Superconductive Materials

Part 9 Practical Superconductors

First SC magnets

After the discovery of the superconductivity in 1911 by K. Onnes, the first practical sc wires in NbZr, NbTi and Nb₃Sn appeared 50 years later when J.K.Hulm, with co-workers at the Westinghouse Research Laboratories, developed the first commercial superconducting wires.

BRIT. J. APPL. PHYS., 1962, VOL. 13

International Conference on High Magnetic Fields, Massachusetts Institute of Technology, November 1961

4. High critical field superconductors

There is a very useful review of the situation with high critical field superconductors by Kunzler (1961) which appeared just before this conference. We assume a knowledge of the contents of that paper as a 'platform' for this section. Several laboratories reported the use of niobium-zirconium alloys and niobium tin in working solenoids. A coil with an inside diameter of 0.25 in. fabricated from Nb₃Sn 'wire' which had vielded fields of about 69 kG at about 1.5° K was reported by Bell Telephone Laboratories. At M.I.T. experiments with similar wire had produced fields of about 28 kg. Westinghouse Research Laboratories described a coil using Nb-Zr, inner diameter 0.15 in., which had generated 56 kg, and Atomics International, Canoga Park, California, a similar coil of inner diameter 0.5 in. in which a field of 59 kg had been generated. In both of these coils the alloy contained 25% Zr. (Since the conference at least two American firms are now offering to build solenoids capable of 50 kg with an inner diameter of 2 in. using Nb-Zr wire.)

First SC magnets

As John Hulm recalled some years later :

"Those tiny, primitive magnets were, of course, terribly unstable and tended to damage themselves on normalization, for reasons that are now well understood. One had to have faith to believe that these **erratic toys of the low temperature physicists** would ever be of any consequence as large engineered devices".

Why 50 years before magnet applications?

To prevent early quenches SC wires must have the following characteristics:

- 1. Type II with pinning centers
- **2. Fine filaments** and **metallic matrix** \rightarrow to prevent jumps instabilities
- **3.** Twist pitch \rightarrow to prevent coupling currents

Flux jumps instabilities

An external magnetic field penetrates a type-II superconductor in the mixed state through fluxoids. Fluxoid distribution depends on the applied magnetic field and on the current $\rm J_{\rm c}$

If the superconductor is subjected to a **thermal disturbance**, the **local change** in J_c produces a motion or "jump" of fluxoids, which is accompanied by power dissipation

The stability criteria for a slab in the adiabatic condition is:

$$a \le \sqrt{\frac{3\gamma C (T_c - T_{op})}{\mu_0 j_c^2}}$$

High conductivity **copper matrix reduces instability**

Flux jumps instabilities

$$a \le \sqrt{\frac{3\gamma C (T_c - T_{op})}{\mu_0 j_c^2}}$$

For Nb-Ti single diameter filament < 50 microns

LHC (CERN) filament diameter 6-7 µm

HERA (DESY) filament diameter 14 μ m

Effect of single wire diameter on Jc

Jc–B plots of Nb–Ti alloy containing 56 wt% Ti

Jc–B plots of Nb–Ti alloy containing 45 wt% Ti

Interfilament coupling \rightarrow Twist pitch

When a multifilamentary wire is subjected to a **time varying** magnetic field, current loops are generated between filaments

If **filaments are straight**, large loops are generated, with large currents \rightarrow High losses

If the strands are magnetically (or physically) coupled the effective filament size is larger → Flux jumps

The effect is significantly reduced by **twisting** the filaments (strand) just prior to final draw with a **twist pitch** on the order of **20-30 times** the **wire diameter**

Twist pitch ~ *12* – *30 mm*

Twist Pitch effect on Magnetization

Magnetization versus field ramp rate plots at 1 T of a Cu/Nb–Ti wire with 121 strands each 0.009 mm dia. in a 0.2 mm Cu-matrix composite

Quench protection

Above Tc superconductors have a very high resistivity

If **quenched**, a solitary Nb-Ti filament could reach **very high temperatures in a few milliseconds**

If the filament is embedded in a copper matrix:

when a quench occurs, the current redistributes into the matrix the higher heat capacity reduces Joule heating

- \rightarrow the peak T can typically be maintained below 300 K
- \rightarrow it allows the quench to propagate
- \rightarrow it provides time to act on the power circuit

LHC magnet incident - 1 year shut down

Damage of the LHC magnets in sector 3-4 of the LHC, provoked by the incident which happened on 19 September 2008

Visible damage to the LHC magnets in sector 3-4 of the LHC on November 12th, 2008. On September 19th, 2008, as the LHC was being switched on, a faulty electrical connection between two of the accelerator's magnets caused a large helium leak, which violently vented 6 tons of helium into the tunnel. The resulting temperature rise damaged some 53 magnets. (Maximilien Brice, © CERN)

LHC magnet incident (2)

Detail of some of the damage done to the LHC magnets in sector 3-4 on September 19th, 2008. (Maximilien Brice, © CERN)

Obvious damage to concrete, where a magnet has been lifted off its mount (the red boxes) that secured it to the floor (CERN)

LHC magnet incid

Views of two step of an ultrasound and induction welding to interconnection between two LHC magnet at sector 3-4 during repair operation on March 26th, 2009. (Maximilien Brice, © CERN)

A replacement magnet for LHC sector 3-4 being lowered in the tunnel on January 19th, 2009.

Moving and placement of a quadrupole at sector 3-4 in the LHC tunnel on April 30th, 2009

Why 50 years before magnet applications?

To prevent early quenches SC wires must have the following characteristics:

- 1. Type II with pinning centers
- **2. Fine filaments** and **metallic matrix** \rightarrow to prevent jumps instabilities
- **3.** Twist pitch \rightarrow to prevent coupling currents

Timeline of discovery of Superconductors

INFN

Practical SC

Only 3-4 superconductors have been used in real applications until now:

- NbTi
- Nb₃Sn
- MgB₂
- REBCO (RE= Rare-Earth)

Technically interesting superconductors

Compound	Year	T _c (K)	B _{c2} (0)	ξ (nm)	
		(1)	(1)	(1111)	
NbTi	1960	9.5	14.6	~ 6	
Nb ₃ Sn	1953	18.3	24 - 28	~4	(LTS)
PbMo ₆ S ₈	1970	15	60	2.2	
Nb ₃ Ge	1972	23	38	~4	
Nb ₃ AI	1975	19	33	~4	
MgB ₂	2001	39	$39^{a}_{bulk}; 60^{a}_{films}$	5	
(Ba _{0.6} K _{0.4})Fe ₂ As ₂	2007	38	70 - >135ª	2 - 3	
Bi2Sr2Ca1Cu2O8	1989	94	> 100ª	1 - 2	
$Bi_2Sr_2Ca_2Cu_3O_{10}$	1989	110	> 100ª	1 - 2	HTS
YBa ₂ Cu ₃ O ₇	1988	92	> 100ª	1 - 2	

Flukiger, ESAS Summer School, Wien 2018

Superconducting Wires

Round wires

- **NbTi** Still the most used wires: ~ 85 90% (MRI, accelerators)
- **Nb₃Sn** ~10%: NMR lab ma nets u to 23 T (accelerators LHC Upgrade)
- MgB₂ Low costs; Niche applications at 10-25 K (open MRI, LINK for LHC)
- Bi-2212 Possibility: Accelerators @ >20T. Problem: mechanical stability
- **Ba_{0.6}K_{0.4}Fe₂As₂ (Pnictides):** promising for very high field magnets B_{c2} > 70 T. Need further improvement. *Problems: Toxicity of As, complex metallurgy, weak links*

<u>Tapes</u>

- **Bi,Pb(2223)** Cables, motors at T < 30 K Problems: $B_{c2} @$ 77 K \leq 1 T, Costs
- **YBCO** Power Cables at 77 K, Very high field magnets $B_{c2} \ge 45T$ (Current limiters, wind generators, ...) Main Problem: costs Presently available: ~ 500 m {manufacturers in USA, J, Korea, Eu}

Current VS Field

Current VS Field

Critical Current Density of Practical Superconductors

R.G. Sharma, Superconductivity Basics and Applications to Magnets, Springer 2015

Field vs Temperature

Courtesy J. Jiang, Applied Superconductivity Center at the National High Magnetic Field Laboratory, FSU

New frontiers for HTS applications

Low Tc SC - Field VS T

NbTi and Nb₃Sn have been massively involved in the applications

39K

Low Tc commercial SC properties

Nb-Ti

- B_{c2} (OK) ~ 14 T
- T_c (0T) ~ 9.5 K
- Max practical field at 4.2 K is 7 T (9 T @ 1.8 K)
- Excellent mechanical properties (ductile)

Nb₃Sn

- B_{c2} (4.2 K) ~ 23 24 T
- T_c (0T) ~ 18 K
- Max practical field 17 18 T?
- Brittle and strain sensitive

Nb₃Al

- High J_c in magnetic field < 15 T
- Less strain sensitive than Nb₃Sn
- Not commercially available
- Rapid-quench process requires later addition of stabilizer
- Actively pursued in Japan but fading from the scene

The critical current density Jc vs the magnetic field

Applications involving NbTi and Nb₃Sn in High Field Magnets

APPLICATION	PRODUCED FIELD	SUPERCONDUCTOR
ITER Tokamak	12 T	Nb ₃ Sn
DEMO	~ 12 T	Nb ₃ Sn
Hilumi LHC (2024) Quadrupoles	≤ 12.5 T	Nb ₃ Sn
Hilumi LHC (2024) Dipoles	≤ 8 T	NbTi
FCC (2040?)	16 T	Nb ₃ Sn (needs further improvements) HTS possible

Nb-Ti

NbTi

Today: ~ 90 % of all industrial SC wires are based on NbTi

The cost is approximately 100-150 US\$ per kg of wire

From 1500 to 2000 metric tons are produced yearly. (Mostly MRI industry)

NbTi applications:

- MRI/NMR magnets up to 9T,
- For a background field in high field magnets (~ 9T)
- for accelerator magnets (dipoles in LHC, Tevatron, HERA, ...)
- Poloidal field coils in ITER fusion magnets
- Levitation train in Japan Tokyo-Osaka (2035-2040 under construction) Later replaced by other SC?

NbTi phase diagram

NbTi upper critical field and Tc

Highest known Jc values for NbTi

NbTi: Jc Enhancement adding pinning centers

- Normal conducting α -Ti precipitates act as effective pinning centers
- Precipitation of α -Ti phase can be promoted by optimized sequence of drawing steps (cold work) and heat treatments at 375 °C - 420 °C for 40h - 80h
- Precipitation of α -Ti depletes NbTi matrix in Ti close to the optimum NbTi composition for single phase material
- Cold drawing creates densely folded arrays of α -Ti precipitates
- After final cold work size of α -Ti precipitates is comparable to flux lattice spacing

TEM image of Ni-Ti filaments

, α-Ti ribbons

(1 - 2 nm thick - several µm long) form during wire deformation (non-equilibrium)

Defects at the interface with NbTi create the strong **vortex pinning**

TEM image of the microstructure (transverse cross-section) of a multifilamentary strand from OST, with 3700 A/mm2 (5T, 4.2 K) *D. Larbalestier and P. Lee, 1995*

Nb diffusion barrier

Problem of **sausages of the Nb–Ti filaments** solved by using **Nb-diffusion barrier** around each filament

Left Nb–Ti filaments with sausages caused by Cu–Ti intermetallic particles. Right Very uniform Nb–Ti filaments when the filaments are covered by the Nb-diffusion barrier

http://cbmm.com.br/portug/sources/techlib/science_techno/table_content/sub_3/images/pdfs/014.pdf

Fabrication process of Nb-Ti Multifilament Wires

Wire possible configurations

Fabrication process of Nb-Ti Multifilament Wires

Fig. 13(a): Assembly and transformation of mono-filament billet (Courtesy of Alstom/MSA).

Detailed fabrication process of Nb-Ti Wires

The fabrication of Nb-Ti wire starts from the **production of Nb-Ti ingots** (with a 200 mm diameter and 750 mm height)

A monofilament billet is assembled, extruded, and drawn down in small pieces (monofilament rods) about 800 mm long and 50 mm in diameter

Detailed fabrication process of Nb-Ti Wires

Monofilament rods are stacked to form a multifilament billet, which is then extruded and drawn down

Heat treatments are applied to produce pinning centers (a-Ti precipitates)

When the number of filaments is very large, multifilament rods can be re-stacked (double stacking process)

Cristian Pira

Wires fabrication process consideration

- The Cu to SC ratio is specified for the application to ensure quench protection, without compromising the overall critical current of the wire.
- The filament diameter is chosen to minimize flux jumps and field errors due to persistent currents, at the same time minimizing the wire processing cost.
- The interfilament spacing is kept small so that the filaments, harder than copper, support each other during drawing. At the same time, the spacing must be large enough to prevent filament coupling or distortion.
- A copper core and sheath is added to increase the copper fraction and for processing.
- Nb sheath around Nb-Ti to prevent formation of Cu-Ti intermetallics.
- The main manufacturing issue is the piece length.
- It is preferable to wind coils with a single-piece wire (to avoid cold welding)
 - \rightarrow LHC required piece lengths longer than 1 km!

Niobium and tin can form an **intermetallic compound**, with the formula Nb_3Sn , from the A15 family

- *T_C* and *B_{C2}* depend on Sn content: the optimal is 24-25 in weight%
- T_c is ~18 K @ 0 T and zero strain
- *B_{c2}* is ~18 T @ 4.2 K
 → up to 27 T with Ga or Ta doping
- The critical current Jc depends on the microstructure (grain structure)
- High Jc obtained with grains from 30 to 300 nm

- Nb₃Sn is brittle, therefore it cannot be extruded as NbTi
- The formation of Nb₃Sn must occur only at the end of the cable and/or coil fabrication process.
- Nb_3Sn is strain sensitive: its critical parameters depend on the applied strain (reversible for small strain)
- The cost is approximately 700-2000 US\$ per kg of wire (NbTi 100-150 US\$)
- About 15 metric tons are produced yearly

Nb₃Sn Phase diagram

- Complex phase diagram
- Above 1000 °C Nb₃Sn is the only phase possible

Tc vs Sn content in A15 phase of Nb₃Sn

Linearity up to 24.5 at.% Sn

Saturation at > 24.5 at.%

Electrical resistivity of Nb₃Sn

- Nb₃Sn is perfectly ordered
- Strongest variation of ρ_0 very close to stoichiometry
- ρ_0 increases strongly, from
- $\sim 5 \; \mu \Omega cm$ at 25 at. % Sn
- $\sim 20 \; \mu \Omega cm$ at 24.5 at. % Sn

B_{c2} vs Sn content in A15 phase of Nb₃Sn

Strong **reduction** of the electronic **mean free** path at > 24.5 % Sn

$$B_{c2} = T_c \gamma \rho_0$$

Clean and dirty limit

$$B_{c2} = T_c \gamma \rho_0$$

Clean limit low $\rho_0 < 5 \mu\Omega cm$ at 25 very close to stoichiometry

Dirty limit high $\rho_0 > 20 \mu\Omega cm$ deviation from stoichiometry or disordered

Enhancement of resistivity by Ta and Ti additives

Jc VS B by Ta and Ti additives

Nb₃Sn wires with high Sn content

How increase Jc?

J_c is determined by the achievable pinning force F_p

Grain boundaries are the main pinning centers in Nb₃Sn

Effects of grain size and pinning force in Nb₃Sn

Lower reaction temperatures

Decrease of grain size

W. Shauer et al. 1984

Nb₃Sn Production processes

- 3 different main synthesis route
- Bronze route
- Internal Sn
- Powder in tube (PIT)

Bronze route

Nb rods are inserted in a bronze (CuSn) matrix. Pure copper is put in the periphery and protected with a diffusion barrier (Ta) to avoid contamination. (Preserve low resistivity of the Cu)

- Advantage: small filament size
- **Disadvantage**: **limited amount of Sn** in bronze and annealing steps during wire fabrication to maintain bronze ductility.
- Non-Cu J_c up to 1000 A/mm² at 4.2 K and 12 T.
- Application in magnetic fields up to 23 T (at 1.8K)

Bronze route process

Bronze route variants

European Advanced Superconductors

Internal Tin Process

A tin core is surrounded by Nb rods embedded in Cu (Rod Restack Process, RRP) or by layers of Nb and Cu (Modify Jelly Roll, MJR) Each sub-element has a diffusion barrier.

- Advantage: no annealing steps and more Sn in the sub-element
- **Disadvantage:** difficult to achieve small effective filaments. To get below 50 microns without giving up Jc
- Non-Cu J_c up to 3000 A/mm² at 4.2 K and 12 T.

(INFN 🖉

Internal Tin Process

Cristian Pira

Powder on tube (PIT) process

NbSn2 powder is inserted in a Nb tube, put into a copper tube. The un-reacted external part of the Nb tube is the barrier.

- Advantage: small filament size (30 µm) and short heat treatment
- (proximity of Sn to Nb).
- Disadvantage: fabrication cost and Jc generally lower than RRP.
- Non-Cu J_c up to 2300 A/mm² at 4.2 K and 12 T.

Powder on tube (PIT) process

Cristian Pira

Synthesis method properties comparison

	Bronze Route	Powder in Tube (PIT)	Internal Sn
Critical current density @12T	low	high	highest j _c
	1,000 A/mm²	>2,500 A/mm ²	3,000 A/mm²
Filament quality	excellent and small filament Ø (~5µm)	medium filament Ø (~30-50µm)	large effective filament Ø (~100µm)
Hysteresis losses	low 190 mJ/cm ³ +/-3T	~ 400 mJ/cm ³	high, ~1700 mJ/cm ³ due to large effective filament Ø
Residual Resistance Ratio RRR	high, > 100	> 70	low, < 40, due to Sn poisening of the Cu matrix

Bernhard Holzapfel, ESAS summer school 2018

Synthesis method production comparison

	Bronze Route	Powder in Tube	Internal Sn
Production	long wire length available frequent intermediate annealing required because of bronze work hardening	expensive Nb tubes and special powders	no intermediate annealing steps necessary due to bronze work hardening no hot extrusion possible due to the low melting point of Sn => additional drawing steps and reduced bonding

Bernhard Holzapfel, ESAS summer school 2018

Synthesis method properties comparison

Synthesis method Tc comparison

Clear difference between Bronze route and Internal Sn (RRP) wires:

Bronze Route wires have a lower Tc lower average Sn content

Applications requirements

Used in:

- NMR, with field of about 20 T
- Model coils for ITER
- Hilumi LHC
- FCC
- High energy physics (Laboratory R&D)

Final considerations on Nb₃Sn

- Bronze route wires: best suited for "persistent mode" operation of NMR magnets, in spite of their lower Jc value with respect to Internal wires
- Internal Sn (RRP) and Powder-in-Tube (PIT) wires satisfy conditions for Hilumi LHC accelerator magnets: Jc= 1500 A/mm² at 4.2K/12T
- Future FCC, requirements: Jc = 1500 A/mm² at 4.2K/16T \rightarrow under work

Wires and cables

For practical applications, superconducting materials are produced in **small filaments** and **surrounded by a stabilizer** (typically copper) to form a **multifilament wire** or strand

A **superconducting cable** is composed of **several wires into multistrand cable**

LHC, CERN

Wires and cables

For practical applications, superconducting materials are produced in **small filaments** and **surrounded by a stabilizer** (typically copper) to form a **multifilament wire** or strand

A **superconducting cable** is composed of **several wires into multistrand cable**

ITER

Rutherford cable

Most of the superconducting coils for particle accelerators are wound from a multi-strand cable

The **strands are twisted** to:

- reduce interstrand coupling currents
- provide more mechanical stability

The most commonly used multi-strand cables are the Rutherford cable

Risk of deformation

Severe edge deformation

Acceptable edge deformation

70

Cable insulation

The cable insulation must feature:

- Good electrical properties to withstand high turn-to-turn voltages after a quench
- Good mechanical properties to withstand high pressure conditions
- Porosity to allow penetration of helium (or epoxy)
- Radiation hardness

In Nb-Ti magnets the most common insulation is a series of overlapped layers of polyimide (kapton)

In the LHC case: two polyimide layers $50.8 \mu m$ thick wrapped around the cable with a 50% overlap, with another adhesive polyimide tape $68.6 \mu m$ thick wrapped with a spacing of 2 mm.

Cable insulation (Nb₃Sn)

In Nb₃Sn magnets, where coils are reacted at 600-700 °C,

the most common insulation is a tape or sleeve of **fiberglass**

Typically the insulation thickness varies between 100 and 200 μm

For short lengths sleeve can be put on by hand. For longer lengths it is braided directly on the cable

Nexans MgB₂Sn power cable

MgB₂ properties

- Tc = 39 K
- Two gaps superconductor
- H_{irr} up to 15 T (10 T in commercial applications)

insight review articles

High- T_c superconducting materials for electric power applications

David Larbalestier, Alex Gurevich, D. Matthew Feldmann & Anatoly Polyanskii

Applied Superconductivity Center, Department of Materials Science and Engineering, Department of Physics, University of Wisconsin, Alackson, Wisconsin 53706 USA (e-mail: Incluient a @engr.wh.c.ed.u)

Fabrication Methods for MgB₂ Conductors *Powder-in-Tube technique (PIT)*

MgB₂ PIT Ex-Situ or In-Situ

Use of prereacted MgB₂ precursor powders

- Macroscopic transport currents even without heat treatment
- Heat treatment above ~800°C improves grain connectivity and releases stresses → higher Jc
- Doping difficult

Use of Mg-B precursor powder mixtures

- Heat treatment necessary for MgB₂ phase formation
- Heat treatment at 600-700 °C aready leads to high Jc values
- Incorporation of dopants easier

Different MgB₂ wires strategy by PIT

Different MgB₂ wires sheath materials

Mono- or Multi-component Sheath (depends on application)

- Fe, Ti, Ni, alloys, e.g. Cu-Ni, Cu-Sn, ...
- Thermal stabilization (high electrical and therm. conductivity) → Cu, Glidcop[™], Al, ...
- Barriers (prevent filament-sheath reaction) → Nb, Ta, ...
- Mechanical reinforcement → Stainless steel, Monel, ...

Important Features

- High ductility to ensure good deformability
- Low reactivity with filament
- Adjustment of hardness of single components in composite sheaths
- Harder sheath materials for high density and good grain connectivity (volume shrinkage during Mg + 2B → MgB₂ phase formation)

Conductor with Fe-Sheath

Heat treatment: 905°C →Thick reaction layer ~ 30 µm

Heat treatment: 640°C \rightarrow Thin reaction layer ~ 2-4 µm

Lower temperature favorable for thin filaments *I* thin wires

Conductor with Cu-Sheath

Heat treatment above ~ 500°C

- → Diffusion of Cu into whole filament, development of Mg-Cu-Phases (Mg₂Cu, MgCu₂)
- → Limitation of transport currents

Solution: Nb or Ta barrier between filament and Cu

200 µm

Improvement of Current Carrying Capability

Current Densities of PIT Wires and Tapes lower than in best thin Films

Intrinsic Improvements to J_c(B)

- Increase upper critical field B_{c2} with dopants
- Increase J_c by flux pinning

Extrinsic Improvements to J_c(B)

- Reduced porosity
- Improved connectivity

Improvement of Current Carrying Capability

Additions tested for Jc enhancement

(flux pinning sites, charge carrier scattering, sinter aids, etc.)

Nitrides, borides, and silicides

 Si_3N_4 , WB, ZrB_2 , TiB_2 , NbB_2 , AIB_2 , CaB_6 , WSi_2 , $ZrSi_2$, ...

Carbon and carbon inorganics

C (nanotubes), C (nanodiamond), TiC, SiC, B₄C, Na₂CO₃, ...

Metal oxides

Dy₂O₃, HoO₂, TiO₂, Pr₆O₁₁, SiO₂, ...

Metallic elements

Ti, Zr, Mo, Ta, Fe, Co, Ni, Cu, Ag, Al, Si, La, ...

Organic Dopants

Sugar, malic acid, malic anhydride, paraffin, toluene, ethanol, acetone, polyvinyl alcohol, tartaric acid, ethyltoluene, ...

Carbon doping

C substitutes B

- disorder in B planes
- reduction of mean free path by enhanced scattering
- increase of upper critical field Bc2
- Introduction of nano-sized flux pinning sites

C-Doping - up to now best results for Jc-enhancement in high magnetic fields

MgB₂ Cost estimation

Source: M. Rindfleisch, HyperTech Res., Presentation MgB₂-Workshop, Twente, 01/2008

Where we have to go	NbTi today		MgB ₂ Year 20??		
Application temperature (K)	4 K	4 K	20 K	10 K	4 K
Magnetic field	4 T	10 T	2 T	4 T	10 T
\$ / kA·m	~ 1.00	~ 6.50	1.40	1.40	3.50

Advantages of MgB₂compared to LTS

- Low field (1.5 3 T) Conduction cooled magnets @ 4-20 K (cryo coolers; cryogen free)
- High field (10 T) low conductor cost
- Low weight

MgB₂ Applications

- MRI Magnets (e.g. Ansaldo + Columbus Superconductors; ...)
- Transformers (HyperTech Res. + US Navy)
- Motors I Generators with LH₂ -Cooling (SupraPower)
- Accelerator Magnets (HyperTech Res. + Department of Energy)
- MARIMBO-Project: **dipole magnet for accelerator** (Ansaldo + INFN)
- Superconducting Fault Current Limiter (Ansaldo, Rolls Royce, ...)
- Induction heater (EU-Project "ALUHEAT", 06/2005 05/2008)
- Adiabatic Demagnetization Refrigerator (HyperTech Res. + NASA)
- MgB₂ Cables (Columbus + CERN)

MgB₂ Summary

- Tc higher than for NbTi and Nb₃Sn \rightarrow higher temperature margin
- **Round conductor geometry** → cabling simple (compared to HTS)
- To replace NbTi or Nb₃Sn Jc must be improved (H_{c2}, flux pinning, grain connectivity)
- Extremely **good** J_c(B) properties already demonstrated for **thin films**
- Conductor **COST** in future **OWER** than for Nb₃Sn und maybe even NbTi
- First applications are realized
- Interesting option for low ac-loss stator windings in electric aircrafts

REBCO

REBCO cable prototype, CERN

87

High Tc Superconductors - Cuprates

It was the first superconductor with Tc above 77 K discovered

 $B_{c2}(T)$

>100

ξ(nm)

1.2/0.2

- It features a **simpler cell than BSCCO** with 2 CuO₂ planes
- It also has a lower anisotropy than BSCCO

Cristian Pira

In the superconducting phase the unit cell has a slight orthorhombic basal distortion that causes one of the two base axes to be larger than the other

89

 $T_c(K)$

~92

 $\lambda(nm)$

140/600

Nome

YBCO

5÷7

κ

~120

Cuprates - Layered structure

They present very complicated, layer-structured unit cells Each of the layers has its own function in establishing SC properties

- Cu-O chains: function as charge carrier reserves
- Cu-O₂ planes: are the planes where the superconductivity is located
- → apical oxygens: regulate the exchange of carriers between planes and chains
- insulating layers: adjust the valence of copper in Cu-O planes

This structure results in a strong anisotropy of both microscopic ($\lambda_{ab} \neq \lambda_c$, $\xi_{ab} \neq \xi_c$) and macroscopic properties (H_c , J_c)

HTSC grain boundary challenge

High J_c in polycrystalline materials requires **Strong biaxial texture**

HTSC grain boundary challenge

High J_c in polycrystalline materials requires **Strong biaxial texture**

(INFN 🕘

Bi-axial YBCO growth

Epitaxially grow the **YBCO** in the form of a **film** on a **template** already **biaxially textured**

METALLIC TAPE

- must give the conductor flexibility
- must not be magnetic

BUFFER LAYERS

- must be biaxially textured
- it should promote the epitaxial YBCO growth
- must act as a barrier to metal diffusion from the substrate
- it must be chemically YBCO compatible

METALLIC STABILYZER (Cu, Ag)

- must provide an alternative path for the current in case of quench (electrical shunt)
- must dissipate heat in case of quench (shunt thermal shunt)

Film growth NIW - CeO₂ - YSZ - CeO₂ - YBCO

Coated conductor techniques

Rolling Assisted Biaxially Textured Substrates (RABiTS)

The **substrate** is prepared by mechanical processes (**lamination**) and thermal processes (**annealing**) in order to have a very smooth surface, clean but above all a very good **biaxial texture**

The **texture** is transferred to the YBCO, via the **buffer layers** by **epitaxial growths**. In this case the choice of the **substrate** must also take into account its crystal structure, which must be **cubic**

Ion Beam Assisted Deposition (IBAD/ABAD)

2 sputtering sources are used:

- 1. Affects the target material to be deposited
- 2. Directed on the deposited material according to a precise angle.

In this way, a selective sputtering of the deposited material is obtained, which induces a tissue growth

The metal substrate is polycrystalline (non-textured) - Hastelloy (Ni alloy)

The **texture is artificially induced** on one of the **buffer layers**

YBCO coating methods

PLD (Pulsed Laser Deposition)

A **laser beam** etches a **target of stoichiometric material** (sintered powders) and heats it locally. An evaporation cloud called **plume** is formed, which **condenses** on the substrate placed in front and forms the **film**

YBCO coating methods

MOCVD (Metal-Organic Chemical Vapor Deposition

The **organic precursor** of the compound to be deposited is brought into the **reaction chamber** by a **lamellar flow of gas.**

The **thermal energy** of the substrate is sufficient to **decompose** the precursor causing deposition of the material and evaporation of the organic solvent.

For YBCO the precursor is **M(Tetramethyl HeptaDionate)** with M=Y, Ba, Cu

REBCO final remarks

- YBCO represents only 1% of all material used in the cable
- Tapes are a bad geometry for AC losses: no multifilament or twisting possible
- Mechanical stability is often still an issue
- Economy of scale has still to be worked out
- Room for improvement

Bibliography of this part

- R.G. Sharma, "<u>Superconductivity Basics and Applications to Magnets</u>", Springer Chapter 6 Practical Superconductors
- R. Flukiger, B. Holzapfel, EASISchool ESAS Summer School 2018

