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Control theory vs Formal verification
dynamical models

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}
∀x ∈ Gi, x+ = fi(x)

stability,
safety,
reachability

Lyapunov functions,
barrier certificates,
reach-set computation
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software programs

34: x float

35: . . .
36: while Gi(x)
37: x+ := fi(x)
38: endwhile
39: . . .
termination,
assertion violation

ranking functions,
program/loop invariants,
symbolic search

def add5(x):
return x+5

def dotwrite(ast):
nodename = getNodename()
label=symbol.sym_name.get(int(ast[0]),ast[0])
print '    %s [label="%s' % (nodename, label),
if isinstance(ast[1], str):

if ast[1].strip():
print '= %s"];' % ast[1]

else:
print '"]'

else:
print '"];'
children = []
for n, child in enumerate(ast[1:]):

children.append(dotwrite(child))
print '    %s -> {' % nodename,
for name in children:

print '%s' % name,
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Cyber-Physical Systems

complex embedded systems

interleaving of
cyber/digital components with
physical/analogue dynamics

hybrid models

dynamics, control and
computation

(and communication)

safety-critical applications

→ correct-by-design control

→ sound and automated synthesis
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Formal verification in a nutshell

industrial impact in checking the correct behaviour of

protocols, hardware circuits, and software

model-based algorithms (and SW tools)

automated, sound, and formal proofs (e.g., via certificates)
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Properties: Encoding rich dynamical behaviour

as specifications, requirements for verification, e.g., safety

as objectives for control synthesis, e.g., reachability

without manual reward engineering
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Properties: Encoding rich dynamical behaviour
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Properties: Encoding rich dynamical behaviour

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}

x+ = f (x)

x+ = f (x)

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

x : x0 → x1 → x2 → . . .
ρ : Gx0 → Gx1 → Gx2 → . . .
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Properties: Encoding rich dynamical behaviour

consider (class of) properties/requirements/specifications

∀x0 ∈ I , ∃T ∈N+, ∀k ∈ {0, 1, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xk ̸∈ U , xτ ∈ F
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class encompasses stability, invariance, safety, reachability, reach-avoid, . . .
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connections to:
1 automata theory
2 temporal logics
3 formal languages
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Decision problems: SAT and SMT

SAT is a decision problem (yes/no question)

find satisfying assignment of Boolean functions

e.g., assume Boolean xi, check

∃x1, x2, x3 : (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

SMT is a decision problem for logical formulae within a theory

instance: theory of non-linear arithmetics over real closed fields

e.g., assume reals xi ∈ R, check

∃x1, x2 : x1 ≥ 0⇒ 3x1 + 2x2 + 1 > 0
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From decision to synthesis problems

consider (harder) problem:
assume integers xi ∈ Z,
seek function F : Z×Z→ Z, s.t.

∃F, ∀x1, x2 :

F(x1, x2) ≥ x1 ∧ F(x1, x2) ≥ x2 ∧ (F(x1, x2) = x1 ∨ F(x1, x2) = x2)
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Lyapunov functions

consider ẋ = f (x), assume xe ∈ Rn is an equilibrium, f (xe) = 0
ensure asymptotic stability of xe in D ⊆ Rn

by finding Lyapunov function V(x), satisfying

1 lower bound:
V(xe) = 0 (1)

2 positive definiteness:
V(x) > 0, ∀x ∈ D \ {xe} (2)

3 negative Lie derivative:

V̇(x) = ∇V(x) · f (x) < 0, ∀x ∈ D \ {xe} (3)

that is, solve following synthesis problem:

∃V : D → R s.t. ∀x ∈ D, conditions (1)∧ (2)∧ (3) hold
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Counterexample-guided inductive synthesis (CEGIS)

Learner Verifier

V

c

f (x),D

V
valid

1. Learner

generates candidates V over
finite set

2. Verifier

certifies validity on D, or
provides counterexample(s) c

inductive synthesis loop

1. sample (finite) set S ⊂ D

2. Learner generates V(θ) via query SMT solver on formula:
∃θ : (1) ∧ (2) ∧ (3) on points s ∈ S

3. Verifier checks either V(x) valid over dense D, or counterexample c :
query SMT solver on formula ∃c ∈ D : ¬(1) ∨¬(2) ∨¬(3)

4. S← S ∪ c, loop back to 2

sound, but not complete: infinite search space (θ in V) and domain D
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Lyapunov functions as neural networks

neural nets are general and flexible

(universal function approximators)

Learner trains shallow neural network

V(x) = W2 · σ1(W1x + b1)

(Wi weights, (σ1) activation fcns)

σ1

σ1

W1 W2

loss function enforces Lyapunov conditions in (2) and (3) on points in S:

L(S) = ∑
s∈S

max{0,−V(s)}+ ∑
s∈S

max{0, V̇(s)}

loss function L is “pretty good” proxy of synthesis formula
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Lyapunov functions as neural networks

Learner Verifier

V

c

f (x),D

V
valid

surprisingly effective! Communication Learner ↔ Verifier is crucial

loss function enforces Lyapunov conditions in (2) and (3) on points in S:
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Synthesis of Lyapunov functions - example

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 13 /32



Barrier certificates

consider sets I (initial) and U (unsafe)

ensure there exists no trajectory starting in I ever entering U

1 negativity within initial set I :

B(x) ≤ 0 ∀x ∈ I

2 positivity within unsafe set U :

B(x) > 0 ∀x ∈ U

3 set invariance property via Lie derivative:

Ḃ(x) < 0 ∀x s.t. B(x) = 0
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Synthesis of barrier certificates - examples

{
ẋ = y + 2xy,
ẏ = −x + 2x2 − y2 [10] · Linear
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Synthesis of barrier certificates - examples

{
ẋ = exp(−x) + y− 1,
ẏ = − sin(x)2 [20] · Softplus
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Synthesis of barrier certificates - examples

{
ẋ = y,
ẏ = −x− y + 1

3 x3 [20, 20] · Sigmoid, Sigmoid
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Synthesis of barrier certificates - benchmarks

Benchmark CEGIS (this work) BC1 SOS2

Darboux
Exponential
Obstacle
Polynomial
Hybrid mod
4-d ODE
6-d ODE
8-d ODE

Learn Verify Samples Iters

31.6 0.01 0.5 k 2
15.9 0.07 1.5 k 2
55.5 1.83 2.0 k 9
64.5 4.20 2.3 k 2
0.58 2.01 0.5 k 1
29.31 0.07 1 k 1
89.52 1.61 1 k 3
104.5 82.51 1 k 3

Learn Verify Samples

54.9 20.8 65 k
234.0 11.3 65 k
3165.3 1003.3 2097 k
1731.0 635.3 65 k

– – –
– – –
– – –
– – –

Synth Verify

× –
× –
× –
8.10 ×
12.30 0.11
12.90 OOT
16.60 OOT
26.10 OOT

time for Learning and Verification steps in [sec]

‘Samples’ = size of input data for Learner (in thousands)

‘Iters’ = number of iterations of CEGIS loop

× = synthesis or verification failure, OOT = verification timeout

1
H. Zhao, X. Zeng, T. Chen, and Z. Liu. Synthesizing Barrier Certificates Using Neural Networks. In Proceedings of the 23rd International

Conference on Hybrid Systems: Computation and Control, HSCC, 2020.
2

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for
MATLAB, 2013.
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Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”

modify known synthesis problem:

∃V : D → R s.t. ∀x ∈ D conditions (1)∧ (2)∧ (3) hold
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Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”

approach:
1 control policies are NN-templated
2 concurrent synthesis controls & certificates
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Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”

(back to) broad class of properties/requirements
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Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”EDWARDS et al.: A GENERAL VERIFICATION FRAMEWORK FOR DYNAMICAL AND CONTROL MODELS VIA CERTIFICATE SYNTHESIS 9

Ns Nu Property Neurons Activations T (s) Success (%)

min µ max S

1 2 0 Stability [6] ['2] 0.01 (⇡ 0.00) 0.16 (0.15) 1.50 (1.48) 100
2 3 0 Stability [8] ['2] 0.28 (⇡ 0.00) 2.22 (0.45) 12.57 (3.31) 100
3 2 2 Stability [4] ['2] 0.07 (0.01) 0.19 (0.02) 0.47 (0.04) 100
4 2 2 Stability [5] ['2] 0.09 (0.01) 0.26 (0.02) 0.54 (0.03) 100

5 2 0 ROA [5] [�soft] 0.21 (0.12) 14.09 (12.59) 25.32 (22.13) 40
6 3 3 ROA [8] ['2] 1.24 (0.02) 39.08 (0.03) 287.89 (0.04) 100

7 2 0 Safety [15] [�t] 0.44 (0.35) 3.36 (2.90) 7.61 (7.11) 100
9 8 0 Safety [10] ['1] 12.63 (7.71) 51.97 (32.75) 70.59 (44.66) 70
10 3 1 Safety [15] [�t] 1.57 (0.19) 11.87 (2.50) 51.08 (7.52) 90

11 3 0 SWA [6], [5] ['2], [�t] 0.19 (0.05) 2.46 (0.100) 12.10 (0.20) 90
12 2 0 SWA [5], [5, 5] ['2], [�sig,'2] 0.13 (0.06) 0.27 (0.14) 0.39 (0.20) 100
13 2 1 SWA [8], [5] ['2], ['2] 0.06 (0.03) 0.20 (0.10) 0.58 (0.24) 90
14 3 1 SWA [10], [8] ['2], [�t] 4.06 (0.87) 19.81 (2.73) 103.49 (7.23) 90

15 2 0 RWA [4] ['2] 0.14 (0.09) 1.81 (1.75) 4.70 (4.63) 100
16 3 0 RWA [16] ['2] 1.36 (0.09) 14.10 (0.14) 72.97 (0.20) 90
17 2 1 RWA [4, 4] [�sig,'2] 0.59 (0.27) 6.82 (3.32) 20.07 (11.46) 100
18 3 1 RWA [5] ['2] 0.46 (0.11) 16.06 (5.81) 72.47 (44.64) 80
19 2 2 RWA [5] [�sig] 0.69 (0.40) 1.38 (0.94) 2.14 (1.90) 100

20 2 0 RSWA [4] ['2] 0.19 (0.03) 1.29 (1.04) 3.79 (3.37) 100
21 3 0 RSWA [16] ['2] 4.81 (0.13) 27.14 (0.19) 80.95 (0.25) 100
22 2 0 RSWA [5, 5] [�sig,'2] 1.52 (0.06) 4.45 (0.19) 10.97 (0.35) 100
23 2 1 RSWA [8] ['2] 0.21 (0.05) 0.67 (0.25) 1.19 (0.91) 100
24 2 2 RSWA [5, 5] [�sig,'2] 0.98 (0.16) 1.23 (0.28) 1.61 (0.46) 100

25 2 0 RAR [6], [6] [�soft], ['2] 6.65 (1.08) 24.74 (6.46) 77.80 (15.06) 100
26 2 2 RAR [6, 6], [6, 6] [�sig,'2], [�sig,'2] 5.13 (1.34) 26.99 (9.90) 101.23 (60.14) 100

TABLE I: Results of synthesising certificates for all properties presented in this work. The first column indexes the benchmarks.
Ns: Number of states, Nu: number of control inputs. We show the Property being verified and network structure (Neurons and
Activations). For certificates of two functions, comma-separated lists shows the different structures. Finally, we report success
rate (S) and the minimum, mean (µ) and maximum computation time T over successful runs, in seconds. In brackets we show
the time spent during the learning phase.

continuous-time models, both autonomous and controlled.
Further, Fossil 2.0 can verify stability and safety properties
for discrete-time models (the discussion of which is omitted
for brevity). The extension to all the presented properties
in discrete time is matter of future work. We showcase the
efficacy of our framework and corresponding tool across 26
benchmarks, borrowed from existing literature on certificate
synthesis [10], [50], [55], [63]. Note that, in some cases,
we have modified these benchmarks to further challenge our
approach, for instance by using disjoint, non-convex sets in the
specifications. We consider a key strength of our approach to
be its flexibility - we are able to perform well on straight-
forward and challenging benchmarks using certificates that
represent both polynomials and more complex non-polynomial
functions (as determined by the activation function of the neu-
ral network). We reflect this in our selection of benchmarks,
including dynamics that are relatively simple and dynamics
that involve transcendental and trigonometric functions. Due
to the large number of benchmarks, details on the dynamics
and sets can be found in an extended version of this paper [64],
and in the corresponding code-base, https://github.com/oxford-
oxcav/fossil, where additional benchmarks can be also found.

The results are reported in Table I, where for each bench-
mark we outline the number of variables Ns and of control
input Nu, the property to be verified (cf. acronyms introduced
earlier), the number of neurons in each hidden layer and

the corresponding activation functions for these layers. The
number of neurons is denoted as a list, e.g. [n1, n2] indicates
that the first and second hidden layers are composed of n1 and
n2 neurons, respectively. The activation functions for these
hidden layers are denoted similarly. As mentioned, a strength
of our methodology is its flexibility in terms of the form that
certificates may take: we are able to synthesise polynomial
certificates as well as non-polynomial certificates that repre-
sent more “neural-typical” functions – this is illustrated in
the “Activations” column of Table I. By 'j we denote that
the layer represents a polynomial function of order j; �sig
represents the sigmoid function, �t represents the hyperbolic
tangent function and �soft is the softplus function.

For almost all benchmarks, we use a linear control function.
Our approach can handle more general nonlinear templates,
but we emphasise that, as we solve a verification problem,
rather than a control problem, we only seek a feedback law
such that the property is satisfied by the closed-loop dynamics,
and thus offer no guarantee on the optimality of this controller.
Still, we use a nonlinear controller employing �t functions for
the benchmark number 10 of Table I.

We measure the robustness performance by running each
experiment 10 times, where we initialise the network with
different weights and a new dataset across separate random
seeds. Our procedure is not guaranteed to terminate, so after a
maximum number of CEGIS loops we stop it and consider the
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Synthesis of control certificates for complex tasks

dynamical models with inputs (a.k.a., external non-determinism)

ẋ = f (x, u)

→ synthesis of “control certificates”
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Software for Neural Synthesis - Fossil 2.0

.py
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Enhanced
Communication

Valid Controller
and Certificate

Unknown

github.com/oxford-oxcav/fossil
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Extension: discrete-time, prob. programs/models

discrete-time models (e.g. SW programs)

while g(x), x+ := f(x)

→ similar Lyapunov-like conditions, except concerning “next step”:

V( f (x)) < V(x), ∀x ∈ D \ {xe}

stochastic models:

x+ = f (x) + σ(x), σ ∼ N (0, Σ(x))

→ same story, “next step”-condition in expectation (super-martingale):

E[V( f (x)) | x] < V(x), ∀x ∈ D \ {xe}

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 18 /32
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From uncountable to finite stochastic models

∞-space Markov process finite-space Markov chain

s ∈ Rn {z1, z2, z3, . . . , zp}

s+ = f (s) + σ(s), σ ∼ N (0, Σ(s)) T =

 p11 · · · p1p
· · · · · · · · ·
pp1 · · · · · ·
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From uncountable to finite stochastic models

error ξ ∼ hsδT, where
δ - max diameter of partitions

T - time horizon

hs - local kernel stiffness (Lipschitz constant)

probabilistic safety:

prob. ps that execution, started at s ∈ I , stays in set A = U c within [0, T],
can be computed on abstract model as p̃z, so that ps = p̃z ± ξ
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Software for formal abstractions - FAUST2 & StocHy
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X = [−1, 1]2

Model hybridisations

safety verification of non-linear models ẋ = f (x) over x ∈ X ⊂ Rn,

it is in general hard - not automated, not scalable
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ẏ = 3x− y
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ẋ = x2 + y
ẏ =

3√x2 − x
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Model hybridisations

safety verification of non-linear models ẋ = f (x) over x ∈ X ⊂ Rn,

it is in general hard - not automated, not scalable

leverage formal abstractions (simulations) for verification

abstraction as hybridisation:

partition X , locally approximate f (x) as f̃ (x)
each partition has own flow f̃ (x) & transitions to other partitions

compute upper-bound ξ to error; obtain simulation as

ẋ = f̃ (x) + d, ∥d∥ ≤ ξ, x ∈ X

more partitions → larger abstraction

! mesh size & shape important for small error bound ξ
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Model hybridisations as neural abstractions

...
x

...

...
ẋ

W1 W2b1 b2

ReLU
W11x + b11 = 0

W12x + b12 = 0

neural network N as abstraction f̃ of nonlinear vector field f
N (x) : Rn → Rn approximates f (x)
H neurons → at most 2H total partitions
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Model hybridisations as neural abstractions

...
x

...

...
ẋ

W1 W2b1 b2

ReLU
W11x + b11 = 0

W12x + b12 = 0

synthesis of neural abstractions via CEGIS
1 learn parameters of NN N w/ MSE loss L = ∥ f (S)−N (S)∥, S finite

2 SMT solver formally checks upper bound ξ on approximation error:

∃c ∈ X s.t. ∥ f (c)−N (c)∥ > ξ
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Model hybridisations as neural abstractions - examples

{
ẋ = y− 1.5x2 − 0.5x3

ẏ = 3x− y

{
ẋ = exp(−x) + y− 1
ẏ = − sin(x)2

{
ẋ = x2 + y
ẏ =

3√x2 − x
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Safety verification via neural abstractions
Safety Verification Using Neural Abstractions

Concrete nonlinear system

x
...

ẋ

ReLU

Neural abstraction

Abstract hybrid automatonFlowpipe propagation

Abstraction
synthesis

Model
translation

Safety
verification

Edwards & Abate (OxCAV) Neural Abstractions AIMS - Systems Verification - HT 23
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Neural abstractions: alternative templates

Piecewise constant Piecewise affine Nonlinear

Concrete model Nonlinear,
non-Lipschitz

Nonlinear,
non-Lipschitz

Nonlinear,
non-Lipschitz

Activation functions

−1

1

−1

1

−1

1

Training procedure Particle swarm Gradient descent Gradient descent

Loss function maxs∈S l∞(s) 1
|S| ∑s∈S l2(s) 1

|S| ∑s∈S l2(s)

Abstract model PWA with
disturbance

PWC with
disturbance

NL-ODE with
disturbance

Safety veri-
fication tech

Symbolic
model checking

Reach algorithm Flowpipe propagation
(Taylor models)

Safety veri-
fication tool

PHAVer SpaceEx Flow*
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Neural abstractions: alternative templates
Tradeo↵ between Accuracy and E�ciency

(a) Neural PWC
abstraction

(b) Neural PWA
abstraction

(c) Sigmoidal
abstraction.

(a) Flowpipes for
neural PWC
model. 11.6s

(b) Flowpipe for
neural PWA
model. 76.5s

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0
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1.0

(c) Flowpipe for
sigmoidal model.
1084.3s
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Outline

1 Why this Matters: Science and Technology Drivers

2 Sound Inductive Synthesis with Neural Certificates

3 Formal Verification with Neural Abstractions

4 Safe and Certified Learning
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Reinforcement learning

learning algorithm, relies on reward signal from environment

synthesises policies (actions) maximising cumulative reward

rewards are not enough!

verification goal: certified synthesis of policies satisfying requirement, task

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 29 /32



Reinforcement learning

learning algorithm, relies on reward signal from environment

synthesises policies (actions) maximising cumulative reward

rewards are not enough!

verification goal: certified synthesis of policies satisfying requirement, task

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 29 /32



Certified reinforcement learning: LCRL

IN requirement, task

- encode task, e.g. temporal requirement in LTL formula, as automaton

- synchronise automaton with environment % via labels

- synthesise policies via RL % automaton guides/rewards exploration

OUT certified policies: max probability of task satisfaction
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Certified reinforcement learning: LCRL

q1start q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

q13

q12

¬t1

t1

¬t2

t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

¬t3 ¬t4 ¬t5 ¬t6 ¬t7 ¬t8 ¬t9 ¬t10 ¬t11

u
u

u
u

u u

u
u

u
u

u

t12

True

q1start

q2

q3

¬G1 ∧ ¬U

G1 ∧ ¬G2 ∧ ¬U

G2 ∧ ¬U

G1 ∧ ¬G2 ∧ ¬U

¬G2 ∧ ¬U

¬G1 ∧ ¬U

model-free → extracts information efficiently
guided learning → faster convergence, high-dimensional environments
flexible → numerous extensions and applications
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AAAI23 BPA

Ambiguity and Misspecification in Inverse RL

inverse RL: from expert
behaviour to rewards

preference elicitation and
alignment

formalising reward learning with
1 invariances

2 metrics

output space reward spacereward
learning

πR
R?R?

reward space output spaceπ

R R′ πR=πR′
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Thank you for your attention
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Formal abstractions: algorithm

approximate stochastic process (S , T ) as Markov chain (S, T), where
S = {z1, z2, . . . , zp} – finite set of abstract states

T : S × S → [0, 1] – transition probability matrix

algorithm:

input: stochastic process (S , T )

1 select finite partition S = ∪p
i=1Si [aligned with Gi]

2 select representative points zi ∈ Si

3 define finite state space S := {zi, i = 1, ..., p}
4 compute transition probability matrix: T(zi, zj) = T (Sj | zi)

output: Markov chain (S, T)
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Formal abstractions: error ξ

consider T (ds̄|s) = t(s̄|s)ds̄; assume t is Lipschitz continuous, namely

∃ 0 ≤ hs < ∞ :
∣∣t(s̄|s)− t(s̄|s′)

∣∣ ≤ hs
∥∥s− s′

∥∥ , ∀s, s′, s̄ ∈ S

• one-step error

(related to approximate probabilistic bisimulation)

ϵ = hsδ, δ max diameter of partition sets

• T-step error (tuneable via δ)

ξ(δ, T) = ϵT

→ improved and generalised error ξ
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Formal abstractions: probabilistic safety

recall temporal logic properties, e.g. probabilistic safety:

probability that execution, started at s ∈ I ,
stays in safe set A = U c within [0, T]

Ps(A) = Ps(sk ∈ A, ∀k ∈ [0, T])

probabilistic safe set with safety level θ ∈ [0, 1] is

S(θ) = {s ∈ S : Ps(A) ≥ θ}

whenever stochastic process (S , T ) is controlled, supπ Ps(A)
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EDWARDS et al.: A GENERAL VERIFICATION FRAMEWORK FOR DYNAMICAL AND CONTROL MODELS VIA CERTIFICATE SYNTHESIS 5
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Fig. 1: Pictorial depiction of relevant properties in this work. Here, XI is the initial set, XU the unsafe set (XS is its safe
complement), XG the goal/target set, XF the final set. (The entire state space is X .) Here, a dashed background denotes that
the corresponding set’s existence is implied by the corresponding certificate, but that it is not explicitly defined in the property.

after reaching it. Formally, trajectories should satisfy the
property

9XG : 8⇠(t0) 2 XI , 9T 2 R, 8t 2 [t0, T ], ⇠(t) 2 XU
{

^ ⇠(T ) 2 XG ^ 8⌧ � T : ⇠(⌧) 2 XF . (13)

Notably, this property does not require that trajectories reach
the final set and remain within it, and may enter and leave the
final set as long as they eventually remain within the final set.
However, in finite time trajectories must reach some subset of
the final set a goal set, after which point they must remain
within the final set for all time.

Certificate 5 (RSWA): Define an unsafe set XU = X \XS ,
where XS is a compact safe set, then define a compact initial
set XI ⇢ int(XS), and a compact final set XF ⇢ int(XS). A
RSWA [51] certificate is a function V : Rn ! R, V 2 C1,
that satisfies the following:

V (x)  0 8x 2 XI , (14a)
V (x) > 0 8x 2 @XS , (14b)

V̇ (x) < 0 8x 2 {x 2 XS |V (x)  0} \ XF , (14c)
V (x) > � 8x 2 @XF , (14d)

V̇ (x) < 0 8x 2 XF \ int({x 2 XS |V (x)  �}), (14e)

for some constant � 2 R.
Theorem 7 (Reach-and-stay while avoid): Given a model

(2) and a certificate corresponding to the given sets of interest,
then (13) holds. ⌅

The sub-level set of V given by � defines an invariant set
contained with the final set, and ensures that trajectories reach
this set in finite time without entering an unsafe region. Note
that the specification described in (13) - and the corresponding
certificate - permit trajectories to enter and leave the final set,
as long as trajectories eventually enter a goal set and do not
leave the final set again.

G. Reach, Avoid and Remain

The final property we consider is again similar to the
previous Reach and Stay While Avoid property, but, as with the
ROA certificate, we seek to remove the existential quantifier
over the goal set from (13). This means that the Reach
Avoid Remain (RAR) property requires that trajectories remain

within a final set after reaching a goal set, but for two given
goal and final sets. We express this formally, as follows:

8⇠(t0) 2 XI , 9T 2 R, 8t 2 [t0, T ] :

⇠(t) 2 XU
{ ^ ⇠(T ) 2 XG ^ 8⌧ � T : ⇠(⌧) 2 XF . (15)

Certificate 6 (RAR): Define an unsafe set XU = X \ XS ,
where XS is a compact safe set, a compact initial set XI ⇢
int(XS), a compact final XF ⇢ int(XS), and a compact goal
set XG ⇢ int(XF ) with non-empty interior. Let V : Rn ! R
be a RWA certificate, and a function B : Rn ! R, B 2 C1,
such that:

B(x)  0 8x 2 XG, (16a)
B(x) > 0 8x 2 @XF , (16b)

Ḃ(x) < 0 8x 2 {x : B(x) = 0}. (16c)

The pair (V, B) define a Reach-Avoid-Remain certificate. ⌅

As with the Stable-While-Avoid certificate, we choose to
formulate this certificate as a pair of separate functions, rather
than collapsing the conditions to a single function. This choice,
which of course does not affect the soundness of the approach,
renders synthesis practically easier and more modular.

Theorem 8 (Reach-Avoid-Remain): Given a model (2) and
a certificate pair V, B satisfying the conditions in Certificate
6, then (15) holds. ⌅

We note that here, the certificate B is similar to a Barrier
certificate as defined in (9), though with XG as the initial set
and @XF as the unsafe set. We have restated the function in
this context for clarity.

H. Summary and Classification of Properties

So far, we have presented a number of different properties
that a dynamical model may conform to. These properties,
and the certificates that sufficiently prove them to hold, can
be complex and subtly different. However, we observe the
following similarities between them:

• All certificates rely on a set on initial conditions XI . In
the case of a Lyapunov function, this set is implicitly
defined a-posteriori to the synthesis of the certificate.

• XU denotes a region trajectories should avoid (and thus
relate to a safety requirement).

Formal abstractions: probabilistic safety

δ-abstract (S , T ) as MC (S, T), so that A→ Aδ,
quantify error ξ(δ, T) as above

⇒ probabilistic safe set on (S , T )

S(θ) = {s ∈ S : Ps(A) ≥ θ}

is automatically computed with model checker (e.g. PRISM) on (S, T) as

Zδ(θ+ξ)
.
= Sat

(
P≥θ+ξ

(
□≤T Aδ

))
=

{
z ∈ S : z |= P≥θ+ξ

(
□≤T Aδ

)}
whenever stochastic process (S , T ) is controlled, obtain arg supπ Ps(A)
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Formal abstractions with data

“Timeō dāta, et dōna ferentēs” [Laocoon, Aeneid]

alluring idea: can we abstract models by sampling their dynamics?

Beware many subtle issues: zero-measure sets, memory dependencies, . . .

DATA-DRIVEN MEMORY-DEPENDENT ABSTRACTIONS OF DYNAMICAL SYSTEMS

Figure 1: (Left) Pictorial represen-
tation of a discrete-time dynamical
system. The state-space is parti-
tioned into two cells (labelled a and
b) and allowable transitions are in-
dicated by the arrows. (Right) Illus-
tration of two possible abstractions,
a memory-1 and a memory-2 one.

an example of this phenomenon, consider the pictorial discrete-time dynamical system in Figure 1
and a partition of its state space into two cells corresponding to labels a and b. All initial states from
the light-red region of a are mapped into the same region, as depicted by the self-loop, and all states
in the dark-red region are mapped into a measure-zero subset of b – represented by the black line
segment contained in b. Initial states at the yellow region of b are mapped into the same region, and
points in the line segment are mapped back into partition a.

On the top-right corner of Figure 1 we illustrate an abstraction obtained by sampling initial con-
ditions from a known distribution and using the frequencies of the different transitions to compute
the probabilities shown on the edges; notice that nodes of this model are in one-to-one correspon-
dence with elements in the partition. Using the obtained abstraction to infer transitions of our
dynamics leads to erroneous conclusions. First, observe that words abb or aabb may happen with
non-zero probability in the top-right model of Figure 1 but are, in fact, not valid trajectories of the
original dynamics since each ab must necessarily be followed by an a. We call these words spurious.
Notice also that the same model does not represent all allowable words. To see this, observe that
word aba is not allowed in the abstraction, despite it being a valid word in the original dynamics.
We call such words missing.

In this paper, we propose a new, sequential approach to build abstractions, where the uncer-
tainty raising from the abstraction step is quantified probabilistically. Such an approach entails
turning epistemic uncertainty about the dynamics into aleatoric uncertainty represented by transi-
tion probabilities of the Markov chain, a feature we believe to be unique to our strategy, as far as
abstraction of dynamical systems is concerned. By handling abstract probabilistic models, we can
analyse the convergence of the probabilistic behaviours. As the abstraction precision increases, we
can heuristically estimate the error associated to our models.

Consider now the abstraction illustrated in the bottom-right of Figure 1. The states of this al-
ternative model contains information about one-step transitions, i.e., word ab represents knowledge
that we are currently at some state in partition b, which was previously in partition a. Due to richer
states, our abstraction can now capture all possible words associated with the dynamics and, as
opposed to the memory-1 model, does not possess spurious words. Hence, increasing memory is
beneficial to representing dynamical systems.

We prove below that, under some reasonable assumptions, our abstraction procedure converges
to the original system in a sense to be described in the sequel. We show on numerical examples that
the technique works well even when the assumptions are not satisfied.

The idea of adding memory to produce richer abstractions has been largely explored in different
fields of mathematics, engineering, and computer science (see, e.g. Belta et al. (2017); McCallum
(1996); Schmuck and Raisch (2014); Frezzatto et al. (2016)). In particular, Coppola et al. (2022)
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tion probabilities of the Markov chain, a feature we believe to be unique to our strategy, as far as
abstraction of dynamical systems is concerned. By handling abstract probabilistic models, we can
analyse the convergence of the probabilistic behaviours. As the abstraction precision increases, we
can heuristically estimate the error associated to our models.

Consider now the abstraction illustrated in the bottom-right of Figure 1. The states of this al-
ternative model contains information about one-step transitions, i.e., word ab represents knowledge
that we are currently at some state in partition b, which was previously in partition a. Due to richer
states, our abstraction can now capture all possible words associated with the dynamics and, as
opposed to the memory-1 model, does not possess spurious words. Hence, increasing memory is
beneficial to representing dynamical systems.

We prove below that, under some reasonable assumptions, our abstraction procedure converges
to the original system in a sense to be described in the sequel. We show on numerical examples that
the technique works well even when the assumptions are not satisfied.

The idea of adding memory to produce richer abstractions has been largely explored in different
fields of mathematics, engineering, and computer science (see, e.g. Belta et al. (2017); McCallum
(1996); Schmuck and Raisch (2014); Frezzatto et al. (2016)). In particular, Coppola et al. (2022)

2

x0

x1 = x0 +
= 1 + 5

2

H(x) = 0

H(x) = 1

y0y1 y19 = 01110111011101110111

x+ = x + θ mod 2π
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(probabilistic
reach-avoid
specification)

(ρ is trace of
closed-loop
trajectory)

AAAI22 BPA

Formal abstractions with data

x+ = A(α)x + B(α)u + σ

σ ∼ P unknown - aleatoric uncertainty

α ∈ Θ - epistemic uncertainty

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

Given T ∈N, and sets G (goal) and UC (safe), find controller s.t., ∀x0 ∈ I ,

PI{ρ |= UCU≤TG} ≥ θ, with confidence ≥ 1− β

A. Abate, oxcav.web.ox.ac.uk Sound Verification and Synthesis with Logic and Data 32 /32



AAAI22 BPA

Formal abstractions with data

x+ = A(ᾱ)x + B(ᾱ)u + σ

Thom Badings | 7

• Abstraction of a nominal model that 
neglects any uncertainty
• Partition state space into finite set of 

discrete states
• Define finite set of actions

• Compute enabled actions through 
backward reachability computations

February 2023

Finite-state abstraction
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• What about uncertainty?
• Aleatoric uncertainty: probabilistic transitions
• Epistemic uncertainty: nondeterministic transitions
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Formal abstractions with data

x+ = A(α)x + B(α)u + σ

σ ∼ P unknown - aleatoric uncertainty

Thom Badings | 8

What is the probability !(#!, %)(#") of reaching #′ via action % in state #!?

• Recall the distribution of the aleatoric uncertainty is unknown 
• Instead, assume access to a simulator from which we can sample
• Each sample gives a successor state under that value of the noise

February 2023

• Probability intervals [), )] via the scenario approach and Hoeffding’s inequality

ℙ ) ≤ ! #!, % #′ ≤ ) ≥ -
• Bounds ) and ) depend on the number of samples contained in state .′

Capturing aleatoric uncertainty

"! "′
$

$

Thom Badings | 7

• Abstraction of a nominal model that 
neglects any uncertainty
• Partition state space into finite set of 

discrete states
• Define finite set of actions

• Compute enabled actions through 
backward reachability computations

February 2023

Finite-state abstraction

"!
"" "#

"$

"′
$

• What about uncertainty?
• Aleatoric uncertainty: probabilistic transitions
• Epistemic uncertainty: nondeterministic transitions

scenario approach for convex optimisation: P{p ≤ P(s′ | si, a) ≤ p̄} ≥ 1− β

abstraction as iMDP
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Formal abstractions with data

x+ = A(α)x + B(α)u + σ

α ∈ Θ - epistemic uncertainty

Robustness to epistemic uncertainty

February 2023Thom Badings | 9

• The outcome of an action depends on the actual value of the parameter

Min.

Max.

abstraction as iMDP
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Formal abstractions with data

x+ = A(α)x + B(α)u + σ

α ∈ Θ - epistemic uncertainty
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Formal abstractions with data

x+ = A(α)x + B(α)u + σ

α ∈ Θ - epistemic uncertainty

Robustness to epistemic uncertainty

February 2023Thom Badings | 11

• The outcome of an action depends on the actual value of the parameter

Min.

Max.

• Each successor state sample remains the set around it, regardless of the value of the mass
• Robustness against any realization of the epistemic uncertainty

abstraction as iMDP
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Formal abstractions with data
"�/BM;b- _QK�Q- �#�i2- S�`F2`- SQQM�r�H�- aiQ2HBM;� � C�Mb2M

6B;m`2 N, ai�i2 i`�D2+iQ`v 7Q` i?2 b�i2HHBi2
#2M+?K�`F UN = 3200 rBi? BKT`Qp2/ TQH@
B+v bvMi?2bBb b+?2K2VX h?2 +?�b2` b�i2HHBi2
Ur?Bi2V Kmbi M�pB;�i2 iQ i?2 i�`;2i U;`22MV
r?BH2 MQi +QHHB/BM; rBi? i?2 QM2 BM `2/X

6B;m`2 Ry, l�o `2�+?@�pQB/ T`Q#H2K U;Q�H
BM ;`22Mc Q#bi�+H2b BM `2/V- THmb i`�D2+iQ`B2b
mM/2` i?2 QTiBK�H BJ.S@#�b2/ +QMi`QHH2`
7`QK BMBiB�H bi�i2 x0 = [−14, 0, 6, 0,−6, 0]!-
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iQQHb 7Q` +QMi`QHH2` bvMi?2bBb #�b2/ QM 7Q`K�H �#bi`�+iBQMbX 6BM�HHv- r2 /2KQMbi`�i2 i?2
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mb2 h?2Q`2K k BM T`�+iB+2 iQ /2i2`KBM2 i?2 +QM}/2M+2 T�`�K2i2` β M22/2/ QM BM/BpB/m�H
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• Drone with an uncertain mass       of / ∈ 0.75, 1.25
• We synthesize controllers that are robust against any value for the mass in this interval

• Baseline with a maximum likelihood estimate / = 1.00 yields unsafe behavior

February 2023

Longitudinal drone dynamics
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• Our robust approach yields 100% safe controllers in simulations on the dynamical model
• A naïve approach that neglects epistemic uncertainty yields unsafe behavior

February 2023

Longitudinal drone dynamics (2)
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