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Overview

- Transient probabilities

— uniformisation

- Steady-state probabilities

- CSL: Continuous Stochastic Logic
— syntax

— semantics

— examples



Recall CTMC notions

+ Continuous-time Markov chain: C = (S,s,,i,R,L)

— R:S XS — R.gis the transition rate matrix
— rates interpreted as parameters of exponential distributions

. Embedded DTMC: emb(C)=(S,s. .,,Pem>©) L)

R(s,s')/E(s) if E(s)>0
pemP@(s s') = ] if E(s)=0ands=s'
0 otherwise

- Infinitesimal generator matrix

, R(s,s") S+
Q(s,s) = { - .R(s,s") otiherwise



Transient and steady-state behaviour

- Transient behaviour

— state of the model at a particular time instant

— 1% (s’) is the probability, having started in state s, of being in
state s’ at time t in CTMC C

— 1% (s’) = Prd{ w € Path®(s) | w@t=s’ }

- Steady-state behaviour

— state of the model in the long-run

— 1&(s’) is probability, having started in state s, of being in
state s’ in the long run

— T(S7) = lime_. TS 1(S7)

— intuitively: long-run percentage of time spent in each state



Computing transient probabilities

- Consider simple example and compare to case for DTMCs
- What is the probability of being in state s, at time t?

DTMC vs CTMC:
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Computing transient probabilities

- TI, - matrix of transient probabilities at time t
— TTi(s,s") =T «(s")

- TI, solution of the differential equation: TTI,’ =TI, - Q
— where Q is the infinitesimal generator matrix

- Can be expressed as a matrix exponential and therefore
evaluated as a power series

M =e¥=3"(Q-1/i

computation potentially unstable numerically
probabilities instead computed using uniformisation



Uniformisation

- We build the uniformised DTMC unif(C) of CTMC C

- If C =(5,sini,R,L), then unif(C) = (S,s;,;;,Punif©,L)

— set of states, initial state and labelling the same as C
— Punif©) = | + Q/q

— lis the |S|x|S| identity matrix

— q=max{E(s) | s €S}isthe uniformisation rate

- Each time step (epoch) of uniformised DTMC corresponds
to one exponentially distributed delay with rate g

— if E(s)=q transitions the same as embedded DTMC (residence
time has the same distribution as one epoch)

— if E(s)<q add self loop with probability 1-E(s)/q (residence
time longer than 1/q so one epoch may not be ‘long enough’)



Uniformisation - Example

- CTMC C;

G w83 a3

2

- Uniformised DTMC unif(C)

— let uniformisation rate g = max { E(s) } = 3

e sare [y [ 2T



Uniformisation

- Using the uniformised DTMC the transient probabilities can

be expressed by:
_ aQt
1, =e



Uniformisation

- Using the uniformised DTMC the transient probabilities can
be expressed by:

nt — th — eq.(Punif(C)_I)-t — e(Q't)'Punif(C) . e_qt

_ Ot (Zw <t> .(Punif(C))i )

Punif© s stochastic (all entries in
_ _ : [0,1] & rows sum to 1);
. ith Poisson probability with i therefore computations with P are
: parameter -t more numerically stable than Q



Uniformisation

T, = Zzo You - (PUnif(C))i

- (PunifQ)i js probability of jumping between each pair of
states in i steps

* Yq.t,; IS the ith Poisson probability with parameter g-t

— the probability of i steps occurring in time t, given each has
delay exponentially distributed with rate g

- Can truncate the (infinite) summation using techniques of
Fox and Glynn [FG88], which allow efficient computation of
the Poisson probabilities, and provide error bounds
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Uniformisation

- Computing 115, for a fixed state s and time t

— can be computed efficiently using matrix-vector operations
— pre-multiply the matrix TT; by the initial distribution

— in this case: 1 (s’) equals 1 if s=s’ and 0 otherwise

. . o0 unif(C) |
Es,t — 150" nt = Mo Zi:o Yq't,i . ( P )

_ 0 unif(C) \'
- Zi:O Yati " Tso '(P )

— compute iteratively to avoid the computation of matrix powers

unif(C) \*! ( unif(C )i unif (C)
(1, P O)" = (m,, -PHM©) P
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Uniformisation - Example

- CTMC C, uniformised DTMC for q=3

3
CumORN FPRC I,

- Initial distribution: Ttgo o =[ 1, O ]
- Transient probabilities for time t = 1:

R ek unif(C) !
Mo = Zi:O Yqti * Hso,0 ’(P )

=¥ 001 §Jevs D012 vaa 01 /T

~ [ 0.404043, 0.595957 ]
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Steady-state probabilities

- Limit t(s’) = lim_, & (s')
— exists for all finite CTMCs (see next slide)

- As for DTMCs, need to consider the underlying graph
structure of the Markov chain:

— reachability (between pairs) of states

— bottom strongly connected components (BSCCs)

— one special case to consider: absorbing states are BSCCs
— note: can do this equivalently on embedded DTMC

- CTMC is irreducible if all its states belong to a single BSCC;
otherwise reducible
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Periodicity

- Unlike for DTMCs, do not need to consider periodicity
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Irreducible CTMCs

For an irreducible CTMC:

— the steady-state probabilities are independent of the starting
state: denote these steady-state probabilities by 11¢(s’)

- These probabilities can be computed as

— the unique solution of the linear equation system:
C C
m Q=0 and > 1 (s)=]

where Q is the infinitesimal generator matrix of C

- Solved by standard means (cf. Lec. 5):
— direct methods, such as Gaussian elimination
— iterative methods, such as Jacobi and Gauss-Seidel

16



Balance equations

i balance the rate of /

 leaving and entering
: a state '

...........................................................

\4 Forall s € S:

Tt(s) - (25,5 R(s,8")) + 255 TE(S’) - R(s’,s) = O

g

Te(s) - 2.5 R(5,87) = 245 TTC(S’) - R(S’,S)

Corresponds to: T1¢-P = 1€ where P is matrix for embedded DTMC
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Steady-state - Example

- Solve: m-Q=0 and X 11(s)=1
[-3/2 3/2 0 0 | 3/2 3/2 (Full)

3 -9/2 3/2 0 lempty}
Q= 3 -9/2 3/2 @‘9 Q‘@

0 0 3 -3

-3/2-1(sy) + 3-m(s,) =
3/2-1(sy) - 9/2-m(s)) + 3-1(s,) =
3/2-1(s,)) - 9/2-m(s,) + 3-m(s;) =

3/2-1(s,) — 3-m(s;) =

ms,) + 1) + m(s,) + T(s;) =

- O O O O

m=[8/15, 4/15, 2/15, 1/15]
~[0.533, 0.267, 0.133, 0.067 ]
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Reducible CTMCs

- For a reducible CTMC:
— the steady-state probabilities 1¢(s’) depend on start state s

- Find all BSCCs of CTMC, denoted bscc(C)

- Compute:

— steady-state probabilities tT of sub-CTMC for each BSCC T
— probability ProbReachemb©(s, T) of reaching each T from s
(intuitive computation w/ emb(C) shall become clearer in Lec 10)

- Then:
nS(s') = ProbReach®™ (s, T)-1r' (s') if s'e T forsome T e bscc(C)
—* 0 otherwise
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CSL

- Temporal logic for describing properties of CTMCs
— CSL = Continuous Stochastic Logic [ASSBO0,BHHKO0 3]
— extension of (non-probabilistic) temporal logic CTL

Key additions:

— probabilistic operator P (like PCTL)

— steady state operator S

— temporal operators over dense time intervals
Example: down — P.4,s [ —fail Ull:231 yp ]

— when a shutdown occurs, the probability of a system recovery
being completed between 1 and 2.5 hours without further
failure is greater than 0.75

Example: S_y [ insufficient_routers ]

— in the long run, the chance that an inadequate number of
routers are operational is less than 0.1
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CSL syntax

- CSL syntax: P is true with

/ probability ~p

—¢du=truelaldAd|—-d|P,[W|S., [d] (state formulae)

- =X | dUD \ (path formulae)
T | | ,Intheulong .......
""" inaxt® | ¢ ‘time bounded : | run” ¢ is true

until” with

— where a is an atomic proposition, | interval of R.gand p €
[0,1], ~ € {<,>,<,>}

- A CSL formula is always a state formula
— path formulae only occur inside the P operator
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CSL semantics for CTMCs

- CSL formulae interpreted over states of a CTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of state formulae:

— for a state s of the CTMC (S,siit,R,L):

_ S |: a @ a E L(S) g ........... ﬁ -FB-B-.a-.B.i-.I-.i-.t-§-.6..-f.-’.-.-.-.-.-.g
—SE® A, © sE¢randskE ¢, | starting in state s,
—skE - < s k= ¢ is false satisfying the path
— s & P, [W] < Prob(s,)~p .. RMUAY
— S F S~p [d)] And Zs’ E ¢ Es(s’) ~ P

------------------------------------------------------------------------------------------------------------------------

Probability of, starting in state s,
being in state s’ in the long run
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CSL semantics for CTMCs

- Prob(s, @) is the probability, starting in state s, of satisfying

- Semantics of path formulae:

the path formula @

— Prob(s, @) = Prs {w € Paths | w =W} 7if 45(0) is absorbing
. w(1) not defined

— for a path w of the CTMC:
~WEXd < w() is defined and w(1) = ¢
—wE b U b, e Jtel.(wdtEeE ¢, A V' <t. W@t E ¢,)

there exists a time instant within the interval | where
&, is true, and ¢; is true at all preceding time
instants (also before interval 1)

M mEE RN R RN E R RN E RN RN RN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEAEEEEEAEEEEEAEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEEEAEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEEER
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More on CSL

- Basic logical derivations:

— false, ¢; v &y, &1 — &,

- Normal (unbounded) until is a special case

— ¢ U, = ¢y U0 &,

- Derived path formulae:

—FCI)EtrUEUCI), qu);trueU'cID
-G =—-(F—-9), Gdb=-—(F —d)

- Negate probabilities: ...

— e.g. _'P>p[l.|)]EPSp[L|)], _'Szp[d)]ES<p[¢]

- Quantitative properties

— of the form P_, [ ]land S_; [ ¢ ]
— where P/S is the outermost operator
— fit for experiments, patterns, trends, ...
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CSL example - Workstation cluster

- Case study: Cluster of workstations [HHKOO]
— two sub-clusters (N workstations in each cluster)
— star topology with a central switch
— components can break down, single repair unit

left backbone right

sub-cluster sub-cluster

left right
switch switch

— minimum QoS: at least 3 of the workstations operational and
connected via switches

— premium QoS: all workstations operational and connected via
switches
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CSL example - Workstation cluster

« S_, [ minimum ]

— the probability in the long run of having minimum QoS

P_, [ Ftt! minimum ]
— the (transient) probability at time instant t of minimum QoS

P_o.05 [ FI%10) =minimum ]

— the probability that the QoS drops below minimum within 10
hours is less than 0.05

—minimum — P_gy ;[ FI%2 =minimum ]

— when facing insufficient QoS, the chance of facing the same
problem after 2 hours is less than 0.1
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CSL example - Workstation cluster

minimum — P, g [ minimum UPU premium ]

— the probability of going from minimum to premium QoS
within t hours without violating minimum QoS is at least 0.8

P_,[ - minimum Ut*) minimum ]

— the chance it takes more than t time units to recover from
insufficient QoS

—r_switch_up — P_q; [-r_switch_up U —l_switch_up ]

— if the right switch has failed, the probability of the left switch
failing before it is repaired is less than 0.1

P_, [ FI2=) S_, o[ minimum 1]

— the probability of it taking more than 2 hours to get to a state
from which the long-run probability of minimum QoS is >0.9
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Summing up...

- Transient probabilities (time instant t)

— computation with uniformisation: efficient iterative method

Steady-state (long-run) probabilities
— like DTMCs
— requires graph analysis
— irreducible case: solve linear equation system
— reducible case: steady-state for sub-CTMCs + reachability

CSL: Continuous Stochastic Logic
— extension of PCTL for properties of CTMCs
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