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Time in DTMCs

- Time in a DTMC proceeds in discrete steps

- Two possible interpretations:

— accurate model of (discrete) time units
. e.g. clock ticks in model of an embedded device
— time-abstract
. no information assumed about the time transitions take

+ Continuous-time Markov chains (CTMCs)
— dense model of time
— transitions can occur at any (real-valued) time instant
— modelled using exponential distributions



Overview

- Exponential distribution and its properties

. Continuous-time Markov chains (CTMCs)

— definition, examples
— race condition

— embedded DTMC

— generator matrix

- Paths and probabilities

— probabilistic reachability



Continuous probability distributions

- Consider r.v. X defined by:

— cumulative distribution function (cdf)

b-a

FH) =Pr(X<t) = (x) dx 0

— f being the probability density function (pdf)

— Pr(X=t) = 0 for all t

- Example: uniform distribution: U(a,b)

%, ifa<t<b .
o _{ 0 otherwise

(0 ift<a

F(t)=1{ts  ifa<t<b R
if t>b




Exponential distribution

- A continuous random variable X is exponential with

parameter A>0 if the density function is given by:

f(t) _ { }\4 e—k.t If t > O . ..... }\:“rate”

0 otherwise

— we write: X ~ Exponential(\)

- Cumulative distribution function (for t>0):

F(t) =Pr(X<t) = J-Otx e " *dx = [_e—k-x](t) _1_e

- Other properties:

— negation: Pr(X>1t) = ™"

— mean (expectation): E[X] = _[wa- A-et*dx =
— variance: Var(X) = 1/A?

1
A



Exponential distribution - Examples
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- The larger the value of A, the faster the c.d.f. approaches 1
(saturates)



Exponential distribution

- Adequate for modelling many real-life phenomena
(constant rate, independent events)

— Failures in process engineering

. e.g. time before machine component fails
— Inter-arrival times in communication engineering

. e.g. time before next call/customer arrives to a call centre/shop
— Biological/chemical systems

. e.g. times within successive reactions between species

- Maximal entropy (“uncertainty”) if just the mean is known
— i.e. best approximation when only mean is known

- Can approximate general distributions arbitrarily closely
— phase-type distributions



Exponential distribution - Property 1

- The exponential distribution has the memoryless property:

— Pr(X>t;+t, | X>t7) = Pr( X>t,)

- The exponential distribution is the only continuous

distribution that is memoryless
— discrete-time equivalent is the geometric distribution



Exponential distribution - Property 1

- The exponential distribution has the memoryless property:
— Pr(X>t;+t, | X>t7) = Pr( X>t,)

- Pr(X>ty+ty | X>t; ) =Pr(X>t;+t; A X>t;) / Pr(X>t;)
= Pr( X>t;+t, ) / Pr( X>t;)
— e—)v(t] +t2)/ e—)vt]

— (e—)vt] . e—>\'t2) / e—)\'t]
— e—>\'t2
= Pr( X>t2 )

- The exponential distribution is the only continuous
distribution that is memoryless

— discrete-time equivalent is the geometric distribution



Exponential distribution - Property 2

- The minimum of two independent exponential distributions
is an exponential distribution (parameter is sum)

— X; ~ Exponential(A;), X, ~ Exponential(\,)
— Y = min(Xy,X5)

— Y ~ Exponential(A;+A),)

- Generalises to minimum of n distributions
- Maximum is not exponential
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Exponential distribution - Property 2

- The minimum of two independent exponential distributions
is an exponential distribution (parameter is sum)

— X; ~ Exponential(A;), X, ~ Exponential(\,)
— Y = min(Xy,X5)

Pr(Y <t) =Pr(min(X,,X,)<t)
=T1-Pr(min(X;,X,) > t)
=1-Pr(X; >tA X, >1)
=T1-Pr(X, > 1t)-Pr(X, > 1)

_1_e Nt gt
— 'I _ e—(>\]+)\2)'t

— Y ~ Exponential(A;+A),)

- Generalises to minimum of n distributions
- Maximum is not exponential
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Exponential distribution - Property 3

- Consider two independent exponential distributions

— X; ~ Exponential(A;), X, ~ Exponential(\;)
— what is the probability that X; <X, ?

P(Xl < Xz) = P(min{Xl,Xg} = Xl)
:/ P(X; =z)P(X2 > z)dx
0
:/ Ale—klme—)\zmdx
0

=\ / " e itaegy
0

P

— probability that X; <X, is A/ (A1+Ay)

- Generalises to n distributions



Continuous-time Markov chains

. Continuous-time Markov chains (CTMCs)

— labelled transition systems augmented with rates
— discrete states

— continuous time steps

— delays exponentially distributed

- Suited to modelling:

— reliability/dependency models

— control systems

— queueing and communication networks
— biological pathways

— chemical reaction nets

— DNA computing ...
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Continuous-time Markov chains

Formally, a CTMC C is a tuple (S,s;.i,R,L) where:
— S is a finite set of states (“state space”)
— Sinit € S is the initial state
— R:S XS — R.gis the transition rate matrix
— L:S — 2AP s a labelling with atomic propositions

- Transition rate matrix assigns rates to each pair of states
— used as a parameter to the exponential distribution

— transition between s and s’ when R(s,s’)>0

— probability of transition before t time units: 1 - e-R.s)t

- Assumption for this lecture
— by convention, R(s,s)=0 (can be generalised easily)
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Simple CTMC example

Modelling a queue of jobs
— maximum size of the queue is 3
— state space: S = {s;}i—o 3 where s; indicates i jobs in queue
— initially the queue is empty
— jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
— jobs are served with rate 3 (i.e. mean service time is 1/3)

{empty} 3/2 3/2  {fully
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Race conditions

- What happens when there exists multiple s’ with R(s,s’)>07?
— race condition: first transition triggered determines next state

two questions:
. 1. How long is spent in s before a transition occurs?
. 2. Which transition is eventually taken?

- 1. Time spent in a state before a transition

minimum of exponential distributions
exponential with parameter given by summation:

E(s) = Z IESR(S,S')

probability of leaving a state s within [0,t] is T-e-E®)t
E(s) is the exit rate for state s
s is called absorbing if E(s)=0 (no outgoing transitions)
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Race conditions (cont’d)

- 2. Which transition is taken from state s?

— the choice is independent of the time at which it occurs
— e.g. if Xy ~ Exponential(\;), X, ~ Exponential(\,)

— then the probability that X;<X5 is A1/(A1+Ay)

— more generally, the probability is given by...

- The embedded DTMC: emb(C)=(S,s;,i,PemP©), L)

— state space, initial state and labelling as the CTMC
— for any s,s’eS

R(s,s")/E(s) if E(s) >0
pembO)(s, s') = 1 if E(s)=0ands = s’
0 otherwise

- Probability that next state from s is s’ given by Pemb©)(s s’)
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Two interpretations of a CTMC

Consider a (hon-absorbing) state s € S with multiple
outgoing transitions, i.e. multiple s’ € S with R(s,s’)>0

1. Race condition
— each transition triggered after exponentially distributed delay
. i.e. probability triggered before t time units: 1 - e RG:s)t
— first transition triggered determines the next state

2. Separate delay/transition

— remain in s for delay exponentially distributed with rate E(s)

. i.e. probability of taking an outgoing transition from s within [0,t]
is given by 1-eEe)t

— probability that next state is s’ is given by Pemb©)(s,s’)
. i.e. R(s,s”)/E(s) = R(s,s’) / Z¢es R(s,S7)
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More on CTMCs...

- Infinitesimal generator matrix Q

, R(s,s") '
Q(s,s’) = { -> _.R(s,s") ?)tihserwise

- Alternative definition: a CTMC is:

— a family of random variables { X(t) | t € R.¢ }

— X(t) are observations made at time instant t

— i.e. X(t) is the state of the system at time instant t
— which satisfies...

- Memoryless (Markov property)

Pr(x(tk+1)25k+1 | X(tk)zsk’ ---,X(to)ZSo) — Pr(X(tk+1):5k+1 | X(tk)zsk)

19



Simple CTMC example...

C= ( S, Sinity R, L) {empty} 3/2 3/2 3/2 {full}
. (3) () () (s
3 3 3

AP = {empty, full}
L(sg)={empty}, L(s;)=L(s,)=T and L(s3)={full}

0O 3/2 O 0 0 1 O O -3/2 3/2 0 0
S 30 32 0 pemo_(2/3 0 U3 0| o [3 92 32 0

0 3 0 3/2 0 2/3 0 1/3 0 3 -9/2 3/2

0 0 3 0 0 0 1 0] 0 0 3 -3

. transition embedded . infinitesimal |

. rate matrix . DTMC . generator matrix

SassmssssssssEsssssasssEsssssansmnnnnnnnns TansssssaEsEEssEssEssEEsEEsEEsEEEEEEEEE e EsEssssEsEsEsEEEEEEEEEEsEEEEsEsEsEEEEEEEEEEEEsEEEEEREEnd



Example 2

3 machines, each can fail independently

— delay modelled as exponential distributions

— failure rate A, i.e. mean-time to failure (MTTF) = 1/ A
One repair unit

— repairs a single machine at rate y (also exponential)

State space:
— S ={s;}i—.0.3 where s; indicates i machines operational

{high} 3N {high} 2\ {low} {mactlve}
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Example 3

- Chemical reaction system: two species A and B
- Two reactions:

- CTMC with state space

Kk, K
A+B < AB A—>
K>

— reversible reaction under which
species A and B bind to form AB
(forwards rate = |A|-|B|-k;,
backwards rate = |AB|-k>)

— degradation of A (rate |A|-k3)

— |X| denotes number of
molecules of species X

— (|Al,[B],|ABJ)
— initially (2,2,0)
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Paths of a CTMC

- An infinite path w is a sequence sytys;t;S,t5... such that
— R(sj,si47) > 0and t; € R.o foralli e N
— t, denotes the amount of time spent in s;
or a sequence SytyS;t;S,t,...1 1Sk such that
— R(s;,si47) > 0 and t; € R.o for all i<k
— where sy is absorbing (i.e. R(sy,s’) = 0 for all s’ € S)
— i.e. it remains in state s, indefinitely

Path(s) denotes all infinite paths starting in state s
Further notation:
— time(w,j) = amount of time spent in the jth state, i.e. t;
— W@t = state occupied at time t
— see e.g. [BHHKO3, KNPO7a] for precise definitions
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Recall: Probability spaces

- A o-algebra (or o-field) on Q is a set 2 of subsets of Q
closed under complementation and countable union, i.e.:

— if A € X, the complement Q \ AisinX
— if Ay € X fori € N, the union U; A, is in X
— the empty set @ isin X
Elements of 2 are called measurable sets or events

- Theorem: For any set F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

Probability space (Q, Z, Pr)
— Q is the sample space
— > is the set of events: o-algebra on Q
— Pr: %2 — [0,1] is the probability measure:
Pr(QQ) = 1 and Pr(u; A) = 3, Pr(A;) for countable disjoint A,
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Probability space

- Sample space: Path(s) (set of all inf. paths from a state s)
Events: sets of infinite paths
Basic events: cylinders

— cylinders = sets of paths with common finite prefix
— include time intervals in cylinders

Finite prefix is a sequence sg,lo,51,l1,...,1h-1,5n
— $0,51,S2,...,S, sequence of states where R(s;,s;,1)>0 for i<n

— lo,lt,15,...,1,-1 sequence of non-empty intervals of R.

Cylinder Cyl(sg,lo,51,l1,-..,1h,-1,S,) is the set of infinite paths:
— w(i)=s; for all i < n and time(w,i) € I, foralli < n

25



Probability space

- Define probability measure over cylinders inductively

: Prs(Cyl(S)): 1

« Pr.(Cyl(s,l,s¢,l4,...,1,1,5,,1",5")) equals:

1 — A ' _ . )
Pr.(Cyl(s,l,s;, k-1 1,S,)) - Pemb(C)(Sn,S ) . (e E(sp)inf I _ o—E(sq)-sup |

/

probability of transition
. from s, to s’ (defined
. using embedded DTMC)

probability of time spent in state
e e e e sn is within the interval I’



Probability space - Example

.+ Cylinder Cyl(s,,(0,2],s,) {empty}

- Probability of leaving the initial state s, and moving to state
s; within the first 2 time units of operation

3/2 3/2 3/2

{full}
cgcgolo

. Pro(Cyl(s,,(0,21,57))

= Pry,(Cyl(sg)) - Pemb©(sy,s;) - (@-E(s0)-0 — @-E(s0)-2)
— 1 . PembO)(s,,s,) - (e~E(s0)-0 — @-E(50)-2)

— 1.1 . (e3/2:0 _ g-3/2:2)

]-e3

0.95021

U
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Probability space

Probability space (Path(s), 2p,ins), Prs) (see [BHHKO3])

Sample space QQ = Path(s)
— i.e. all infinite paths
Event set Zpath(s)

— least o—-algebra on Path(s) containing all cylinders sets
Cyl(sg,lo,...,ln-1,5n) Where:
. Sp,...,Sy ranges over all state sequences with R(s;,s;.1)>0 for all i

- lo,...,In-1 ranges over all sequences of non-empty intervals in R.,
(where intervals are bounded by rationals)

Probability measure Pr,
— Pr, extends uniquely from probability defined over cylinders
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Probabilistic reachability

- Probabilistic reachability
— the probability of reaching a target set TcS

— measurability:

. union of all basic cylinders Cyl(sg,(0,),s1,(0,),...,(0,00),s,,)
where s, € T

. set of state sequences sgS;...S, is countable

- Time-bounded probabilistic reachability
— the probability of reaching a target set T<S within t time units

— measurability:

. union of all basic cylinders Cyl(sq,lo,51,l1,..,1n-1,5n)
where s, € T and sup(lg)+...+sup(l,_7) < t

. set of state sequences syS;...S, is countable
. set of rational-bounded intervals is countable
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Summing up...

Exponential distribution
— suitable for modelling failures, waiting times, reactions, ...
— nice mathematical properties

Continuous-time Markov chains
— transition delays modelled as exponential distributions
— race condition
— embedded DTMC
— generator matrix

Probability space over paths
— (untimed and timed) probabilistic reachability
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