` Q7
�+iBQMbX q2 /2}M2 � iBK2 ?Q`BxQM Q7 K = 16 bi2Tb- r?B+? #2+QK2b 8 bi2Tb �7i2` ;`QmTBM;
2p2`v irQ /Bb+`2i2 iBK2 bi2Tb �b /2b+`B#2/ BM a2+iX jc b22 �TT2M/Bt *XR 7Q` /2i�BHbX h?2 Q`B;@
BM�H T`Q#H2K 7`QK C2rBbQM �M/ 1`rBM UkyReV Bb � `2�+?�#BHBiv T`Q#H2K- r?B+? r2 2ti2M/ iQ
� `2�+?@�pQB/ T`Q#H2K #v �//BM; � i?B`/ b�i2HHBi2 i?�i Kmbi #2 �pQB/2/ U�b b?QrM BM 6B;X NVX
q2 �bbmK2 i?�i i?Bb i?B`/ b�i2HHBi2 Bb HQ+�i2/ #2ir22M i?2 +?�b2` �M/ i�`;2i b�i2HHBi2 �M/
?�b � }t2/ TQbBiBQM BM i?2 *q> 7`�K2- vB2H/BM; � bi�iBQM�`v +`BiB+�H `2;BQMXRR

Q``2+i@#v@+QMbi`m+iBQM +QMi`QH rBi? S� ;m�`�Mi22bX 6B`bi- H2i mb b?Qr ?Qr iQ
mb2 h?2Q`2K k BM T`�+iB+2 iQ /2i2`KBM2 i?2 +QM}/2M+2 T�`�K2i2` β M22/2/ QM BM/BpB/m�H
i`�MbBiBQM T`Q#�#BHBiB2b iQ bQHp2 i?2 Qp2`�HH T`Q#H2K bi�i2K2Mi rBi? � /2bB`2/ +QM}/2M+2
T`Q#�#BHBivX q2 +?QQb2 �M Qp2`�HH +QM}/2M+2 T`Q#�#BHBiv Q7 1 − α = 0.95X aBM+2 r2 mb2
� mMB7Q`K `2+i�M;mH�` T�`iBiBQM Q7 i?2 bi�i2 bT�+2- r2 +�M mb2 *Q`QHH�`v j iQ +QKTmi2

RRX LQi2 i?�i- BM T`BM+BTH2- r2 +�M �HbQ KQ/2H KQpBM; Q#bi�+H2b UQ` ;Q�H `2;BQMbV #v KQ/2HBM; iBK2 2tTHB+BiHv
BM i?2 BJ.S �#bi`�+iBQM �M/ +?�M;BM; i?2 b2i Q7 +`BiB+�H U;Q�HV `2;BQMb �i 2�+? iBK2 bi2TX

ke

Thom Badings | 12

• Drone with an uncertain mass of / ∈ 0.75, 1.25
• We synthesize controllers that are robust against any value for the mass in this interval

• Baseline with a maximum likelihood estimate / = 1.00 yields unsafe behavior

February 2023

Longitudinal drone dynamics

Thom Badings | 13

• Our robust approach yields 100% safe controllers in simulations on the dynamical model
• A naïve approach that neglects epistemic uncertainty yields unsafe behavior

February 2023

Longitudinal drone dynamics (2)

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32

	Why this Matters: Science and Technology Drivers
	Sound Inductive Synthesis with Neural Certificates
	Formal Verification with Neural Abstractions
	Safe and Certified Learning

