Probabilistic Model Checking

Lecture 7
 Continuous-time Markov chains

Alessandro Abate

Department of Computer Science University of Oxford

Time in DTMCs

- Time in a DTMC proceeds in discrete steps
- Two possible interpretations:
- accurate model of (discrete) time units
- e.g. clock ticks in model of an embedded device
- time-abstract
. no information assumed about the time transitions take
- Continuous-time Markov chains (CTMCs)
- dense model of time
- transitions can occur at any (real-valued) time instant
- modelled using exponential distributions

Overview

- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
- definition, examples
- race condition
- embedded DTMC
- generator matrix
- Paths and probabilities
- probabilistic reachability

Continuous probability distributions

- Consider r.v. X defined by:
- cumulative distribution function (cdf)

$$
F(t)=\operatorname{Pr}(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

- f being the probability density function (pdf)
$-\operatorname{Pr}(\mathrm{X}=\mathrm{t})=0$ for all t

- Example: uniform distribution: $\mathrm{U}(\mathrm{a}, \mathrm{b})$

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{cc}
1 / b-a & \text { if } a \leq t \leq b \\
0 & \text { otherwise }
\end{array}\right. \\
& F(t)=\left\{\begin{array}{cc}
0 & \text { if } t<a \\
t-a / b-a & \text { if } a \leq t<b \\
1 & \text { if } t \geq b
\end{array}\right.
\end{aligned}
$$

Exponential distribution

- A continuous random variable X is exponential with parameter $\lambda>0$ if the density function is given by:

$$
f(t)=\left\{\begin{array}{cl}
\lambda \cdot \mathrm{e}^{-\lambda \cdot t} & \text { if } \mathrm{t}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- we write: X ~ Exponential (λ)
- Cumulative distribution function (for $t \geq 0$):

$$
\mathrm{F}(\mathrm{t})=\operatorname{Pr}(\mathrm{X} \leq \mathrm{t})=\int_{0}^{\mathrm{t}} \lambda \cdot \mathrm{e}^{-\lambda \cdot x} \mathrm{dx}=\left[-\mathrm{e}^{-\lambda \cdot x}\right]_{0}^{\mathrm{t}}=1-\mathrm{e}^{-\lambda \cdot \mathrm{t}}
$$

- Other properties:
- negation: $\operatorname{Pr}(X>t)=e^{-\lambda \cdot t}$
- mean (expectation): $\mathrm{E}[\mathrm{X}]=\int_{0}^{\infty} \mathrm{x} \cdot \lambda \cdot \mathrm{e}^{-\lambda \cdot x} \mathrm{dx}=\frac{1}{\lambda}$
- variance: $\operatorname{Var}(\mathrm{X})=1 / \lambda^{2}$

Exponential distribution - Examples

- The larger the value of λ, the faster the c.d.f. approaches 1 (saturates)

Exponential distribution

- Adequate for modelling many real-life phenomena (constant rate, independent events)
- Failures in process engineering
- e.g. time before machine component fails
- Inter-arrival times in communication engineering
- e.g. time before next call/customer arrives to a call centre/shop
- Biological/chemical systems
- e.g. times within successive reactions between species
- Maximal entropy ("uncertainty") if just the mean is known
- i.e. best approximation when only mean is known
- Can approximate general distributions arbitrarily closely
- phase-type distributions

Exponential distribution - Property 1

- The exponential distribution has the memoryless property:

$$
-\operatorname{Pr}\left(X>t_{1}+t_{2} \mid X>t_{1}\right)=\operatorname{Pr}\left(X>t_{2}\right)
$$

- The exponential distribution is the only continuous distribution that is memoryless
- discrete-time equivalent is the geometric distribution

Exponential distribution - Property 1

- The exponential distribution has the memoryless property:

$$
-\operatorname{Pr}\left(X>t_{1}+t_{2} \mid X>t_{1}\right)=\operatorname{Pr}\left(X>t_{2}\right)
$$

- $\operatorname{Pr}\left(X>t_{1}+t_{2} \mid X>t_{1}\right)=\operatorname{Pr}\left(X>t_{1}+t_{2} \wedge X>t_{1}\right) / \operatorname{Pr}\left(X>t_{1}\right)$ $=\operatorname{Pr}\left(X>t_{1}+t_{2}\right) / \operatorname{Pr}\left(X>t_{1}\right)$

$$
=\mathrm{e}^{-\lambda \cdot(\mathrm{t} 1+\mathrm{t} 2)} / \mathrm{e}^{-\lambda \cdot \mathrm{t} 1}
$$

$$
=\left(e^{-\lambda \cdot t 1} \cdot e^{-\lambda \cdot t 2}\right) / e^{-\lambda \cdot t 1}
$$

$$
=e^{-\lambda \cdot t 2}
$$

$$
=\operatorname{Pr}\left(X>t_{2}\right)
$$

- The exponential distribution is the only continuous distribution that is memoryless
- discrete-time equivalent is the geometric distribution

Exponential distribution - Property 2

- The minimum of two independent exponential distributions is an exponential distribution (parameter is sum)
$-X_{1} \sim \operatorname{Exponential}\left(\lambda_{1}\right), X_{2} \sim \operatorname{Exponential}\left(\lambda_{2}\right)$
$-\mathrm{Y}=\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$
$-\mathrm{Y} \sim \operatorname{Exponential}\left(\lambda_{1}+\lambda_{2}\right)$
- Generalises to minimum of n distributions
- Maximum is not exponential

Exponential distribution - Property 2

- The minimum of two independent exponential distributions is an exponential distribution (parameter is sum)
$-X_{1} \sim \operatorname{Exponential}\left(\lambda_{1}\right), X_{2} \sim \operatorname{Exponential}\left(\lambda_{2}\right)$
$-\mathrm{Y}=\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{Y} \leq \mathrm{t}) & =\operatorname{Pr}\left(\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \leq \mathrm{t}\right) \\
& =1-\operatorname{Pr}\left(\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)>\mathrm{t}\right) \\
& =1-\operatorname{Pr}\left(\mathrm{X}_{1}>\mathrm{t} \wedge \mathrm{X}_{2}>\mathrm{t}\right) \\
& =1-\operatorname{Pr}\left(\mathrm{X}_{1}>\mathrm{t}\right) \cdot \operatorname{Pr}\left(\mathrm{X}_{2}>\mathrm{t}\right) \\
& =1-\mathrm{e}^{-\lambda_{1} \cdot \mathrm{t}} \cdot \mathrm{e}^{-\lambda_{2} \cdot t} \\
& =1-\mathrm{e}^{-\left(\lambda_{1}+\lambda_{2}\right) \cdot t}
\end{aligned}
$$

$-\mathrm{Y} \sim \operatorname{Exponential}\left(\lambda_{1}+\lambda_{2}\right)$

- Generalises to minimum of n distributions
- Maximum is not exponential

Exponential distribution - Property 3

- Consider two independent exponential distributions
$-X_{1} \sim \operatorname{Exponential}\left(\lambda_{1}\right), X_{2} \sim \operatorname{Exponential}\left(\lambda_{2}\right)$
- what is the probability that $X_{1}<X_{2}$?

$$
\begin{array}{r}
P\left(X_{1}<X_{2}\right)=P\left(\min \left\{X_{1}, X_{2}\right\}=X_{1}\right) \\
=\int_{0}^{\infty} P\left(X_{1}=x\right) P\left(X_{2}>x\right) d x \\
=\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} x} e^{-\lambda_{2} x} d x \\
=\lambda_{1} \int_{0}^{\infty} e^{-\left(\lambda_{1}+\lambda_{2}\right) x} d x \\
=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
\end{array}
$$

- probability that $X_{1}<X_{2}$ is $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$
- Generalises to n distributions

Continuous-time Markov chains

- Continuous-time Markov chains (CTMCs)
- labelled transition systems augmented with rates
- discrete states
- continuous time steps
- delays exponentially distributed
- Suited to modelling:
- reliability/dependency models
- control systems
- queueing and communication networks
- biological pathways
- chemical reaction nets
- DNA computing ...

Continuous-time Markov chains

- Formally, a CTMC C is a tuple $\left(\mathrm{S}, \mathrm{s}_{\mathrm{init}}, \mathrm{R}, \mathrm{L}\right)$ where:
- S is a finite set of states ("state space")
$-s_{\text {init }} \in S$ is the initial state
$-\mathbf{R}: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the transition rate matrix
$-\mathrm{L}: \mathrm{S} \rightarrow 2^{\text {AP }}$ is a labelling with atomic propositions
- Transition rate matrix assigns rates to each pair of states
- used as a parameter to the exponential distribution
- transition between s and s^{\prime} when $R\left(s, s^{\prime}\right)>0$
- probability of transition before t time units: $1-\mathrm{e}^{-R\left(s, s^{\prime}\right) \cdot t}$
- Assumption for this lecture
- by convention, $\mathrm{R}(\mathrm{s}, \mathrm{s})=0$ (can be generalised easily)

Simple CTMC example

- Modelling a queue of jobs
- maximum size of the queue is 3
- state space: $S=\left\{s_{i}\right\}_{i=0 . .3}$ where s_{i} indicates i jobs in queue
- initially the queue is empty
- jobs arrive with rate $3 / 2$ (i.e. mean inter-arrival time is $2 / 3$)
- jobs are served with rate 3 (i.e. mean service time is $1 / 3$)

Race conditions

- What happens when there exists multiple s^{\prime} with $R\left(s, s^{\prime}\right)>0$?
- race condition: first transition triggered determines next state
- two questions:
- 1. How long is spent in s before a transition occurs?
. 2. Which transition is eventually taken?
- 1. Time spent in a state before a transition
- minimum of exponential distributions
- exponential with parameter given by summation:

$$
\mathrm{E}(s)=\sum_{s^{\prime} \in S} \mathrm{R}\left(s, s^{\prime}\right)
$$

- probability of leaving a state s within $[0, \mathrm{t}]$ is $1-\mathrm{e}^{-\mathrm{E}(\mathrm{s}) \cdot \mathrm{t}}$
- $\mathrm{E}(\mathrm{s})$ is the exit rate for state s
- s is called absorbing if $E(s)=0$ (no outgoing transitions)

Race conditions (cont'd)

- 2. Which transition is taken from state s ?
- the choice is independent of the time at which it occurs
- e.g. if $X_{1} \sim \operatorname{Exponential}\left(\lambda_{1}\right), X_{2} \sim \operatorname{Exponential}\left(\lambda_{2}\right)$
- then the probability that $X_{1}<X_{2}$ is $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$
- more generally, the probability is given by...
- The embedded DTMC: emb(C)=(S, $\left.\mathrm{s}_{\text {init }}, \mathrm{Pemb}(\mathrm{C}), \mathrm{L}\right)$
- state space, initial state and labelling as the CTMC
- for any s,s' $\in S$

$$
\mathbf{P e m b}^{(\mathrm{C})}\left(s, s^{\prime}\right)=\left\{\begin{array}{cl}
R\left(s, s^{\prime}\right) / E(s) & \text { if } E(s)>0 \\
1 & \text { if } E(s)=0 \text { and } s=s^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Probability that next state from s is s^{\prime} given by $\operatorname{Pemb(C)}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$

Two interpretations of a CTMC

- Consider a (non-absorbing) state $s \in S$ with multiple outgoing transitions, i.e. multiple s' $\in S$ with $R\left(s, s^{\prime}\right)>0$
- 1. Race condition
- each transition triggered after exponentially distributed delay
. i.e. probability triggered before t time units: $1-e^{-R(s, s ') \cdot t}$
- first transition triggered determines the next state
- 2. Separate delay/transition
- remain in s for delay exponentially distributed with rate $\mathrm{E}(\mathrm{s})$
. i.e. probability of taking an outgoing transition from s within $[0, t]$ is given by $1-\mathrm{e}^{-\mathrm{E}(\mathrm{s}) \cdot \mathrm{t}}$
- probability that next state is s^{\prime} is given by $\operatorname{Pemb}(C)\left(s, s^{\prime}\right)$
- i.e. $R\left(s, s^{\prime}\right) / E(s)=R\left(s, s^{\prime}\right) / \Sigma_{s^{\prime} \in S} R\left(s, s^{\prime}\right)$

More on CTMCs...

- Infinitesimal generator matrix Q

$$
Q\left(s, s^{\prime}\right)=\left\{\begin{array}{cl}
R\left(s, s^{\prime}\right) & s \neq s^{\prime} \\
-\sum_{s \neq s^{\prime}} R\left(s, s^{\prime}\right) & \text { otherwise }
\end{array}\right.
$$

- Alternative definition: a CTMC is:
- a family of random variables $\left\{\mathrm{X}(\mathrm{t}) \mid \mathrm{t} \in \mathbb{R}_{\geq 0}\right\}$
- $X(t)$ are observations made at time instant t
- i.e. $X(t)$ is the state of the system at time instant t
- which satisfies...
- Memoryless (Markov property)

$$
\operatorname{Pr}\left(X\left(t_{k+1}\right)=s_{k+1} \mid X\left(t_{k}\right)=s_{k}, \ldots, X\left(t_{0}\right)=s_{0}\right)=\operatorname{Pr}\left(X\left(t_{k+1}\right)=s_{k+1} \mid X\left(t_{k}\right)=s_{k}\right)
$$

Simple CTMC example...

$$
\begin{aligned}
& C=\left(S, s_{\text {init }}, R, L\right) \\
& \mathrm{S}=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\} \\
& \mathrm{s}_{\text {init }}=\mathrm{S}_{0} \\
& \text { AP }=\{\text { empty, full }\} \\
& \mathrm{L}\left(\mathrm{~s}_{0}\right)=\{\text { empty }\}, \mathrm{L}\left(\mathrm{~s}_{1}\right)=\mathrm{L}\left(\mathrm{~s}_{2}\right)=\varnothing \text { and } \mathrm{L}\left(\mathrm{~s}_{3}\right)=\{f u l l\} \\
& \text { transition } \\
& \text { rate matrix } \\
& \text { infinitesimal } \\
& \text { generator matrix }
\end{aligned}
$$

Example 2

- 3 machines, each can fail independently
- delay modelled as exponential distributions
- failure rate λ, i.e. mean-time to failure (MTTF) $=1 / \lambda$
- One repair unit
- repairs a single machine at rate μ (also exponential)
- State space:
- $S=\left\{s_{i}\right\}_{i=0.3}$ where s_{i} indicates i machines operational

Example 3

- Chemical reaction system: two species A and B
- Two reactions:

$$
A+B \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} A B \quad A \xrightarrow{k_{3}}
$$

- reversible reaction under which species A and B bind to form $A B$ (forwards rate $=|A| \cdot|B| \cdot k_{1}$, backwards rate $\left.=|A B| \cdot k_{2}\right)$
- degradation of A (rate $|A| \cdot \mathrm{K}_{3}$)
- $|\mathrm{X}|$ denotes number of molecules of species X
- CTMC with state space
- (|A|,|B|,|AB|)
- initially (2,2,0)

Paths of a CTMC

- An infinite path ω is a sequence $s_{0} t_{0} s_{1} t_{1} s_{2} t_{2} \ldots$ such that
$-R\left(s_{i}, s_{i+1}\right)>0$ and $t_{i} \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$
$-t_{i}$ denotes the amount of time spent in s_{i}
- or a sequence $s_{0} t_{0} s_{1} t_{1} s_{2} t_{2} \ldots t_{k-1} s_{k}$ such that
$-R\left(s_{i}, s_{i+1}\right)>0$ and $t_{i} \in \mathbb{R}_{>0}$ for all $i<k$
- where s_{k} is absorbing (i.e. $R\left(s_{k}, s^{\prime}\right)=0$ for all $s^{\prime} \in S$)
- i.e. it remains in state s_{k} indefinitely
- Path(s) denotes all infinite paths starting in state s
- Further notation:
- time $(\omega, j)=$ amount of time spent in the jth state, i.e. t_{j}
- $\omega @ \mathrm{t}=$ state occupied at time t
- see e.g. [BHHK03, KNP07a] for precise definitions

Recall: Probability spaces

- A σ-algebra (or σ-field) on Ω is a set Σ of subsets of Ω closed under complementation and countable union, i.e.:
- if $A \in \Sigma$, the complement $\Omega \backslash A$ is in Σ
- if $A_{i} \in \Sigma$ for $i \in \mathbb{N}$, the union $\cup_{i} A_{i}$ is in Σ
- the empty set \varnothing is in Σ
- Elements of Σ are called measurable sets or events
- Theorem: For any set F of subsets of Ω, there exists a unique smallest σ-algebra on Ω containing F
- Probability space ($\Omega, \Sigma, \operatorname{Pr}$)
$-\Omega$ is the sample space
$-\Sigma$ is the set of events: σ-algebra on Ω
$-\operatorname{Pr}: \Sigma \rightarrow[0,1]$ is the probability measure:
$\operatorname{Pr}(\Omega)=1$ and $\operatorname{Pr}\left(\cup_{i} A_{i}\right)=\Sigma_{i} \operatorname{Pr}\left(A_{i}\right)$ for countable disjoint A_{i}

Probability space

- Sample space: Path(s) (set of all inf. paths from a state s)
- Events: sets of infinite paths
- Basic events: cylinders
- cylinders = sets of paths with common finite prefix
- include time intervals in cylinders
- Finite prefix is a sequence $\mathrm{s}_{0}, \mathrm{l}_{0}, \mathrm{~s}_{1}, \mathrm{l}_{1}, \ldots, \mathrm{I}_{\mathrm{n}-1}, \mathrm{~s}_{\mathrm{n}}$
- $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$ sequence of states where $\mathrm{R}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}+1}\right)>0$ for $\mathrm{i}<\mathrm{n}$
- $I_{0}, I_{1}, I_{2}, \ldots, I_{n-1}$ sequence of non-empty intervals of $\mathbb{R}_{\geq 0}$
- Cylinder $\mathrm{Cyl}\left(\mathrm{s}_{0}, \mathrm{I}_{0}, \mathrm{~s}_{1}, \mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}-1}, \mathrm{~s}_{\mathrm{n}}\right)$ is the set of infinite paths:
$-\omega(i)=s_{i}$ for all $i \leq n$ and time $(\omega, i) \in l_{i}$ for all $i<n$

Probability space

- Define probability measure over cylinders inductively
- $\operatorname{Pr}_{\mathrm{s}}(\mathrm{Cyl}(\mathrm{s}))=1$
- $\operatorname{Pr}_{\mathrm{s}}\left(\operatorname{Cyl}\left(\mathrm{s}, \mathrm{l}, \mathrm{s}_{1}, \mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}-1}, \mathrm{~s}_{\mathrm{n}}, \mathrm{l}^{\prime}, \mathrm{s}^{\prime}\right)\right)$ equals:

from s_{n} to s^{\prime} (defined using embedded DTMC)
probability of time spent in state S_{n} is within the interval I'

Probability space - Example

- Probability of leaving the initial state s_{0} and moving to state s_{1} within the first 2 time units of operation
- Cylinder Cyl($\left.\mathrm{s}_{0},(0,2], \mathrm{s}_{1}\right)$
- $\operatorname{Pr}_{50}\left(\mathrm{Cyl}\left(\mathrm{s}_{0},(0,2], \mathrm{s}_{1}\right)\right)$

$=\operatorname{Pr}_{50}\left(\operatorname{Cyl}\left(\mathrm{~s}_{0}\right)\right) \cdot \operatorname{Pemb}(\mathrm{C})\left(\mathrm{s}_{0}, \mathrm{~s}_{1}\right) \cdot\left(\mathrm{e}^{-E(s)) \cdot 0}-\mathrm{e}^{-\mathrm{E}\left(s_{0}\right) \cdot 2}\right)$
$\left.=1 \cdot \operatorname{Pemb}(C)\left(S_{0}, S_{1}\right) \cdot\left(e^{-E(s) \cdot 0}-e^{-E(s)}\right) \cdot 2\right)$
$=1 \cdot 1 \cdot\left(\mathrm{e}^{-3 / 2 \cdot 0}-\mathrm{e}^{-3 / 2 \cdot 2}\right)$
$=1-\mathrm{e}^{-3}$
≈ 0.95021

Probability space

- Probability space (Path(s), $\Sigma_{\text {Path(s) }}$, Pr $_{s}$) (see [BHHK03])
- Sample space $\Omega=\operatorname{Path}(s)$
- i.e. all infinite paths
- Event set $\Sigma_{\text {Path(s) }}$
- least σ-algebra on Path(s) containing all cylinders sets Cyl $\left(\mathrm{s}_{0}, \mathrm{I}_{0}, \ldots, \mathrm{I}_{\mathrm{n}-1}, \mathrm{~s}_{\mathrm{n}}\right)$ where:
- s_{0}, \ldots, s_{n} ranges over all state sequences with $R\left(s_{i}, s_{i+1}\right)>0$ for all i
- I_{0}, \ldots, I_{n-1} ranges over all sequences of non-empty intervals in $\mathbb{R}_{\geq 0}$ (where intervals are bounded by rationals)
- Probability measure Pr_{s}
- Pr_{s} extends uniquely from probability defined over cylinders

Probabilistic reachability

- Probabilistic reachability
- the probability of reaching a target set $\mathrm{T} \subseteq$ S
- measurability:
- union of all basic cylinders $\mathrm{Cyl}\left(\mathrm{s}_{0},(0, \infty), \mathrm{s}_{1},(0, \infty), \ldots,(0, \infty), \mathrm{s}_{\mathrm{n}}\right)$ where $s_{n} \in T$
- set of state sequences $\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{n}}$ is countable
- Time-bounded probabilistic reachability
- the probability of reaching a target set $\mathrm{T} \subseteq$ S within t time units
- measurability:
- union of all basic cylinders $\operatorname{Cyl}\left(\mathrm{s}_{0}, \mathrm{l}_{0}, \mathrm{~s}_{1}, \mathrm{l}_{1}, \ldots, \mathrm{I}_{\mathrm{n}-1}, \mathrm{~s}_{\mathrm{n}}\right)$ where $\mathrm{s}_{\mathrm{n}} \in \mathrm{T}$ and $\sup \left(\mathrm{I}_{0}\right)+\ldots+\sup \left(\mathrm{I}_{\mathrm{n}-1}\right) \leq \mathrm{t}$
- set of state sequences $s_{0} s_{1} \ldots s_{n}$ is countable
. set of rational-bounded intervals is countable

Summing up...

- Exponential distribution
- suitable for modelling failures, waiting times, reactions, ...
- nice mathematical properties
- Continuous-time Markov chains
- transition delays modelled as exponential distributions
- race condition
- embedded DTMC
- generator matrix
- Probability space over paths
- (untimed and timed) probabilistic reachability

