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Overview

• Transient probabilities
− uniformisation

• Steady-state probabilities

• CSL: Continuous Stochastic Logic
− syntax
− semantics
− examples
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Recall CTMC notions

• Continuous-time Markov chain: C = (S,sinit,R,L) 
− R : S × S → ℝ≥0 is the transition rate matrix
− rates interpreted as parameters of exponential distributions

• Embedded DTMC: emb(C)=(S,sinit,Pemb(C),L)

• Infinitesimal generator matrix
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Transient and steady-state behaviour

• Transient behaviour
− state of the model at a particular time instant
− πCs,t(s’) is the probability, having started in state s, of being in 

state s’ at time t in CTMC C
− πCs,t (s’) = Prs{ ω ∈ PathC(s) | ω@t=s’ }

• Steady-state behaviour
− state of the model in the long-run
− πCs(s’) is probability, having started in state s, of being in 

state s’ in the long run
− πCs(s’) = limt→∞ πCs,t(s’)
− intuitively: long-run percentage of time spent in each state
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Computing transient probabilities

• Consider simple example and compare to case for DTMCs

• What is the probability of being in state s0 at time t?

• DTMC vs CTMC:

1

s0 s1

1
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Computing transient probabilities

• Πt - matrix of transient probabilities at time t 
− Πt(s,s’)=πs,t(s’)

• Πt solution of the differential equation: Πt’ = Πt · Q
− where Q is the infinitesimal generator matrix

• Can be expressed as a matrix exponential and therefore 
evaluated as a power series
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• computation potentially unstable numerically 
•.

• probabilities instead computed using uniformisation



7

Uniformisation

• We build the uniformised DTMC unif(C) of CTMC C
• If C =(S,sinit,R,L), then unif(C) = (S,sinit,Punif(C),L)

− set of states, initial state and labelling the same as C
− Punif(C) = I + Q/q
− I is the |S|×|S| identity matrix
− q ≥ max { E(s) | s ∈ S } is the uniformisation rate

• Each time step (epoch) of uniformised DTMC corresponds 
to one exponentially distributed delay with rate q
− if E(s)=q transitions the same as embedded DTMC (residence 

time has the same distribution as one epoch)
− if E(s)<q add self loop with probability 1-E(s)/q (residence 

time longer than 1/q so one epoch may not be ‘long enough’)
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Uniformisation - Example

• CTMC C:

• Uniformised DTMC unif(C)
− let uniformisation rate q = maxs { E(s) } = 3
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Uniformisation
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• Using the uniformised DTMC the transient probabilities can 
be expressed by:
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Uniformisation
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ith Poisson probability with 
parameter q·t

• Using the uniformised DTMC the transient probabilities can 
be expressed by:

Punif(C) is stochastic (all entries in
[0,1] & rows sum to 1);

therefore computations with P are 
more numerically stable than Q
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Uniformisation

• (Punif(C))i is probability of jumping between each pair of 
states in i steps

• γq·t,i is the ith Poisson probability with parameter q·t
− the probability of i steps occurring in time t, given each has 

delay exponentially distributed with rate q

• Can truncate the (infinite) summation using techniques of 
Fox and Glynn [FG88], which allow efficient computation of 
the Poisson probabilities, and provide error bounds 
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Uniformisation

• Computing πs,t for a fixed state s and time t
− can be computed efficiently using matrix-vector operations
− pre-multiply the matrix Πt by the initial distribution
− in this case: πs,0(s’) equals 1 if s=s’ and 0 otherwise

− compute iteratively to avoid the computation of matrix powers 
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Uniformisation - Example

• CTMC C, uniformised DTMC for q=3

• Initial distribution: πs0,0 = [ 1, 0 ]
• Transient probabilities for time t = 1:
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Steady-state probabilities

• Limit πC
s(s’) = limt→∞ πC

s,t(s’)
− exists for all finite CTMCs (see next slide)

• As for DTMCs, need to consider the underlying graph 
structure of the Markov chain:
− reachability (between pairs) of states
− bottom strongly connected components (BSCCs)
− one special case to consider: absorbing states are BSCCs
− note: can do this equivalently on embedded DTMC

• CTMC is irreducible if all its states belong to a single BSCC; 
otherwise reducible



15

Periodicity

• Unlike for DTMCs, do not need to consider periodicity

• DTMC/CTMC:

1

s0 s1

1
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Irreducible CTMCs

• For an irreducible CTMC:
− the steady-state probabilities are independent of the starting 

state: denote these steady-state probabilities by πC(s’)

• These probabilities can be computed as
− the unique solution of the linear equation system:

where Q is the infinitesimal generator matrix of C

• Solved by standard means (cf. Lec. 5):
− direct methods, such as Gaussian elimination
− iterative methods, such as Jacobi and Gauss-Seidel
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Balance equations
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CC ==× å Î

Q

For all s ∈ S:
πC(s) · (-Σs’≠s R(s,s’)) + Σs’≠s πC(s’) · R(s’,s)  =  0

balance the rate of 
leaving and entering 

a state
normalisation

Corresponds to: πC·P = πC where P is matrix for embedded DTMC

πC(s) · Σs’≠s R(s,s’) =  Σs’≠s πC(s’) · R(s’,s)
⇔
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Steady-state - Example

• Solve: π·Q=0 and ∑ π(s)=1
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Reducible CTMCs

• For a reducible CTMC:
− the steady-state probabilities πC(s’) depend on start state s

• Find all BSCCs of CTMC, denoted bscc(C)

• Compute:
− steady-state probabilities πT of sub-CTMC for each BSCC T
− probability ProbReachemb(C)(s, T) of reaching each T from s 

(intuitive computation w/ emb(C) shall become clearer in Lec 10)

• Then:
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CSL

• Temporal logic for describing properties of CTMCs
− CSL = Continuous Stochastic Logic [ASSB00,BHHK03]
− extension of (non-probabilistic) temporal logic CTL

• Key additions: 
− probabilistic operator P (like PCTL)
− steady state operator S
− temporal operators over dense time intervals

• Example: down → P>0.75 [ ¬fail U [1,2.5] up ] 
− when a shutdown occurs, the probability of a system recovery 

being completed between 1 and 2.5 hours without further 
failure is greater than 0.75

• Example: S<0.1[ insufficient_routers ] 
− in the long run, the chance that an inadequate number of 

routers are operational is less than 0.1
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CSL syntax

• CSL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ] (state formulae)

− ψ  ::= X φ    |    φ UI φ (path formulae)

− where a is an atomic proposition, I interval of ℝ≥0 and p ∈ 
[0,1], ~ ∈ {<,>,≤,≥}

• A CSL formula is always a state formula
− path formulae only occur inside the P operator

ψ is true with 
probability ~p

“time bounded 
until”

“next”
in the “long 

run” φ is true 
with 

probability ~p
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CSL semantics for CTMCs

• CSL formulae interpreted over states of a CTMC
− s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s”

• Semantics of state formulae:
− for a state s of the CTMC (S,sinit,R,L):

− s ⊨ a ⇔ a ∈ L(s)
− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false
− s ⊨ P~p [ψ] ⇔  Prob(s, ψ) ~ p
− s ⊨ S~p [φ] ⇔  ∑s’ ⊨ φ πs(s’) ~ p

Probability of, starting in state s, 
being in state s’ in the long run

Probability of, 
starting in state s, 
satisfying the path 

formula ψ



23

CSL semantics for CTMCs

• Prob(s, ψ) is the probability, starting in state s, of satisfying 
the path formula ψ
− Prob(s, ψ) = Prs {ω ∈ Paths | ω ⊨ ψ }

• Semantics of path formulae:
− for a path ω of the CTMC:
− ω ⊨ X φ ⇔ ω(1) is defined and ω(1) ⊨ φ
− ω ⊨ φ1 UI φ2 ⇔ ∃t ∈ I. ( ω@t ⊨ φ2 ∧ ∀t’<t. ω@t’ ⊨ φ1)

there exists a time instant within the interval I where 
φ2 is true, and φ1 is true at all preceding time 

instants (also before interval I)

if ω(0) is absorbing 
ω(1) not defined
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More on CSL

• Basic logical derivations:
− false,  φ1 ∨ φ2,  φ1 → φ2

• Normal (unbounded) until is a special case
− φ1 U φ2 ≡ φ1 U[0,∞) φ2

• Derived path formulae:
− F φ ≡ true U φ,  FI φ ≡ true UI φ
− G φ ≡ ¬(F ¬φ),  GI φ ≡ ¬(FI ¬φ)

• Negate probabilities: …
− e.g. ¬P>p [ ψ ] ≡ P≤p [ ψ ],  ¬S≥p [ φ ] ≡ S<p [ φ ]

• Quantitative properties
− of the form P=? [ ψ ] and S=? [ φ ]
− where P/S is the outermost operator
− fit for experiments, patterns, trends, …
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CSL example - Workstation cluster

• Case study: Cluster of workstations [HHK00]
− two sub-clusters (N workstations in each cluster)
− star topology with a central switch
− components can break down, single repair unit

− minimum QoS: at least ¾ of the workstations operational and 
connected via switches

− premium QoS: all workstations operational and connected via 
switches

backbone

left
switch

right
switch

left 
sub-cluster

right 
sub-cluster
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CSL example - Workstation cluster

• S=? [ minimum ]
− the probability in the long run of having minimum QoS

• P=? [ F[t,t] minimum ]
− the (transient) probability at time instant t of minimum QoS

• P<0.05 [ F[0,10] ¬minimum ] 
− the probability that the QoS drops below minimum within 10 

hours is less than 0.05

• ¬minimum → P<0.1 [ F[0,2] ¬minimum ] 
− when facing insufficient QoS, the chance of facing the same 

problem after 2 hours is less than 0.1



27

CSL example - Workstation cluster

• minimum → P>0.8 [ minimum U[0,t] premium ] 
− the probability of going from minimum to premium QoS 

within t hours without violating minimum QoS is at least 0.8

• P=? [ ¬minimum U[t,∞) minimum ]
− the chance it takes more than t time units to recover from 

insufficient QoS

• ¬r_switch_up → P<0.1 [¬r_switch_up U ¬l_switch_up ]
− if the right switch has failed, the probability of the left switch 

failing before it is repaired is less than 0.1

• P=? [ F[2,∞) S>0.9[ minimum ] ]
− the probability of it taking more than 2 hours to get to a state 

from which the long-run probability of minimum QoS is >0.9
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Summing up…

• Transient probabilities (time instant t)
− computation with uniformisation: efficient iterative method

• Steady-state (long-run) probabilities
− like DTMCs
− requires graph analysis
− irreducible case: solve linear equation system
− reducible case: steady-state for sub-CTMCs + reachability

• CSL: Continuous Stochastic Logic
− extension of PCTL for properties of CTMCs


