Probabilistic Model Checking

Lecture 7 Continuous-time Markov chains

Alessandro Abate

Department of Computer Science University of Oxford

Time in DTMCs

- Time in a DTMC proceeds in discrete steps
- Two possible interpretations:
 - accurate model of (discrete) time units
 - · e.g. clock ticks in model of an embedded device
 - time-abstract
 - · no information assumed about the time transitions take
- Continuous-time Markov chains (CTMCs)
 - dense model of time
 - transitions can occur at any (real-valued) time instant
 - modelled using exponential distributions

Overview

- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
 - definition, examples
 - race condition
 - embedded DTMC
 - generator matrix
- Paths and probabilities
 - probabilistic reachability

Continuous probability distributions

- Consider r.v. X defined by:
 - cumulative distribution function (cdf)

$$F(t) = Pr(X \le t) = \int_{-\infty}^{t} f(x) dx$$

$$- Pr(X=t) = 0$$
 for all t

Example: uniform distribution: U(a,b)

$$f(t) = \begin{cases} \frac{1}{b-a} & \text{if } a \le t \le b \\ 0 & \text{otherwise} \end{cases}$$

$$F(t) = \begin{cases} 0 & \text{if } t < a \\ t - a / b - a & \text{if } a \le t < b \\ 1 & \text{if } t \ge b \end{cases}$$

Exponential distribution

• A continuous random variable X is exponential with parameter $\lambda>0$ if the density function is given by:

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t} & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$$

- we write: $X \sim Exponential(\lambda)$
- Cumulative distribution function (for t≥0):

$$F(t) = Pr(X \le t) = \int_0^t \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^t = 1 - e^{-\lambda \cdot t}$$

Other properties:

- negation:
$$Pr(X > t) = e^{-\lambda \cdot t}$$

- mean (expectation): $E[X] = \int_0^\infty x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \frac{1}{\lambda}$
- variance: $Var(X) = 1/\lambda^2$

Exponential distribution – Examples

• The larger the value of λ , the faster the c.d.f. approaches 1 (saturates)

Exponential distribution

- Adequate for modelling many real-life phenomena (constant rate, independent events)
 - Failures in process engineering
 - · e.g. time before machine component fails
 - Inter-arrival times in communication engineering
 - e.g. time before next call/customer arrives to a call centre/shop
 - Biological/chemical systems
 - e.g. times within successive reactions between species
- Maximal entropy ("uncertainty") if just the mean is known
 - i.e. best approximation when only mean is known
- Can approximate general distributions arbitrarily closely
 - phase-type distributions

- The exponential distribution has the memoryless property:
 - $Pr(X>t_1+t_2 \mid X>t_1) = Pr(X>t_2)$

- The exponential distribution is the only continuous distribution that is memoryless
 - discrete-time equivalent is the geometric distribution

The exponential distribution has the memoryless property:

$$- Pr(X>t_1+t_2 \mid X>t_1) = Pr(X>t_2)$$

```
• Pr ( X>t<sub>1</sub>+t<sub>2</sub> | X>t<sub>1</sub> ) = Pr( X>t<sub>1</sub>+t<sub>2</sub> \wedge X>t<sub>1</sub> ) / Pr( X>t<sub>1</sub> )

= Pr( X>t<sub>1</sub>+t<sub>2</sub> ) / Pr( X>t<sub>1</sub> )

= e^{-\lambda \cdot (t_1+t_2)} / e^{-\lambda \cdot t_1}

= (e^{-\lambda \cdot t_1} \cdot e^{-\lambda \cdot t_2}) / e^{-\lambda \cdot t_1}

= e^{-\lambda \cdot t_2}

= Pr( X>t<sub>2</sub> )
```

- The exponential distribution is the only continuous distribution that is memoryless
 - discrete-time equivalent is the geometric distribution

- The minimum of two independent exponential distributions is an exponential distribution (parameter is sum)
 - $-X_1 \sim \text{Exponential}(\lambda_1), X_2 \sim \text{Exponential}(\lambda_2)$
 - $Y = \min(X_1, X_2)$

- Y ~ Exponential($\lambda_1 + \lambda_2$)
- Generalises to minimum of n distributions
- Maximum is not exponential

- The minimum of two independent exponential distributions is an exponential distribution (parameter is sum)
 - $-X_1 \sim \text{Exponential}(\lambda_1), X_2 \sim \text{Exponential}(\lambda_2)$
 - $Y = \min(X_1, X_2)$

$$Pr(Y \le t) = Pr(min(X_{1}, X_{2}) \le t)$$

$$= 1 - Pr(min(X_{1}, X_{2}) > t)$$

$$= 1 - Pr(X_{1} > t \land X_{2} > t)$$

$$= 1 - Pr(X_{1} > t) \cdot Pr(X_{2} > t)$$

$$= 1 - e^{-\lambda_{1} \cdot t} \cdot e^{-\lambda_{2} \cdot t}$$

$$= 1 - e^{-(\lambda_{1} + \lambda_{2}) \cdot t}$$

- Y ~ Exponential($\lambda_1 + \lambda_2$)
- Generalises to minimum of n distributions
- Maximum is not exponential

- Consider two independent exponential distributions
 - $-X_1 \sim \text{Exponential}(\lambda_1), X_2 \sim \text{Exponential}(\lambda_2)$
 - what is the probability that $X_1 < X_2$?

$$P(X_1 < X_2) = P(\min\{X_1, X_2\} = X_1)$$

$$= \int_0^\infty P(X_1 = x) P(X_2 > x) dx$$

$$= \int_0^\infty \lambda_1 e^{-\lambda_1 x} e^{-\lambda_2 x} dx$$

$$= \lambda_1 \int_0^\infty e^{-(\lambda_1 + \lambda_2) x} dx$$

$$= \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

- probability that $X_1 < X_2$ is $\lambda_1/(\lambda_1 + \lambda_2)$
- Generalises to n distributions

Continuous-time Markov chains

- Continuous-time Markov chains (CTMCs)
 - labelled transition systems augmented with rates
 - discrete states
 - continuous time steps
 - delays exponentially distributed
- Suited to modelling:
 - reliability/dependency models
 - control systems
 - queueing and communication networks
 - biological pathways
 - chemical reaction nets
 - DNA computing ...

Continuous-time Markov chains

- Formally, a CTMC C is a tuple (S,s_{init},R,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - $-R: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the transition rate matrix
 - L : S → 2^{AP} is a labelling with atomic propositions
- Transition rate matrix assigns rates to each pair of states
 - used as a parameter to the exponential distribution
 - transition between s and s' when R(s,s')>0
 - probability of transition before t time units: $1 e^{-R(s,s') \cdot t}$
- Assumption for this lecture
 - by convention, R(s,s)=0 (can be generalised easily)

Simple CTMC example

Modelling a queue of jobs

- maximum size of the queue is 3
- state space: $S = \{s_i\}_{i=0..3}$ where s_i indicates i jobs in queue
- initially the queue is empty
- jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
- jobs are served with rate 3 (i.e. mean service time is 1/3)

Race conditions

- What happens when there exists multiple s' with R(s,s')>0?
 - race condition: first transition triggered determines next state
 - two questions:
 - 1. How long is spent in s before a transition occurs?
 - · 2. Which transition is eventually taken?
- 1. Time spent in a state before a transition
 - minimum of exponential distributions
 - exponential with parameter given by summation:

$$\mathsf{E}(s) = \sum_{s' \in S} \mathsf{R}(s, s')$$

- probability of leaving a state s within [0,t] is $1-e^{-E(s)\cdot t}$
- E(s) is the exit rate for state s
- s is called absorbing if E(s)=0 (no outgoing transitions)

Race conditions (cont'd)

- 2. Which transition is taken from state s?
 - the choice is independent of the time at which it occurs
 - e.g. if $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - then the probability that $X_1 < X_2$ is $\lambda_1/(\lambda_1 + \lambda_2)$
 - more generally, the probability is given by...
- The embedded DTMC: emb(C)= $(S, s_{init}, P^{emb(C)}, L)$
 - state space, initial state and labelling as the CTMC
 - for any s,s'∈S

$$\mathbf{P}^{\text{emb(C)}}(s,s') = \begin{cases} R(s,s')/E(s) & \text{if } E(s) > 0\\ 1 & \text{if } E(s) = 0 \text{ and } s = s'\\ 0 & \text{otherwise} \end{cases}$$

Probability that next state from s is s' given by Pemb(C)(s,s')

Two interpretations of a CTMC

• Consider a (non-absorbing) state $s \in S$ with multiple outgoing transitions, i.e. multiple $s' \in S$ with R(s,s')>0

1. Race condition

- each transition triggered after exponentially distributed delay
 - · i.e. probability triggered before t time units: $1 e^{-R(s,s') \cdot t}$
- first transition triggered determines the next state

2. Separate delay/transition

- remain in s for delay exponentially distributed with rate E(s)
 - i.e. probability of taking an outgoing transition from s within [0,t] is given by $1-e^{-E(s)\cdot t}$
- probability that next state is s' is given by P^{emb(C)}(s,s')
 - i.e. $R(s,s')/E(s) = R(s,s') / \Sigma_{s' \in S} R(s,s')$

More on CTMCs...

Infinitesimal generator matrix Q

$$\mathbf{Q}(\mathsf{s},\mathsf{s'}) \ = \left\{ \begin{array}{ll} R(\mathsf{s},\mathsf{s'}) & \mathsf{s} \neq \mathsf{s'} \\ -\sum_{\mathsf{s} \neq \mathsf{s'}} R(\mathsf{s},\mathsf{s'}) & \text{otherwise} \end{array} \right.$$

- Alternative definition: a CTMC is:
 - a family of random variables $\{ X(t) \mid t \in \mathbb{R}_{\geq 0} \}$
 - X(t) are observations made at time instant t
 - i.e. X(t) is the state of the system at time instant t
 - which satisfies...
- Memoryless (Markov property)

$$Pr(X(t_{k+1})=s_{k+1} \mid X(t_k)=s_k, ..., X(t_0)=s_0) = Pr(X(t_{k+1})=s_{k+1} \mid X(t_k)=s_k)$$

Simple CTMC example...

$$C = (S, s_{init}, R, L)$$

 $S = \{s_0, s_1, s_2, s_3\}$
 $s_{init} = s_0$

 $AP = \{empty, full\}$ $L(s_0) = \{\text{empty}\}, L(s_1) = L(s_2) = \emptyset \text{ and } L(s_3) = \{\text{full}\}$

$$\mathbf{R} = \begin{bmatrix} 0 & 3/2 & 0 & 0 \\ 3 & 0 & 3/2 & 0 \\ 0 & 3 & 0 & 3/2 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$

$$\mathbf{P}^{\text{emb(C)}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 2/3 & 0 & 1/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 0 & 3/2 & 0 & 0 \\ 3 & 0 & 3/2 & 0 \\ 0 & 3 & 0 & 3/2 \\ 0 & 0 & 3 & 0 \end{bmatrix} \quad \mathbf{P}^{\text{emb(C)}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 2/3 & 0 & 1/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{Q} = \begin{bmatrix} -3/2 & 3/2 & 0 & 0 \\ 3 & -9/2 & 3/2 & 0 \\ 0 & 3 & -9/2 & 3/2 \\ 0 & 0 & 3 & -3 \end{bmatrix}$$

transition rate matrix embedded DTMC

infinitesimal generator matrix

Example 2

- 3 machines, each can fail independently
 - delay modelled as exponential distributions
 - failure rate λ , i.e. mean-time to failure (MTTF) = 1/ λ
- One repair unit
 - repairs a single machine at rate μ (also exponential)
- State space:
 - $-S = \{s_i\}_{i=0..3}$ where s_i indicates i machines operational

Example 3

- Chemical reaction system: two species A and B
- Two reactions:

$$A + B \xrightarrow{k_1} AB \qquad A \xrightarrow{k_3}$$

- reversible reaction under which species A and B bind to form AB (forwards rate = $|A| \cdot |B| \cdot k_1$, backwards rate = $|AB| \cdot k_2$)
- degradation of A (rate $|A| \cdot k_3$)
- |X| denotes number of molecules of species X
- CTMC with state space
 - -(|A|,|B|,|AB|)
 - initially (2,2,0)

Paths of a CTMC

- An infinite path ω is a sequence $s_0 t_0 s_1 t_1 s_2 t_2 \dots$ such that
 - $\mathbf{R}(\mathbf{s}_i, \mathbf{s}_{i+1}) > 0$ and $\mathbf{t}_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$
 - t_i denotes the amount of time spent in s_i
- or a sequence s₀t₀s₁t₁s₂t₂...t_{k-1}s_k such that
 - $\mathbf{R}(\mathbf{s}_i, \mathbf{s}_{i+1}) > 0$ and $\mathbf{t}_i \in \mathbb{R}_{>0}$ for all i < k
 - where s_k is absorbing (i.e. $R(s_k, s') = 0$ for all $s' \in S$)
 - i.e. it remains in state s_k indefinitely
- Path(s) denotes all infinite paths starting in state s
- Further notation:
 - $time(\omega,j)$ = amount of time spent in the jth state, i.e. t_j
 - $\omega @ t =$ state occupied at time t
 - see e.g. [BHHK03, KNP07a] for precise definitions

Recall: Probability spaces

- A σ -algebra (or σ -field) on Ω is a set Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if A ∈ Σ, the complement Ω \ A is in Σ
 - if A_i ∈ Σ for i ∈ \mathbb{N} , the union $\cup_i A_i$ is in Σ
 - the empty set \emptyset is in Σ
- Elements of Σ are called measurable sets or events
- Theorem: For any set F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F
- Probability space (Ω, Σ, Pr)
 - $-\Omega$ is the sample space
 - Σ is the set of events: σ -algebra on Ω
 - Pr : Σ → [0,1] is the probability measure: Pr(Ω) = 1 and Pr(∪_i A_i) = Σ_i Pr(A_i) for countable disjoint A_i

Probability space

- Sample space: Path(s) (set of all inf. paths from a state s)
- Events: sets of infinite paths
- Basic events: cylinders
 - cylinders = sets of paths with common finite prefix
 - include time intervals in cylinders
- Finite prefix is a sequence $s_0, I_0, s_1, I_1, ..., I_{n-1}, s_n$
 - $-s_0,s_1,s_2,...,s_n$ sequence of states where $R(s_i,s_{i+1})>0$ for i<n
 - $-I_0,I_1,I_2,...,I_{n-1}$ sequence of non-empty intervals of $\mathbb{R}_{\geq 0}$
- Cylinder Cyl($s_0, I_0, s_1, I_1, ..., I_{n-1}, s_n$) is the set of infinite paths:
 - $-\omega(i)=s_i$ for all $i \leq n$ and time $(\omega,i) \in I_i$ for all i < n

Probability space

- Define probability measure over cylinders inductively
- $Pr_s(Cyl(s))=1$
- $Pr_s(Cyl(s,l,s_1,l_1,...,l_{n-1},s_n,l',s'))$ equals:

$$Pr_s(Cyl(s,l,s_1,l_1,...,l_{n-1},s_n)) \cdot P^{emb(C)}(s_n,s') \cdot (e^{-E(s_n)\cdot inf l'} - e^{-E(s_n)\cdot sup l'})$$

probability of transition from s_n to s' (defined using embedded DTMC)

probability of time spent in state s_n is within the interval I'

Probability space - Example

• Probability of leaving the initial state s_0 and moving to state s_1 within the first 2 time units of operation

• Cylinder Cyl(s_0 ,(0,2], s_1) {emp

• $Pr_{s0}(Cyl(s_0,(0,2],s_1))$

```
 = \text{Pr}_{s0}(\text{Cyl}(s_0)) \cdot \text{P}^{\text{emb}(\text{C})}(s_0, s_1) \cdot (e^{-\text{E}(s0) \cdot 0} - e^{-\text{E}(s0) \cdot 2}) 
 = 1 \cdot \text{P}^{\text{emb}(\text{C})}(s_0, s_1) \cdot (e^{-\text{E}(s0) \cdot 0} - e^{-\text{E}(s0) \cdot 2}) 
 = 1 \cdot 1 \cdot (e^{-3/2 \cdot 0} - e^{-3/2 \cdot 2}) 
 = 1 - e^{-3} 
 \approx 0.95021
```

Probability space

- Probability space (Path(s), $\Sigma_{Path(s)}$, Pr_s) (see [BHHK03])
- Sample space $\Omega = Path(s)$
 - i.e. all infinite paths
- Event set $\Sigma_{Path(s)}$
 - least σ -algebra on Path(s) containing all cylinders sets $Cyl(s_0, I_0, ..., I_{n-1}, s_n)$ where:
 - \cdot s₀,...,s_n ranges over all state sequences with $\mathbf{R}(s_i,s_{i+1})>0$ for all i
 - · $I_0,...,I_{n-1}$ ranges over all sequences of non-empty intervals in $\mathbb{R}_{\geq 0}$ (where intervals are bounded by rationals)
- Probability measure Pr_s
 - Pr_s extends uniquely from probability defined over cylinders

Probabilistic reachability

- Probabilistic reachability
 - the probability of reaching a target set T⊆S
 - measurability:
 - · union of all basic cylinders $Cyl(s_0,(0,\infty),s_1,(0,\infty),...,(0,\infty),s_n)$ where $s_n \in T$
 - set of state sequences $s_0s_1...s_n$ is countable
- Time-bounded probabilistic reachability
 - the probability of reaching a target set T⊆S within t time units
 - measurability:
 - union of all basic cylinders $Cyl(s_0, l_0, s_1, l_1, ..., l_{n-1}, s_n)$ where $s_n \in T$ and $sup(l_0) + ... + sup(l_{n-1}) \le t$
 - set of state sequences $s_0s_1...s_n$ is countable
 - set of rational-bounded intervals is countable

Summing up...

- Exponential distribution
 - suitable for modelling failures, waiting times, reactions, ...
 - nice mathematical properties
- Continuous–time Markov chains
 - transition delays modelled as exponential distributions
 - race condition
 - embedded DTMC
 - generator matrix
- Probability space over paths
 - (untimed and timed) probabilistic reachability